1
|
Beyer K, Strunz WT. Operational Work Fluctuation Theorem for Open Quantum Systems. PHYSICAL REVIEW LETTERS 2025; 134:140403. [PMID: 40279605 DOI: 10.1103/physrevlett.134.140403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025]
Abstract
The classical Jarzynski equality establishes an exact relation between the stochastic work performed on a system driven out of thermal equilibrium and the free energy difference in a corresponding quasistatic process. This fluctuation theorem bears experimental relevance, as it enables the determination of the free energy difference through the measurement of externally applied work in a nonequilibrium process. In the quantum case, the Jarzynski equality only holds if the measurement procedure of the stochastic work is drastically changed: it is replaced by a so-called two-point measurement scheme that requires the knowledge of the initial and final Hamiltonian and therefore lacks the predictive power for the free energy difference that the classical Jarzynski equation is known for. Here, we propose a quantum fluctuation theorem that is valid for externally measurable quantum work determined during the driving protocol. In contrast to the two-point measurement case, the theorem also applies to open quantum systems and the scenario can be realized without knowing the system Hamiltonian. Our fluctuation theorem comes in the form of an inequality and therefore only yields bounds to the true free energy difference. The inequality is saturated in the quasiclassical case of vanishing energy coherences at the beginning and at the end of the protocol. Thus, there is a clear quantum disadvantage.
Collapse
Affiliation(s)
- Konstantin Beyer
- Stevens Institute of Technology, Department of Physics, Hoboken, New Jersey 07030, USA
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| | - Walter T Strunz
- TUD Dresden University of Technology, Institute of Theoretical Physics, 01062, Dresden, Germany
| |
Collapse
|
2
|
Hernández-Gómez S, Poggiali F, Cappellaro P, Cataliotti FS, Trombettoni A, Fabbri N, Gherardini S. Energy exchange statistics and fluctuation theorem for nonthermal asymptotic states. Phys Rev E 2025; 111:014139. [PMID: 39972759 DOI: 10.1103/physreve.111.014139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/03/2024] [Indexed: 02/21/2025]
Abstract
Energy exchange statistics between two bodies at different thermal equilibria obey the Jarzynski-Wójcik fluctuation theorem. The corresponding energy scale factor is the difference of the inverse temperatures associated to the bodies at equilibrium. In this work, we consider a dissipative quantum dynamics leading the quantum system towards a possibly nonthermal, asymptotic state. To generalize the Jarzynski-Wójcik theorem to nonthermal states, we identify a sufficient condition I for the existence of an energy scale factor η^{*} that is unique, finite, and time independent, such that the characteristic function of the energy exchange distribution becomes identically equal to 1 for any time. This η^{*} plays the role of the difference of inverse temperatures. We discuss the physical interpretation of the condition I, showing that it amounts to an almost complete memory loss of the initial state. The robustness of our results against quantifiable deviations from the validity of I is evaluated by experimental studies on a single nitrogen-vacancy center subjected to a sequence of laser pulses and dissipation.
Collapse
Affiliation(s)
- Santiago Hernández-Gómez
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Francesco Poggiali
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Paola Cappellaro
- Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA
- Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, Department of Physics, Cambridge, Massachusetts 02139, USA
| | - Francesco S Cataliotti
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
- CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy
- Università di Firenze, Dipartimento di Fisica e Astronomia, via Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Andrea Trombettoni
- Università di Trieste, Dipartimento di Fisica, Strada Costiera 11, I-34151 Trieste, Italy
- SISSA, via Bonomea 265, I-34136 Trieste, Italy
- INFN, Sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy
- CNR-IOM DEMOCRITOS Simulation Center, via Bonomea 265, I-34136 Trieste, Italy
| | - Nicole Fabbri
- CNR-INO, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | - Stefano Gherardini
- European Laboratory for Non-linear Spectroscopy (LENS), Università di Firenze, I-50019 Sesto Fiorentino, Italy
- CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy
- SISSA, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
3
|
Francica G, Dell'Anna L. Work fluctuation theorems with initial quantum coherence. Phys Rev E 2024; 109:064138. [PMID: 39020988 DOI: 10.1103/physreve.109.064138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Fluctuation theorems are fundamental results in nonequilibrium thermodynamics beyond the linear response regime. Among these, the paradigmatic Tasaki-Crooks fluctuation theorem relates the statistics of the works done in a forward out-of-equilibrium quantum process and in a corresponding backward one. In particular, the initial states of the two processes are thermal states and thus incoherent in the energy basis. Here we aim to investigate the role of initial quantum coherence in work fluctuation theorems, by considering a quasiprobability distribution of work. To do this, we formulate and examine the implications of a detailed fluctuation theorem, which reproduces the Tasaki-Crooks fluctuation theorem in the absence of initial quantum coherence.
Collapse
|
4
|
Anka MF, de Oliveira TR, Jonathan D. Work and efficiency fluctuations in a quantum Otto cycle with idle levels. Phys Rev E 2024; 109:064129. [PMID: 39021004 DOI: 10.1103/physreve.109.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of "idle" levels, an increase in the interspin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.
Collapse
|
5
|
Perna G, Calzetta E. Limits on quantum measurement engines. Phys Rev E 2024; 109:044102. [PMID: 38755920 DOI: 10.1103/physreve.109.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
A quantum measurement involves energy exchanges between the system to be measured and the measuring apparatus. Some of them involve energy losses, for example because energy is dissipated into the environment or is spent in recording the measurement outcome. Moreover, these processes take time. For this reason, these exchanges must be taken into account in the analysis of a quantum measurement engine, and set limits to its efficiency and power. We propose a quantum engine based on a spin 1/2 particle in a magnetic field and study its limitations due to the quantum nature of the evolution. The coupling with the electromagnetic vacuum is taken into account and plays the role of a measurement apparatus. We fully study its dynamics, work, power, and efficiency.
Collapse
Affiliation(s)
- Guillermo Perna
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| | - Esteban Calzetta
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| |
Collapse
|
6
|
Salazar DSP. Thermodynamic variational relation. Phys Rev E 2023; 108:044103. [PMID: 37978589 DOI: 10.1103/physreve.108.044103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/07/2023] [Indexed: 11/19/2023]
Abstract
In systems far from equilibrium, the statistics of observables are connected to entropy production, leading to the thermodynamic uncertainty relation (TUR). However, the derivation of TURs often involves constraining the parity of observables, such as considering asymmetric currents, making it unsuitable for the general case. We propose a thermodynamic variational relation (TVR) between the statistics of general observables and entropy production, based on the variational representation of f divergences. From this result, we derive a universal TUR and other relations for higher-order statistics of observables.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Alonso D, Ruiz García A. Single-energy-measurement integral fluctuation theorem and nonprojective measurements. Phys Rev E 2023; 108:024126. [PMID: 37723778 DOI: 10.1103/physreve.108.024126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
We study a Jarzysnki-type equality for work in systems that are monitored using nonprojective unsharp measurements. The information acquired by the observer from the outcome f of an energy measurement and the subsequent conditioned normalized state ρ[over ̂](t,f) evolved up to a final time t are used to define work, as the difference between the final expectation value of the energy and the result f of the measurement. The Jarzynski equality obtained depends on the coherences that the state develops during the process, the characteristics of the meter used to measure the energy, and the noise it induces into the system. We analyze those contributions in some detail to unveil their role. We show that in very particular cases, but not in general, the effect of such noise gives a factor multiplying the result that would be obtained if projective measurements were used instead of nonprojective ones. The unsharp character of the measurements used to monitor the energy of the system, which defines the resolution of the meter, leads to different scenarios of interest. In particular, if the distance between neighboring elements in the energy spectrum is much larger than the resolution of the meter, then a similar result to the projective measurement case is obtained, up to a multiplicative factor that depends on the meter. A more subtle situation arises in the opposite case in which measurements may be noninformative, i.e., they may not contribute to update the information about the system. In this case a correction to the relation obtained in the nonoverlapping case appears. We analyze the conditions in which such a correction becomes negligible. We also study the coherences, in terms of the relative entropy of coherence developed by the evolved post-measurement state. We illustrate the results by analyzing a two-level system monitored by a simple meter.
Collapse
Affiliation(s)
- Daniel Alonso
- Departamento de Física and IUdEA, Universidad de La Laguna, 38203 La Laguna, Tenerife, Spain
| | - Antonia Ruiz García
- Departamento de Física and IUdEA, Universidad de La Laguna, 38203 La Laguna, Tenerife, Spain
| |
Collapse
|
8
|
Arrachea L. Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:036501. [PMID: 36603220 DOI: 10.1088/1361-6633/acb06b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.
Collapse
Affiliation(s)
- Liliana Arrachea
- Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
9
|
Francica G. Most general class of quasiprobability distributions of work. Phys Rev E 2022; 106:054129. [PMID: 36559350 DOI: 10.1103/physreve.106.054129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
How to give a statistical description of the thermodynamics in quantum systems is an open fundamental question. Concerning the work, the presence of initial quantum coherence in the energy basis can give rise to a quasiprobability of work, which can take negative values. Our aim is to identify the most general quasiprobability of work satisfying some fundamental conditions. By doing so, we introduce a general notion of quasiprobability in analogy to Gleason's theorem. Then, we use these quasiprobabilities to define the quasiprobability of work, and finally we discuss the contextuality of the protocol.
Collapse
Affiliation(s)
- Gianluca Francica
- Dipartimento di Fisica e Astronomia "G. Galilei," Università degli Studi di Padova, via Marzolo 8, 35131 Padova, Italy
| |
Collapse
|
10
|
Beyer K, Uola R, Luoma K, Strunz WT. Joint measurability in nonequilibrium quantum thermodynamics. Phys Rev E 2022; 106:L022101. [PMID: 36109912 DOI: 10.1103/physreve.106.l022101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this Letter we investigate the concept of quantum work and its measurability from the viewpoint of quantum measurement theory. Very often, quantum work and fluctuation theorems are discussed in the framework of projective two-point measurement (TPM) schemes. According to a well-known no-go theorem, there is no work observable which satisfies both (i) an average work condition and (ii) the TPM statistics for diagonal input states. Such projective measurements represent a restrictive class among all possible measurements. It is desirable, both from a theoretical and experimental point of view, to extend the scheme to the general case including suitably designed unsharp measurements. This shifts the focus to the question of what information about work and its fluctuations one is able to extract from such generalized measurements. We show that the no-go theorem no longer holds if the observables in a TPM scheme are jointly measurable for any intermediate unitary evolution. We explicitly construct a model with unsharp energy measurements and derive bounds for the visibility that ensure joint measurability. In such an unsharp scenario a single work measurement apparatus can be constructed that allows us to determine the correct average work and to obtain free energy differences with the help of a Jarzynski equality.
Collapse
Affiliation(s)
- Konstantin Beyer
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Roope Uola
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Kimmo Luoma
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
- Turku Center for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Walter T Strunz
- Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
11
|
Linpeng X, Bresque L, Maffei M, Jordan AN, Auffèves A, Murch KW. Energetic Cost of Measurements Using Quantum, Coherent, and Thermal Light. PHYSICAL REVIEW LETTERS 2022; 128:220506. [PMID: 35714239 DOI: 10.1103/physrevlett.128.220506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Quantum measurements are basic operations that play a critical role in the study and application of quantum information. We study how the use of quantum, coherent, and classical thermal states of light in a circuit quantum electrodynamics setup impacts the performance of quantum measurements, by comparing their respective measurement backaction and measurement signal to noise ratio per photon. In the strong dispersive limit, we find that thermal light is capable of performing quantum measurements with comparable efficiency to coherent light, both being outperformed by single-photon light. We then analyze the thermodynamic cost of each measurement scheme. We show that single-photon light shows an advantage in terms of energy cost per information gain, reaching the fundamental thermodynamic cost.
Collapse
Affiliation(s)
- Xiayu Linpeng
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Léa Bresque
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Maria Maffei
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Andrew N Jordan
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Kater W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
12
|
Francica G. Class of quasiprobability distributions of work with initial quantum coherence. Phys Rev E 2022; 105:014101. [PMID: 35193187 DOI: 10.1103/physreve.105.014101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
The work is a concept of fundamental importance in thermodynamics. An open question is how to describe the work fluctuation for quantum coherent processes in the presence of initial quantum coherence in the energy basis. With the aim of giving a unified description, here we introduce and study a class of quasiprobability distributions of work, which give an average work equal to the average energy change of the system and reduce to the two-projective-measurement scheme for an initial incoherent state. Moreover, we characterize the work with the help of fluctuation relations. In particular, by considering the joint distribution of work and initial quantum coherence, we find a fluctuation theorem involving quantum coherence, from which follows a second law of thermodynamics in the case of initial thermal populations.
Collapse
|
13
|
Chen JF, Qiu T, Quan HT. Quantum-Classical Correspondence Principle for Heat Distribution in Quantum Brownian Motion. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1602. [PMID: 34945908 PMCID: PMC8700725 DOI: 10.3390/e23121602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Quantum Brownian motion, described by the Caldeira-Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum-classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
| | - Tian Qiu
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
| | - Hai-Tao Quan
- School of Physics, Peking University, Beijing 100871, China; (J.-F.C.); (T.Q.)
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Gherardini S, Giachetti G, Ruffo S, Trombettoni A. Thermalization processes induced by quantum monitoring in multilevel systems. Phys Rev E 2021; 104:034114. [PMID: 34654093 DOI: 10.1103/physreve.104.034114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
We study the heat statistics of a multilevel N-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number M of measurements (M→∞). In this context, the conditions allowing for an infinite-temperature thermalization (ITT), induced by the repeated monitoring of the quantum system, are discussed. We show that ITT is identified by the fixed point of a symmetric random matrix that models the stochastic process originated by the sequence of measurements. Such fixed point is independent on the nonequilibrium evolution of the system and its initial state. Exceptions to ITT, which we refer to as partial thermalization, take place when the observable of the intermediate measurements is commuting (or quasicommuting) with the Hamiltonian of the quantum system or when the time interval between measurements is smaller or comparable with the system energy scale (quantum Zeno regime). Results on the limit of infinite-dimensional Hilbert spaces (N→∞), describing continuous systems with a discrete spectrum, are also presented. We show that the order of the limits M→∞ and N→∞ matters: When N is fixed and M diverges, then ITT occurs. In the opposite case, the system becomes classical, so that the measurements are no longer effective in changing the state of the system. A nontrivial result is obtained fixing M/N^{2} where instead partial ITT occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases is presented.
Collapse
Affiliation(s)
- S Gherardini
- SISSA and INFN, I-34136 Trieste, Italy.,Department of Physics and Astronomy and LENS, University of Florence, I-50019 Sesto Fiorentino, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy
| | | | - S Ruffo
- SISSA and INFN, I-34136 Trieste, Italy.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino, Italy
| | - A Trombettoni
- SISSA and INFN, I-34136 Trieste, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy.,Department of Physics, University of Trieste, I-34151 Trieste, Italy
| |
Collapse
|
15
|
Sone A, Deffner S. Quantum and Classical Ergotropy from Relative Entropies. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1107. [PMID: 34573732 PMCID: PMC8469566 DOI: 10.3390/e23091107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
The quantum ergotropy quantifies the maximal amount of work that can be extracted from a quantum state without changing its entropy. Given that the ergotropy can be expressed as the difference of quantum and classical relative entropies of the quantum state with respect to the thermal state, we define the classical ergotropy, which quantifies how much work can be extracted from distributions that are inhomogeneous on the energy surfaces. A unified approach to treat both quantum as well as classical scenarios is provided by geometric quantum mechanics, for which we define the geometric relative entropy. The analysis is concluded with an application of the conceptual insight to conditional thermal states, and the correspondingly tightened maximum work theorem.
Collapse
Affiliation(s)
- Akira Sone
- Aliro Technologies, Inc., Boston, MA 02135, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sebastian Deffner
- Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
- Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| |
Collapse
|
16
|
Frank MP, Shukla K. Quantum Foundations of Classical Reversible Computing. ENTROPY (BASEL, SWITZERLAND) 2021; 23:701. [PMID: 34206044 PMCID: PMC8228632 DOI: 10.3390/e23060701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer's Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.
Collapse
Affiliation(s)
- Michael P. Frank
- Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Karpur Shukla
- Department of Electrical and Computer Engineering, Brown University, Providence, RI 02906, USA
| |
Collapse
|
17
|
Sone A, Liu YX, Cappellaro P. Quantum Jarzynski Equality in Open Quantum Systems from the One-Time Measurement Scheme. PHYSICAL REVIEW LETTERS 2020; 125:060602. [PMID: 32845688 DOI: 10.1103/physrevlett.125.060602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
In open quantum systems, a clear distinction between work and heat is often challenging, and extending the quantum Jarzynski equality to systems evolving under general quantum channels beyond unitality remains an open problem in quantum thermodynamics. In this Letter, we introduce well-defined notions of guessed quantum heat and guessed quantum work, by exploiting the one-time measurement scheme, which only requires an initial energy measurement on the system alone. We derive a modified quantum Jarzynski equality and the principle of maximum work with respect to the guessed quantum work, which requires the knowledge of the system only. We further show the significance of guessed quantum heat and work by linking them to the problem of quantum hypothesis testing.
Collapse
Affiliation(s)
- Akira Sone
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yi-Xiang Liu
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paola Cappellaro
- Research Laboratory of Electronics and Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
18
|
Naghiloo M, Tan D, Harrington PM, Alonso JJ, Lutz E, Romito A, Murch KW. Heat and Work Along Individual Trajectories of a Quantum Bit. PHYSICAL REVIEW LETTERS 2020; 124:110604. [PMID: 32242716 DOI: 10.1103/physrevlett.124.110604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We use a near quantum limited detector to experimentally track individual quantum state trajectories of a driven qubit formed by the hybridization of a waveguide cavity and a transmon circuit. For each measured quantum coherent trajectory, we separately identify energy changes of the qubit as heat and work, and verify the first law of thermodynamics for an open quantum system. We further establish the consistency of these results by comparison with the master equation approach and the two-projective-measurement scheme, both for open and closed dynamics, with the help of a quantum feedback loop that compensates for the exchanged heat and effectively isolates the qubit.
Collapse
Affiliation(s)
- M Naghiloo
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - D Tan
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - P M Harrington
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - J J Alonso
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - E Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| | - A Romito
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - K W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
19
|
Landauer's Principle in a Quantum Szilard Engine without Maxwell's Demon. ENTROPY 2020; 22:e22030294. [PMID: 33286068 PMCID: PMC7516751 DOI: 10.3390/e22030294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 11/27/2022]
Abstract
Quantum Szilard engine constitutes an adequate interplay of thermodynamics, information theory and quantum mechanics. Szilard engines are in general operated by a Maxwell’s Demon where Landauer’s principle resolves the apparent paradoxes. Here we propose a Szilard engine setup without featuring an explicit Maxwell’s demon. In a demonless Szilard engine, the acquisition of which-side information is not required, but the erasure and related heat dissipation still take place implicitly. We explore a quantum Szilard engine considering quantum size effects. We see that insertion of the partition does not localize the particle to one side, instead creating a superposition state of the particle being in both sides. To be able to extract work from the system, particle has to be localized at one side. The localization occurs as a result of quantum measurement on the particle, which shows the importance of the measurement process regardless of whether one uses the acquired information or not. In accordance with Landauer’s principle, localization by quantum measurement corresponds to a logically irreversible operation and for this reason it must be accompanied by the corresponding heat dissipation. This shows the validity of Landauer’s principle even in quantum Szilard engines without Maxwell’s demon.
Collapse
|
20
|
Still S. Thermodynamic Cost and Benefit of Memory. PHYSICAL REVIEW LETTERS 2020; 124:050601. [PMID: 32083919 DOI: 10.1103/physrevlett.124.050601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
This Letter exposes a tight connection between the thermodynamic efficiency of information processing and predictive inference. A generalized lower bound on dissipation is derived for partially observable information engines which are allowed to use temperature differences. It is shown that the retention of irrelevant information limits efficiency. A data representation method is derived from optimizing a fundamental physical limit to information processing: minimizing the lower bound on dissipation leads to a compression method that maximally retains relevant, predictive, information. In that sense, predictive inference emerges as the strategy that least precludes energy efficiency.
Collapse
Affiliation(s)
- Susanne Still
- Department of Information and Computer Sciences, and Department of Physics and Astronomy, University of Hawaii at Mānoa, 1680 East-West Road, Honolulu Hawaii, USA
| |
Collapse
|
21
|
Yeo J. Symmetry and its breaking in a path-integral approach to quantum Brownian motion. Phys Rev E 2020; 100:062107. [PMID: 31962505 DOI: 10.1103/physreve.100.062107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 11/07/2022]
Abstract
We study the Caldeira-Leggett model where a quantum Brownian particle interacts with an environment or a bath consisting of a collection of harmonic oscillators in the path-integral formalism. Compared to the contours that the paths take in the conventional Schwinger-Keldysh formalism, the paths in our study are deformed in the complex time plane as suggested by the recent study by C. Aron, G. Biroli, and L. F. Cugliandolo [SciPost Phys. 4, 008 (2018)10.21468/SciPostPhys.4.1.008]. This is done to investigate the connection between the symmetry properties in the Schwinger-Keldysh action and the equilibrium or nonequilibrium nature of the dynamics in an open quantum system. We derive the influence functional explicitly in this setting, which captures the effect of the coupling to the bath. We show that in equilibrium the action and the influence functional are invariant under a set of transformations of path-integral variables. The fluctuation-dissipation relation is obtained as a consequence of this symmetry. When the system is driven by an external time-dependent protocol, the symmetry is broken. From the terms that break the symmetry, we derive a quantum Jarzynski-like equality for a quantum mechanical worklike quantity given as a function of fluctuating quantum trajectory. In the classical limit, the transformations becomes those used in the functional integral formalism of the classical stochastic thermodynamics to derive the classical fluctuation theorem.
Collapse
Affiliation(s)
- Joonhyun Yeo
- Department of Physics, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
22
|
Strasberg P. Operational approach to quantum stochastic thermodynamics. Phys Rev E 2019; 100:022127. [PMID: 31574666 DOI: 10.1103/physreve.100.022127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 06/10/2023]
Abstract
We set up a framework for quantum stochastic thermodynamics based solely on experimentally controllable but otherwise arbitrary interventions at discrete times. Using standard assumptions about the system-bath dynamics and insights from the repeated interaction framework, we define internal energy, heat, work, and entropy at the trajectory level. The validity of the first law (at the trajectory level) and the second law (on average) is established. The theory naturally allows one to treat incomplete information and it is able to smoothly interpolate between a trajectory-based and an ensemble level description. We use our theory to compute the thermodynamic efficiency of recent experiments reporting on the stabilization of photon number states using real-time quantum feedback control. Special attention is paid to limiting cases of our general theory, where we recover or contrast it with previous results. We point out various interesting problems, which the theory is able to address rigorously, such as the detection of quantum effects in thermodynamics.
Collapse
Affiliation(s)
- Philipp Strasberg
- Physics and Materials Science Research Unit, University of Luxembourg, 1511 Luxembourg, Luxembourg and Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
23
|
Wu KD, Yuan Y, Xiang GY, Li CF, Guo GC, Perarnau-Llobet M. Experimentally reducing the quantum measurement back action in work distributions by a collective measurement. SCIENCE ADVANCES 2019; 5:eaav4944. [PMID: 30838334 PMCID: PMC6397021 DOI: 10.1126/sciadv.aav4944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
In quantum thermodynamics, the standard approach to estimating work fluctuations in unitary processes is based on two projective measurements, one performed at the beginning of the process and one at the end. The first measurement destroys any initial coherence in the energy basis, thus preventing later interference effects. To decrease this back action, a scheme based on collective measurements has been proposed by Perarnau-Llobet et al. Here, we report its experimental implementation in an optical system. The experiment consists of a deterministic collective measurement on two identically prepared qubit states, encoded in the polarization and path degree of a single photon. The standard two-projective measurement approach is also experimentally realized for comparison. Our results show the potential of collective schemes to decrease the back action of projective measurements, and capture subtle effects arising from quantum coherence.
Collapse
Affiliation(s)
- Kang-Da Wu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Yuan Yuan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guo-Yong Xiang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People’s Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Martí Perarnau-Llobet
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, D-80799 München, Germany
| |
Collapse
|
24
|
Buffoni L, Solfanelli A, Verrucchi P, Cuccoli A, Campisi M. Quantum Measurement Cooling. PHYSICAL REVIEW LETTERS 2019; 122:070603. [PMID: 30848614 DOI: 10.1103/physrevlett.122.070603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine. We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures. We show that feedback control is not necessary for operation while entanglement must be present in the measurement projectors. We quantify the probability that QMC occurs when the measurement basis is chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat engine operation), while remaining always smaller than the most useless operation, namely, dumping heat in both baths. These results show that QMC can be very robust to experimental noise. A possible low-temperature solid-state implementation that integrates circuit QED technology with circuit quantum thermodynamics technology is presented.
Collapse
Affiliation(s)
- Lorenzo Buffoni
- Department of Information Engineering, University of Florence, via S. Marta 3, I-50139 Florence, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Andrea Solfanelli
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Paola Verrucchi
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Cuccoli
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Michele Campisi
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
25
|
Gardas B, Deffner S. Quantum fluctuation theorem for error diagnostics in quantum annealers. Sci Rep 2018; 8:17191. [PMID: 30464296 PMCID: PMC6249228 DOI: 10.1038/s41598-018-35264-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 11/08/2022] Open
Abstract
Near term quantum hardware promises unprecedented computational advantage. Crucial in its development is the characterization and minimization of computational errors. We propose the use of the quantum fluctuation theorem to benchmark the accuracy of quantum annealers. This versatile tool provides simple means to determine whether the quantum dynamics are unital, unitary, and adiabatic, or whether the system is prone to thermal noise. Our proposal is experimentally tested on two generations of the D-Wave machine, which illustrates the sensitivity of the fluctuation theorem to the smallest aberrations from ideal annealing. In addition, for the optimally operating D-Wave machine, our experiment provides the first experimental verification of the integral fluctuation in an interacting, many-body quantum system.
Collapse
Affiliation(s)
- Bartłomiej Gardas
- Theoretical Division, LANL, Los Alamos, New Mexico, 87545, USA.
- Institute of Physics, University of Silesia, 40-007, Katowice, Poland.
- Instytut Fizyki Uniwersytetu Jagiellońskiego, ul. Łojasiewicza 11, PL-30-348, Kraków, Poland.
| | - Sebastian Deffner
- Department of Physics, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
26
|
Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat Commun 2018; 9:1926. [PMID: 29765040 PMCID: PMC5954145 DOI: 10.1038/s41467-018-04372-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Decoherence originates from the leakage of quantum information into external degrees of freedom. For a qubit, the two main decoherence channels are relaxation and dephasing. Here, we report an experiment on a superconducting qubit where we retrieve part of the lost information in both of these channels. We demonstrate that raw averaging the corresponding measurement records provides a full quantum tomography of the qubit state where all three components of the effective spin-1/2 are simultaneously measured. From single realizations of the experiment, it is possible to infer the quantum trajectories followed by the qubit state conditioned on relaxation and/or dephasing channels. The incompatibility between these quantum measurements of the qubit leads to observable consequences in the statistics of quantum states. The high level of controllability of superconducting circuits enables us to explore many regimes from the Zeno effect to underdamped Rabi oscillations depending on the relative strengths of driving, dephasing, and relaxation. Information leaked by a quantum system into its environment causes decoherence but if it is recorded then it can be used to infer the quantum state. Ficheux et al. monitor the relaxation and dephasing of a qubit and show that this allows all three components of the qubit to be probed simultaneously.
Collapse
|
27
|
Taranto P, Modi K, Pollock FA. Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes. Phys Rev E 2018; 97:052111. [PMID: 29906945 DOI: 10.1103/physreve.97.052111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 06/08/2023]
Abstract
In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.
Collapse
Affiliation(s)
- Philip Taranto
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Kavan Modi
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Felix A Pollock
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
Campbell S, Deffner S. Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity. PHYSICAL REVIEW LETTERS 2017; 118:100601. [PMID: 28339279 DOI: 10.1103/physrevlett.118.100601] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 05/25/2023]
Abstract
Achieving effectively adiabatic dynamics is a ubiquitous goal in almost all areas of quantum physics. Here, we study the speed with which a quantum system can be driven when employing transitionless quantum driving. As a main result, we establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely, that instantaneous manipulation is impossible as it requires an infinite cost. These findings are illustrated for two experimentally relevant systems-the parametric oscillator and the Landau-Zener model-which reveal that the spectral gap governs the quantum speed limit as well as the cost for realizing the shortcut.
Collapse
Affiliation(s)
- Steve Campbell
- Centre for Theoretical Atomic, Molecular and Optical Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Sebastian Deffner
- Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| |
Collapse
|
29
|
Rogers DM. Einstein-Podolsky-Rosen paradox implies a minimum achievable temperature. Phys Rev E 2017; 95:012149. [PMID: 28208419 DOI: 10.1103/physreve.95.012149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/07/2022]
Abstract
This work examines the thermodynamic consequences of the repeated partial projection model for coupling a quantum system to an arbitrary series of environments under feedback control. This paper provides observational definitions of heat and work that can be realized in current laboratory setups. In contrast to other definitions, it uses only properties of the environment and the measurement outcomes, avoiding references to the "measurement" of the central system's state in any basis. These definitions are consistent with the usual laws of thermodynamics at all temperatures, while never requiring complete projective measurement of the entire system. It is shown that the back action of measurement must be counted as work rather than heat to satisfy the second law. Comparisons are made to quantum jump (unravelling) and transition-probability based definitions, many of which appear as particular limits of the present model. These limits show that our total entropy production is a lower bound on traditional definitions of heat that trace out the measurement device. Examining the master equation approximation to the process at finite measurement rates, we show that most interactions with the environment make the system unable to reach absolute zero. We give an explicit formula for the minimum temperature achievable in repeatedly measured quantum systems. The phenomenon of minimum temperature offers an explanation of recent experiments aimed at testing fluctuation theorems in the quantum realm and places a fundamental purity limit on quantum computers.
Collapse
Affiliation(s)
- David M Rogers
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|