1
|
Moreno-Spiegelberg P, Rietkerk M, Gomila D. How spatiotemporal dynamics can enhance ecosystem resilience. Proc Natl Acad Sci U S A 2025; 122:e2412522122. [PMID: 40080641 PMCID: PMC11929404 DOI: 10.1073/pnas.2412522122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/11/2025] [Indexed: 03/15/2025] Open
Abstract
We study how self-organization in systems showing complex spatiotemporal dynamics can increase ecosystem resilience. We consider a general simple model that includes positive feedback as well as negative feedback mediated by an inhibitor. We apply this model to Posidonia oceanica meadows, where positive and negative feedbacks are well documented, and there is empirical evidence of the role of sulfide accumulation, toxic for the plant, in driving complex spatiotemporal dynamics. We describe a progressive transition from homogeneous meadows to extinction through dynamical regimes that allow the ecosystem to avoid the typical ecological tipping points of homogeneous vegetation covers. A predictable sequence of distinct dynamical regimes is observed as mortality is continuously increased: turbulent regimes, formation of spirals and wave trains, and isolated traveling pulses or expanding rings, the latter being a harbinger of ecosystem collapse, however far beyond the tipping point of the homogeneous cover. The model used in this paper is general, and the results can be applied to other plant-soil spatially extended systems, regardless of the mechanisms behind negative and positive feedbacks.
Collapse
Affiliation(s)
- Pablo Moreno-Spiegelberg
- Institute for Cross-Disciplinary Physics and Complex Systems (Consejo Superior de Investigaciones Científicas - Universitat de les Illes Balears), Palma de MallorcaE-07122, Spain
| | - Max Rietkerk
- Copernicus Institute of Sustainable Development, Section Environmental Sciences, Utrecht University, Utrecht3508 TC, The Netherlands
| | - Damià Gomila
- Institute for Cross-Disciplinary Physics and Complex Systems (Consejo Superior de Investigaciones Científicas - Universitat de les Illes Balears), Palma de MallorcaE-07122, Spain
| |
Collapse
|
2
|
Golmohammadi A, Payonk JP, van Rienen U, Appali R. A Computational Study on the Activation of Neural Transmission in Deep Brain Stimulation. IEEE Trans Biomed Eng 2025; 72:1132-1147. [PMID: 39480713 DOI: 10.1109/tbme.2024.3489799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Deep brain stimulation (DBS) is an established treatment for neurodegenerative movement disorders such as Parkinson's disease that mitigates symptoms by overwriting pathological signals from the central nervous system to the motor system. Nearly all computational models of DBS, directly or indirectly, associate clinical improvements with the extent of fiber activation in the vicinity of the stimulating electrode. However, it is not clear how such activation modulates information transmission. Here, we use the exact cable equation for straight or curved axons and show that DBS segregates the signaling pathways into one of the three communicational modes: complete information blockage, uni-, and bi-directional transmission. Furthermore, all these modes respond to the stimulating pulse in an asynchronous but frequency-locked fashion. Asynchrony depends on the geometry of the axon, its placement and orientation, and the stimulation protocol. At the same time, the electrophysiology of the nerve determines frequency-locking. Such a trimodal response challenges the notion of activation as a binary state and studies that correlate it with the DBS outcome. Importantly, our work suggests that a mechanistic understanding of DBS action relies on distinguishing between these three modes of information transmission.
Collapse
|
3
|
Feng R, Sheng H, Lian Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci 2024; 45:2997-3006. [PMID: 38436788 DOI: 10.1007/s10072-024-07426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound's mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Rui Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanqing Sheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Drukarch B, Wilhelmus MMM. Thinking about the action potential: the nerve signal as a window to the physical principles guiding neuronal excitability. Front Cell Neurosci 2023; 17:1232020. [PMID: 37701723 PMCID: PMC10493309 DOI: 10.3389/fncel.2023.1232020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 09/14/2023] Open
Abstract
Ever since the work of Edgar Adrian, the neuronal action potential has been considered as an electric signal, modeled and interpreted using concepts and theories lent from electronic engineering. Accordingly, the electric action potential, as the prime manifestation of neuronal excitability, serving processing and reliable "long distance" communication of the information contained in the signal, was defined as a non-linear, self-propagating, regenerative, wave of electrical activity that travels along the surface of nerve cells. Thus, in the ground-breaking theory and mathematical model of Hodgkin and Huxley (HH), linking Nernst's treatment of the electrochemistry of semi-permeable membranes to the physical laws of electricity and Kelvin's cable theory, the electrical characteristics of the action potential are presented as the result of the depolarization-induced, voltage- and time-dependent opening and closure of ion channels in the membrane allowing the passive flow of charge, particularly in the form of Na+ and K+ -ions, into and out of the neuronal cytoplasm along the respective electrochemical ion gradient. In the model, which treats the membrane as a capacitor and ion channels as resistors, these changes in ionic conductance across the membrane cause a sudden and transient alteration of the transmembrane potential, i.e., the action potential, which is then carried forward and spreads over long(er) distances by means of both active and passive conduction dependent on local current flow by diffusion of Na+ ion in the neuronal cytoplasm. However, although highly successful in predicting and explaining many of the electric characteristics of the action potential, the HH model, nevertheless cannot accommodate the various non-electrical physical manifestations (mechanical, thermal and optical changes) that accompany action potential propagation, and for which there is ample experimental evidence. As such, the electrical conception of neuronal excitability appears to be incomplete and alternatives, aiming to improve, extend or even replace it, have been sought for. Commonly misunderstood as to their basic premises and the physical principles they are built on, and mistakenly perceived as a threat to the generally acknowledged explanatory power of the "classical" HH framework, these attempts to present a more complete picture of neuronal physiology, have met with fierce opposition from mainstream neuroscience and, as a consequence, currently remain underdeveloped and insufficiently tested. Here we present our perspective that this may be an unfortunate state of affairs as these different biophysics-informed approaches to incorporate also non-electrical signs of the action potential into the modeling and explanation of the nerve signal, in our view, are well suited to foster a new, more complete and better integrated understanding of the (multi)physical nature of neuronal excitability and signal transport and, hence, of neuronal function. In doing so, we will emphasize attempts to derive the different physical manifestations of the action potential from one common, macroscopic thermodynamics-based, framework treating the multiphysics of the nerve signal as the inevitable result of the collective material, i.e., physico-chemical, properties of the lipid bilayer neuronal membrane (in particular, the axolemma) and/or the so-called ectoplasm or membrane skeleton consisting of cytoskeletal protein polymers, in particular, actin fibrils. Potential consequences for our view of action potential physiology and role in neuronal function are identified and discussed.
Collapse
Affiliation(s)
| | - Micha M. M. Wilhelmus
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
5
|
Moreno-Spiegelberg P, Arinyo-I-Prats A, Ruiz-Reynés D, Matias MA, Gomila D. Bifurcation structure of traveling pulses in type-I excitable media. Phys Rev E 2022; 106:034206. [PMID: 36266808 DOI: 10.1103/physreve.106.034206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
We study the scenario in which traveling pulses emerge in a prototypical type-I one-dimensional excitable medium, which exhibits two different routes to excitable behavior, mediated by a homoclinic (saddle-loop) and a saddle-node on the invariant cycle bifurcations. We characterize the region in parameter space in which traveling pulses are stable together with the different bifurcations behind either their destruction or loss of stability. In particular, some of the bifurcations delimiting the stability region have been connected, using singular limits, with the two different scenarios that mediated type-I local excitability. Finally, the existence of traveling pulses has been linked to a drift pitchfork instability of localized steady structures.
Collapse
Affiliation(s)
- Pablo Moreno-Spiegelberg
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Andreu Arinyo-I-Prats
- Institute of Computer Science, Czech Academy of Sciences, 182 07 Prague 8, Czech Republic
| | - Daniel Ruiz-Reynés
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Manuel A Matias
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Damià Gomila
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
6
|
Arinyo-I-Prats A, Moreno-Spiegelberg P, Matias MA, Gomila D. Traveling pulses in type-I excitable media. Phys Rev E 2021; 104:L052203. [PMID: 34942747 DOI: 10.1103/physreve.104.l052203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
We consider a general model exhibiting type-I excitability mediated by a homoclinic and a saddle node on the invariant circle bifurcations. We show how the distinct properties of type-I with respect to type-II excitability confer unique features to traveling pulses in excitable media. They inherit the characteristic divergence of type-I excitable trajectories at threshold exhibiting analogous scalings in the spatial thickness of the pulses. Our results pave the way to identify basic underlying mechanisms behind type-I excitable pulses based solely on the characteristics of the pulse.
Collapse
Affiliation(s)
- Andreu Arinyo-I-Prats
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain.,Institute of Computer Science, Czech Academy of Sciences, 182 07 Praha 8, Czech Republic
| | - Pablo Moreno-Spiegelberg
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Manuel A Matias
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Damià Gomila
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
7
|
Shrivastava S. Shock and detonation waves at an interface and the collision of action potentials. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 162:111-121. [PMID: 33516823 DOI: 10.1016/j.pbiomolbio.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/24/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Action potentials in neurons are known to annihilate each other upon collision, while there are cases where they might penetrate each other. The fate of two waves upon collision is critically dependent on the underlying mechanism of propagation and therefore an understanding of possible outcomes of collision under different conditions is important. Previously, compression waves that travel within the plasma membrane of a neuron have been proposed as a thermodynamic basis for the propagation of action potentials. In this context, it was recently shown that two-dimensional compressive shock waves in the model system of lipid monolayers behave strikingly similar to action potentials in neurons and can even annihilate each other upon head-on collision. However, even a qualitative mechanism remained unclear. To this end, we summarise the fundamentals of shock physics as applied to an interface and recap how it explained the observation of threshold and saturation of shockwaves in the lipid monolayer (all - or - none). We then compare the theory with the soliton model that has the same fundamental premise, i.e. the conservation laws and thermodynamics, and was previously proposed as a model for the nerve pulse propagation. We elaborate on how the two approaches make different predictions with regards to collisions and the detailed structure of the wave-front. As a case study and a new qualitative result, we finally show that previously unexplained annihilation of shock waves in the lipid monolayer is a direct consequence of the nature of state changes, i.e. jump conditions, within these shockwaves.
Collapse
|
8
|
Mussel M, Schneider MF. Sound pulses in lipid membranes and their potential function in biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:101-110. [DOI: 10.1016/j.pbiomolbio.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022]
|
9
|
Dynamical mechanism for conduction failure behavior of action potentials related to pain information transmission. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Jerusalem A, Al-Rekabi Z, Chen H, Ercole A, Malboubi M, Tamayo-Elizalde M, Verhagen L, Contera S. Electrophysiological-mechanical coupling in the neuronal membrane and its role in ultrasound neuromodulation and general anaesthesia. Acta Biomater 2019; 97:116-140. [PMID: 31357005 DOI: 10.1016/j.actbio.2019.07.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
The current understanding of the role of the cell membrane is in a state of flux. Recent experiments show that conventional models, considering only electrophysiological properties of a passive membrane, are incomplete. The neuronal membrane is an active structure with mechanical properties that modulate electrophysiology. Protein transport, lipid bilayer phase, membrane pressure and stiffness can all influence membrane capacitance and action potential propagation. A mounting body of evidence indicates that neuronal mechanics and electrophysiology are coupled, and together shape the membrane potential in tight coordination with other physical properties. In this review, we summarise recent updates concerning electrophysiological-mechanical coupling in neuronal function. In particular, we aim at making the link with two relevant yet often disconnected fields with strong clinical potential: the use of mechanical vibrations-ultrasound-to alter the electrophysiogical state of neurons, e.g., in neuromodulation, and the theories attempting to explain the action of general anaesthetics. STATEMENT OF SIGNIFICANCE: General anaesthetics revolutionised medical practice; now an apparently unrelated technique, ultrasound neuromodulation-aimed at controlling neuronal activity by means of ultrasound-is poised to achieve a similar level of impact. While both technologies are known to alter the electrophysiology of neurons, the way they achieve it is still largely unknown. In this review, we argue that in order to explain their mechanisms/effects, the neuronal membrane must be considered as a coupled mechano-electrophysiological system that consists of multiple physical processes occurring concurrently and collaboratively, as opposed to sequentially and independently. In this framework the behaviour of the cell membrane is not the result of stereotypical mechanisms in isolation but instead emerges from the integrative behaviour of a complexly coupled multiphysics system.
Collapse
Affiliation(s)
- Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK.
| | - Zeinab Al-Rekabi
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Ari Ercole
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miren Tamayo-Elizalde
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, UK; WIN, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Sonia Contera
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
11
|
Chen H, Garcia-Gonzalez D, Jérusalem A. Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Phys Rev E 2019; 99:032406. [PMID: 30999419 DOI: 10.1103/physreve.99.032406] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 02/06/2023]
Abstract
For more than half a century, the action potential (AP) has been considered a purely electrical phenomenon. However, experimental observations of membrane deformations occurring during APs have revealed that this process also involves mechanical features. This discovery has recently fuelled a controversy on the real nature of APs: whether they are mechanical or electrical. In order to examine some of the modern hypotheses regarding APs, we propose here a coupled mechanoelectrophysiological membrane finite-element model for neuronal axons. The axon is modeled as an axisymmetric thin-wall cylindrical tube. The electrophysiology of the membrane is modeled using the classic Hodgkin-Huxley (H-H) equations for the Nodes of Ranvier or unmyelinated axons and the cable theory for the internodal regions, whereas the axonal mechanics is modeled by means of viscoelasticity theory. Membrane potential changes induce a strain gradient field via reverse flexoelectricity, whereas mechanical pulses result in an electrical self-polarization field following the direct flexoelectric effect, in turn influencing the membrane potential. Moreover, membrane deformation also alters the values of membrane capacitance and resistance in the H-H equation. These three effects serve as the fundamental coupling mechanisms between the APs and mechanical pulses in the model. A series of numerical studies was systematically conducted to investigate the consequences of interaction between the APs and mechanical waves on both myelinated and unmyelinated axons. Simulation results illustrate that the AP is always accompanied by an in-phase propagating membrane displacement of ≈1nm, whereas mechanical pulses with enough magnitude can also trigger APs. The model demonstrates that mechanical vibrations, such as the ones arising from ultrasound stimulations, can either annihilate or enhance axonal electrophysiology depending on their respective directionality and frequency. It also shows that frequency of pulse repetition can also enhance signal propagation independently of the amplitude of the signal. This result not only reconciles the mechanical and electrical natures of the APs but also provides an explanation for the experimentally observed mechanoelectrophysiological phenomena in axons, especially in the context of ultrasound neuromodulation.
Collapse
Affiliation(s)
- Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| | | | - Antoine Jérusalem
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
12
|
Burek M, Follmann R, Rosa E. Temperature effects on neuronal firing rates and tonic-to-bursting transitions. Biosystems 2019; 180:1-6. [PMID: 30862447 DOI: 10.1016/j.biosystems.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/10/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022]
Abstract
Temperature fluctuations can affect neurological processes at a variety of levels, with the overall output that higher temperatures in general increase neuronal activity. While variations in firing rates can happen with the neuronal system maintaining its homeostatic firing pattern of tonic firing, or bursting, changes in firing rates can also be associated with transitions between the two patterns of firing. Our computer simulations suggest a possible mechanism directly related to the shortening of the duration of the action potential for higher firing rates with temperature increase. Increased temperatures also shorten the period doubling cascade and chaos transition between tonic and burting regimes.
Collapse
Affiliation(s)
- Manuela Burek
- Department of Physics, Illinois State University, Normal, IL 61790, USA
| | - Rosangela Follmann
- Department of Physics, Illinois State University, Normal, IL 61790, USA; School of Information Technology, Illinois State University, Normal, IL 61790, USA
| | - Epaminondas Rosa
- Department of Physics, Illinois State University, Normal, IL 61790, USA; School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| |
Collapse
|
13
|
Mussel M, Schneider MF. Similarities between action potentials and acoustic pulses in a van der Waals fluid. Sci Rep 2019; 9:2467. [PMID: 30792493 PMCID: PMC6385226 DOI: 10.1038/s41598-019-38826-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 01/08/2019] [Indexed: 11/10/2022] Open
Abstract
An action potential is typically described as a purely electrical change that propagates along the membrane of excitable cells. However, recent experiments have demonstrated that non-linear acoustic pulses that propagate along lipid interfaces and traverse the melting transition, share many similar properties with action potentials. Despite the striking experimental similarities, a comprehensive theoretical study of acoustic pulses in lipid systems is still lacking. Here we demonstrate that an idealized description of an interface near phase transition captures many properties of acoustic pulses in lipid monolayers, as well as action potentials in living cells. The possibility that action potentials may better be described as acoustic pulses in soft interfaces near phase transition is illustrated by the following similar properties: correspondence of time and velocity scales, qualitative pulse shape, sigmoidal response to stimulation amplitude (an 'all-or-none' behavior), appearance in multiple observables (particularly, an adiabatic change of temperature), excitation by many types of stimulations, as well as annihilation upon collision. An implication of this work is that crucial functional information of the cell may be overlooked by focusing only on electrical measurements.
Collapse
Affiliation(s)
- Matan Mussel
- Department of Physics, Technical University of Dortmund, 44227, Dortmund, Germany.
- Department of Physics, University of Augsburg, 86159, Augsburg, Germany.
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Matthias F Schneider
- Department of Physics, Technical University of Dortmund, 44227, Dortmund, Germany
| |
Collapse
|
14
|
Drukarch B, Holland HA, Velichkov M, Geurts JJ, Voorn P, Glas G, de Regt HW. Thinking about the nerve impulse: A critical analysis of the electricity-centered conception of nerve excitability. Prog Neurobiol 2018; 169:172-185. [DOI: 10.1016/j.pneurobio.2018.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/22/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022]
|
15
|
Johnson AS, Winlow W. The Soliton and the Action Potential - Primary Elements Underlying Sentience. Front Physiol 2018; 9:779. [PMID: 29988539 PMCID: PMC6026668 DOI: 10.3389/fphys.2018.00779] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
At present the neurological basis of sentience is poorly understood and this problem is exacerbated by only a partial knowledge of how one of the primary elements of sentience, the action potential, actually works. This has consequences for our understanding of how communication within the brain and in artificial brain neural networks (BNNs). Reverse engineering models of brain activity assume processing works like a conventional binary computer and neglects speed of cognition, latencies, error in nerve conduction and the true dynamic structure of neural networks in the brain. Any model of nerve conduction that claims inspiration from nature must include these prerequisite parameters, but current western computer modeling of artificial BNNs assumes that the action potential is binary and binary mathematics has been assumed by force of popular acceptance to mediate computation in the brain. Here we present evidence that the action potential is a temporal compound ternary structure, described as the computational action potential (CAP). The CAP contains the refractory period, an analog third phase capable of phase-ternary computation via colliding action potentials. This would best fit a realistic BNN and provides a plausible mechanism to explain transmission, in preference to Cable Theory. The action potential pulse (APPulse), is made up of the action potential combined with a coupled synchronized soliton pressure pulse in the cell membrane. We describe a model of an ion channel in a membrane where a soliton deforms the channel sufficiently to destroy the electrostatic insulation thereby instigating a mechanical contraction across the membrane by electrostatic forces. Such a contraction has the effect of redistributing the force lengthways thereby increasing the volume of the ion channel in the membrane. Na ions, once attracted to the interior, balance the forces and the channel reforms to its original shape. A refractory period then occurs until the Na ions diffuse from the adjacent interior space. Finally, a computational model of the action potential (the CAP) is proposed with single action potentials significantly including the refractory period as a computational element capable of computation between colliding action potentials.
Collapse
Affiliation(s)
- Andrew S. Johnson
- Independent Scientist, Villelongue de la Salanque, France
- NPC Newton, Villelongue de la Salanque, France
| | - William Winlow
- Dipartimento di Biologia, Università degli Studi di Napoli, Naples, Italy
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| |
Collapse
|
16
|
Nfor NO, Ghomsi PG, Moukam Kakmeni FM. Dynamics of coupled mode solitons in bursting neural networks. Phys Rev E 2018; 97:022214. [PMID: 29548169 DOI: 10.1103/physreve.97.022214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 11/07/2022]
Abstract
Using an electrically coupled chain of Hindmarsh-Rose neural models, we analytically derived the nonlinearly coupled complex Ginzburg-Landau equations. This is realized by superimposing the lower and upper cutoff modes of wave propagation and by employing the multiple scale expansions in the semidiscrete approximation. We explore the modified Hirota method to analytically obtain the bright-bright pulse soliton solutions of our nonlinearly coupled equations. With these bright solitons as initial conditions of our numerical scheme, and knowing that electrical signals are the basis of information transfer in the nervous system, it is found that prior to collisions at the boundaries of the network, neural information is purely conveyed by bisolitons at lower cutoff mode. After collision, the bisolitons are completely annihilated and neural information is now relayed by the upper cutoff mode via the propagation of plane waves. It is also shown that the linear gain of the system is inextricably linked to the complex physiological mechanisms of ion mobility, since the speeds and spatial profiles of the coupled nerve impulses vary with the gain. A linear stability analysis performed on the coupled system mainly confirms the instability of plane waves in the neural network, with a glaring example of the transition of weak plane waves into a dark soliton and then static kinks. Numerical simulations have confirmed the annihilation phenomenon subsequent to collision in neural systems. They equally showed that the symmetry breaking of the pulse solution of the system leaves in the network static internal modes, sometime referred to as Goldstone modes.
Collapse
Affiliation(s)
- N Oma Nfor
- Complex Systems and Theoretical Biology Group (CoSTBiG), Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63 Buea-Cameroon
| | - P Guemkam Ghomsi
- Complex Systems and Theoretical Biology Group (CoSTBiG), Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63 Buea-Cameroon
| | - F M Moukam Kakmeni
- Complex Systems and Theoretical Biology Group (CoSTBiG), Laboratory of Research on Advanced Materials and Nonlinear Science(LaRAMaNS), Department of Physics, Faculty of Science, University of Buea, P.O. Box 63 Buea-Cameroon
| |
Collapse
|
17
|
Fillafer C, Paeger A, Schneider MF. Collision of two action potentials in a single excitable cell. Biochim Biophys Acta Gen Subj 2017; 1861:3282-3286. [PMID: 28965878 DOI: 10.1016/j.bbagen.2017.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/08/2017] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND It is a common incident in nature, that two waves or pulses run into each other head-on. The outcome of such an event is of special interest, because it allows conclusions about the underlying physical nature of the pulses. The present experimental study dealt with the head-on meeting of two action potentials (AP) in a single excitable plant cell (Chara braunii internode). METHODS The membrane potential was monitored with multiple sensors along a single excitable cell. In control experiments, an AP was excited electrically at either end of the cell cylinder. Subsequently, stimuli were applied simultaneously at both ends of the cell in order to generate two APs that met each other head-on. RESULTS When two action potentials propagated into each other, the pulses did not penetrate but annihilated (N=26 experiments in n=10 cells). CONCLUSIONS APs in excitable plant cells did not penetrate upon meeting head-on. In the classical electrical model, this behavior is specifically attributed to relaxation of ion channel proteins. From an acoustic point of view, annihilation can be viewed as a result of nonlinear material properties (e.g. a phase change). GENERAL SIGNIFICANCE The present results suggest that APs in excitable animal and plant cells belong to a similar class of nonlinear phenomena. Intriguingly, other excitation waves in biology (intracellular waves, cortical spreading depression, etc.) also annihilate upon collision and are thus expected to follow the same underlying principles as the observed action potentials.
Collapse
Affiliation(s)
- Christian Fillafer
- Medical and Biological Physics, Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Anne Paeger
- Medical and Biological Physics, Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
| | - Matthias F Schneider
- Medical and Biological Physics, Faculty of Physics, Technical University Dortmund, Otto-Hahn-Str. 4, 44227 Dortmund, Germany.
| |
Collapse
|
18
|
Ofer N, Shefi O, Yaari G. Branching morphology determines signal propagation dynamics in neurons. Sci Rep 2017; 7:8877. [PMID: 28827727 PMCID: PMC5567046 DOI: 10.1038/s41598-017-09184-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
Computational modeling of signal propagation in neurons is critical to our understanding of basic principles underlying brain organization and activity. Exploring these models is used to address basic neuroscience questions as well as to gain insights for clinical applications. The seminal Hodgkin Huxley model is a common theoretical framework to study brain activity. It was mainly used to investigate the electrochemical and physical properties of neurons. The influence of neuronal structure on activity patterns was explored, however, the rich dynamics observed in neurons with different morphologies is not yet fully understood. Here, we study signal propagation in fundamental building blocks of neuronal branching trees, unbranched and branched axons. We show how these simple axonal elements can code information on spike trains, and how asymmetric responses can emerge in axonal branching points. This asymmetric phenomenon has been observed experimentally but until now lacked theoretical characterization. Together, our results suggest that axonal morphological parameters are instrumental in activity modulation and information coding. The insights gained from this work lay the ground for better understanding the interplay between function and form in real-world complex systems. It may also supply theoretical basis for the development of novel therapeutic approaches to damaged nervous systems.
Collapse
Affiliation(s)
- Netanel Ofer
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel. .,Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
19
|
Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, Yunus J. Solitonic conduction of electrotonic signals in neuronal branchlets with polarized microstructure. Sci Rep 2017; 7:2746. [PMID: 28566682 PMCID: PMC5451471 DOI: 10.1038/s41598-017-01849-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/07/2017] [Indexed: 11/25/2022] Open
Abstract
A model of solitonic conduction in neuronal branchlets with microstructure is presented. The application of cable theory to neurons with microstructure results in a nonlinear cable equation that is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic interaction: colliding waves can penetrate through each other, and continue fully intact as the exact pulses that entered the collision. These findings indicate that microstructure when polarized can sustain solitary waves that propagate at a constant velocity without attenuation or distortion in the absence of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).
Collapse
Affiliation(s)
- R R Poznanski
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - L A Cacha
- Laser Centre, IBNU SINA ISIR, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Y M S Al-Wesabi
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - J Ali
- Laser Centre, IBNU SINA ISIR, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
- Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - M Bahadoran
- Department of Physics, Shiraz University of Technology, Shiraz, 313-71555, Iran
| | - P P Yupapin
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, District 7, Vietnam
- Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, District 7, Vietnam
| | - J Yunus
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
20
|
Shaffer A, Harris AL, Follmann R, Rosa E. Bifurcation transitions in gap-junction-coupled neurons. Phys Rev E 2016; 94:042301. [PMID: 27841500 DOI: 10.1103/physreve.94.042301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 11/07/2022]
Abstract
Here we investigate transitions occurring in the dynamical states of pairs of distinct neurons electrically coupled, with one neuron tonic and the other bursting. Depending on the dynamics of the individual neurons, and for strong enough coupling, they synchronize either in a tonic or a bursting regime, or initially tonic transitioning to bursting via a period doubling cascade. Certain intrinsic properties of the individual neurons such as minimum firing rates are carried over into the dynamics of the coupled neurons affecting their ultimate synchronous state.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA
| | - Allison L Harris
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA
| | - Rosangela Follmann
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA.,School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| | - Epaminondas Rosa
- Department of Physics, Illinois State University, Normal, Illinois 61790, USA.,School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| |
Collapse
|