1
|
Milster S, Kim WK, Dzubiella J. Feedback-controlled solute transport through chemo-responsive polymer membranes. J Chem Phys 2023; 158:104903. [PMID: 36922137 DOI: 10.1063/5.0135707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Polymer membranes are typically assumed to be inert and nonresponsive to the flux and density of the permeating particles in transport processes. Here, we theoretically study the consequences of membrane responsiveness and feedback on the steady-state force-flux relations and membrane permeability using a nonlinear-feedback solution-diffusion model of transport through a slab-like membrane. Therein, the solute concentration inside the membrane depends on the bulk concentration, c0, the driving force, f, and the polymer volume fraction, ϕ. In our model, the solute accumulation in the membrane causes a sigmoidal volume phase transition of the polymer, changing its permeability, which, in return, affects the membrane's solute uptake. This feedback leads to nonlinear force-flux relations, j(f), which we quantify in terms of the system's differential permeability, Psys Δ∝dj/df. We find that the membrane feedback can increase or decrease the solute flux by orders of magnitude, triggered by a small change in the driving force and largely tunable by attractive vs repulsive solute-membrane interactions. Moreover, controlling the inputs, c0 and f, can lead to the steady-state bistability of ϕ and hysteresis in the force-flux relations. This work advocates that the fine-tuning of the membrane's chemo-responsiveness will enhance the nonlinear transport control features, providing great potential for future (self-)regulating membrane devices.
Collapse
Affiliation(s)
- Sebastian Milster
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| | - Won Kyu Kim
- Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
2
|
Kopp RA, Klapp SHL. Persistent motion of a Brownian particle subject to repulsive feedback with time delay. Phys Rev E 2023; 107:024611. [PMID: 36932532 DOI: 10.1103/physreve.107.024611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Based on analytical and numerical calculations we study the dynamics of an overdamped colloidal particle moving in two dimensions under time-delayed, nonlinear feedback control. Specifically, the particle is subject to a force derived from a repulsive Gaussian potential depending on the difference between its instantaneous position, r(t), and its earlier position r(t-τ), where τ is the delay time. Considering first the deterministic case, we provide analytical results for both the case of small displacements and the dynamics at long times. In particular, at appropriate values of the feedback parameters, the particle approaches a steady state with a constant, nonzero velocity whose direction is constant as well. In the presence of noise, the direction of motion becomes randomized at long times, but the (numerically obtained) velocity autocorrelation still reveals some persistence of motion. Moreover, the mean-squared displacement (MSD) reveals a mixed regime at intermediate times with contributions of both ballistic motion and diffusive translational motion, allowing us to extract an estimate for the effective propulsion velocity in presence of noise. We then analyze the data in terms of exact, known results for the MSD of active Brownian particles. The comparison indeed indicates a strong similarity between the dynamics of the particle under repulsive delayed feedback and active motion. This relation carries over to the behavior of the long-time diffusion coefficient D_{eff} which, similarly to active motion, is strongly enhanced compared to the free case. Finally, we show that, for small delays, D_{eff} can be estimated analytically.
Collapse
Affiliation(s)
- Robin A Kopp
- Institut für Theoretische Physik, Hardenbergstraße 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstraße 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
3
|
Feedback-controlled dynamics of neuronal cells on directional surfaces. Biophys J 2022; 121:769-781. [PMID: 35101418 PMCID: PMC8943704 DOI: 10.1016/j.bpj.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
The formation of neuronal networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body and axonal navigation toward target neurons. Axonal growth is guided by the interactions between the tip of the axon (growth cone) and its extracellular environmental cues, which include intercellular interactions, the biochemical landscape around the neuron, and the mechanical and geometrical features of the growth substrate. Here, we present a comprehensive experimental and theoretical analysis of axonal growth for neurons cultured on micropatterned polydimethylsiloxane (PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal dynamics on these surfaces: the growth cone continuously measures environmental cues and adjusts its motion in response to external geometrical features. We show that this model captures all the characteristics of axonal dynamics on PDMS surfaces for both untreated and chemically modified neurons. We combine experimental data with theoretical analysis to measure key parameters that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. The experiments performed on neurons treated with Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of actin filaments) indicate that the internal dynamics of microtubules and actin filaments plays a critical role for the proper function of the feedback mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide neuronal growth and promote nerve repair.
Collapse
|
4
|
Sunnerberg JP, Descoteaux M, Kaplan DL, Staii C. Axonal growth on surfaces with periodic geometrical patterns. PLoS One 2021; 16:e0257659. [PMID: 34555083 PMCID: PMC8459970 DOI: 10.1371/journal.pone.0257659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/08/2021] [Indexed: 11/18/2022] Open
Abstract
The formation of neuron networks is a complex phenomenon of fundamental importance for understanding the development of the nervous system, and for creating novel bioinspired materials for tissue engineering and neuronal repair. The basic process underlying the network formation is axonal growth, a process involving the extension of axons from the cell body towards target neurons. Axonal growth is guided by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical features of the growth substrate. The dynamics of the growing axon and its biomechanical interactions with the growing substrate remains poorly understood. In this paper, we develop a model of axonal motility which incorporates mechanical interactions between the axon and the growth substrate. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on surfaces with micropatterned periodic geometrical features: diffusion (cell motility) coefficients, speed and angular distributions, and axon bending rigidities. Experiments performed on neurons treated Taxol (inhibitor of microtubule dynamics) and Blebbistatin (disruptor of actin filaments) show that the dynamics of the cytoskeleton plays a critical role in the axon steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which high-curvature geometrical features impart high traction forces to the growth cone. These results have important implications for our fundamental understanding of axonal growth as well as for bioengineering novel substrates that promote neuronal growth and nerve repair.
Collapse
Affiliation(s)
- Jacob P. Sunnerberg
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - Marc Descoteaux
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yurchenko I, Farwell M, Brady DD, Staii C. Neuronal Growth and Formation of Neuron Networks on Directional Surfaces. Biomimetics (Basel) 2021; 6:biomimetics6020041. [PMID: 34208649 PMCID: PMC8293217 DOI: 10.3390/biomimetics6020041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The formation of neuron networks is a process of fundamental importance for understanding the development of the nervous system and for creating biomimetic devices for tissue engineering and neural repair. The basic process that controls the network formation is the growth of an axon from the cell body and its extension towards target neurons. Axonal growth is directed by environmental stimuli that include intercellular interactions, biochemical cues, and the mechanical and geometrical properties of the growth substrate. Despite significant recent progress, the steering of the growing axon remains poorly understood. In this paper, we develop a model of axonal motility, which incorporates substrate-geometry sensing. We combine experimental data with theoretical analysis to measure the parameters that describe axonal growth on micropatterned surfaces: diffusion (cell motility) coefficients, speed and angular distributions, and cell-substrate interactions. Experiments performed on neurons treated with inhibitors for microtubules (Taxol) and actin filaments (Y-27632) indicate that cytoskeletal dynamics play a critical role in the steering mechanism. Our results demonstrate that axons follow geometrical patterns through a contact-guidance mechanism, in which geometrical patterns impart high traction forces to the growth cone. These results have important implications for bioengineering novel substrates to guide neuronal growth and promote nerve repair.
Collapse
|
6
|
Zimmermann U, Löwen H, Kreuter C, Erbe A, Leiderer P, Smallenburg F. Negative resistance for colloids driven over two barriers in a microchannel. SOFT MATTER 2021; 17:516-522. [PMID: 33226041 DOI: 10.1039/d0sm01700k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When considering the flow of currents through obstacles, one core expectation is that the total resistance of sequential single resistors is additive. While this rule is most commonly applied to electronic circuits, it also applies to other transport phenomena such as the flow of colloids or nanoparticles through channels containing multiple obstacles, as long as these obstacles are sufficiently far apart. Here we explore the breakdown of this additivity for fluids of repulsive colloids driven over two energetic barriers in a microchannel, using real-space microscopy experiments, particle-resolved simulations, and dynamical density functional theory. If the barrier separation is comparable to the particle correlation length, the resistance is highly non-additive, such that the resistance added by the second barrier can be significantly higher or lower than that of the first. Surprisingly, in some cases the second barrier can even add a negative resistance, such that two identical barriers are easier to cross than a single one. We explain this counterintuitive observation in terms of the structuring of particles trapped between the barriers.
Collapse
Affiliation(s)
- Urs Zimmermann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Artur Erbe
- Institut für Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Paul Leiderer
- Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
| | - Frank Smallenburg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany and Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France.
| |
Collapse
|
7
|
Kollipara PS, Li J, Zheng Y. Optical Patterning of Two-Dimensional Materials. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6581250. [PMID: 32043085 PMCID: PMC7007758 DOI: 10.34133/2020/6581250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 11/28/2022]
Abstract
Recent advances in the field of two-dimensional (2D) materials have led to new electronic and photonic devices enabled by their unique properties at atomic thickness. Structuring 2D materials into desired patterns on substrates is often an essential and foremost step for the optimum performance of the functional devices. In this regard, optical patterning of 2D materials has received enormous interest due to its advantages of high-throughput, site-specific, and on-demand fabrication. Recent years have witnessed scientific reports of a variety of optical techniques applicable to patterning 2D materials. In this minireview, we present the state-of-the-art optical patterning of 2D materials, including laser thinning, doping, phase transition, oxidation, and ablation. Several applications based on optically patterned 2D materials will be discussed as well. With further developments, optical patterning is expected to hold the key in pushing the frontiers of manufacturing and applications of 2D materials.
Collapse
Affiliation(s)
| | - Jingang Li
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Tarama S, Egelhaaf SU, Löwen H. Traveling band formation in feedback-driven colloids. Phys Rev E 2019; 100:022609. [PMID: 31574772 DOI: 10.1103/physreve.100.022609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Using simulation and theory we study the dynamics of a colloidal suspension in two dimensions subject to a time-delayed repulsive feedback that depends on the positions of the colloidal particles. The colloidal particles experience an additional potential that is a superposition of repulsive potential energies centered around the positions of all the particles a delay time ago. Here we show that such a feedback leads to self-organization of the particles into traveling bands. The width of the bands and their propagation speed can be tuned by the delay time and the range of the imposed repulsive potential. The emerging traveling band behavior is observed in Brownian dynamics computer simulations as well as microscopic dynamic density functional theory. Traveling band formation also persists in systems of finite size leading to rotating traveling waves in the case of circularly confined systems.
Collapse
Affiliation(s)
- Sonja Tarama
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Loos SAM, Klapp SHL. Force-linearization closure for non-Markovian Langevin systems with time delay. Phys Rev E 2017; 96:012106. [PMID: 29347056 DOI: 10.1103/physreve.96.012106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 06/07/2023]
Abstract
This paper is concerned with the Fokker-Planck (FP) description of classical stochastic systems with discrete time delay. The non-Markovian character of the corresponding Langevin dynamics naturally leads to a coupled infinite hierarchy of FP equations for the various n-time joint distribution functions. Here, we present an approach to close the hierarchy at the one-time level based on a linearization of the deterministic forces in all members of the hierarchy starting from the second one. This leads to a closed equation for the one-time probability density in the steady state. Considering two generic nonlinear systems, a colloidal particle in a sinusoidal or bistable potential supplemented by a linear delay force, we demonstrate that our approach yields a very accurate representation of the density as compared to quasiexact numerical results from direct solution of the Langevin equation. Moreover, the results are significantly improved against those from a small-delay approximation and a perturbation-theoretical approach. We also discuss the possibility of accessing transport-related quantities, such as escape times, based on an additional Kramers approximation. Our approach applies to a wide class of models with nonlinear deterministic forces.
Collapse
Affiliation(s)
- Sarah A M Loos
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Sabine H L Klapp
- Institut für Theoretische Physik, Hardenbergstr. 36, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
10
|
|