1
|
Gerakinis DP, Anogiannakis SD, Theodorou DN. Equilibration of linear polyethylene melts with pre-defined molecular weight distributions employing united atom Monte Carlo simulations. J Chem Phys 2024; 161:044901. [PMID: 39037144 DOI: 10.1063/5.0219728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Possessing control over the molecular size (molecular weight/chain length/degree of polymerization) distribution of a polymeric material is extremely important in applications. This is manifested de facto by the extensive contemporary scientific literature on processes for controlling this distribution experimentally. Yet, the literature on computational techniques for achieving prescribed molecular size distributions in simulations and exploring their impact on properties is much less abundant than its experimental/technical counterpart. Here, we develop-on the basis of united atom melt simulations employing connectivity-altering Monte Carlo moves-a new Metropolis selection criterion that drives the multichain system to a prescribed but otherwise arbitrary distribution of molecular sizes. The new formulation is a generalization of that originally proposed [P. V. K. Pant and D. N. Theodorou, Macromolecules 28, 7224 (1995)], but simpler and more computationally efficient. It requires knowledge solely of the target distribution, which need not be normalized. We have implemented the new formulation on long-chain linear polyethylene melts, obtaining excellent results. The target molecular size distribution can be provided in tabulated form, allowing absolute freedom as to the types of chain size profiles that can be simulated. Distributions for which equilibration has been achieved here for linear polyethylene include a truncated most probable, a truncated Schulz-Zimm, an arbitrary one defined in tabulated form, a broad truncated Gaussian, and a bimodal Gaussian. The last two are comparable to those encountered in industrial applications. The impact of the molecular size distribution on the properties of the simulated melts, such as density, chain dimensions, and mixing thermodynamics, is explored.
Collapse
Affiliation(s)
- Dimitrios-Paraskevas Gerakinis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos," 15341 Athens, Greece
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Athens, Greece
| | - Stefanos D Anogiannakis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Athens, Greece
- DPI, P.O. Box 902, 5600 AX Eindhoven, the Netherlands
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, 15780 Athens, Greece
- DPI, P.O. Box 902, 5600 AX Eindhoven, the Netherlands
| |
Collapse
|
2
|
Shi S, Zhao L, Lu ZY. Coarse-Grained Modeling of Liquid-Liquid Phase Separation in Cells: Challenges and Opportunities. J Phys Chem Lett 2024; 15:7280-7287. [PMID: 38979955 DOI: 10.1021/acs.jpclett.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid-liquid phase separation (LLPS) within cells gives rise to membraneless organelles, which play pivotal roles in numerous cellular functions. A comprehensive understanding of the functional aspects of intrinsically disordered protein (IDP) condensates necessitates elucidating their inherent structures and establishing correlations with biological functions. Coarse-grained (CG) molecular dynamics (MD) simulations present a promising avenue for gaining insights into LLPS mechanisms of biomacromolecules. Essential to this endeavor is the development of tailored CG force fields for MD simulations, incorporating the full spectrum of biomolecules involved in the formation of condensates and accounting for real-time biochemical reactions coupled to the LLPS. Moreover, developing accurate theoretical frameworks and establishing links between condensate structure and its function are imperative for a thorough comprehension of LLPS of biological systems.
Collapse
Affiliation(s)
- Shaokang Shi
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Li Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
3
|
Nitta H, Ozawa T, Yasuoka K. Construction of full-atomistic polymer amorphous structures using reverse-mapping from Kremer-Grest models. J Chem Phys 2023; 159:194903. [PMID: 37982485 DOI: 10.1063/5.0159722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023] Open
Abstract
We propose a method to build full-atomistic (FA) amorphous polymer structures using reverse-mapping from coarse-grained (CG) models. In this method, three models with different resolutions are utilized, namely the CG1, CG2, and FA models. It is assumed that the CG1 model is more abstract than the CG2 model. The CG1 is utilized to equilibrate the system, and then sequential reverse-mapping procedures from the CG1 to the CG2 models and from the CG2 to the FA models are conducted. A mapping relation between the CG1 and the FA models is necessary to generate a polymer structure with a given density and radius of chains. Actually, we have used the Kremer-Grest (KG) model as the CG1 and the monomer-level CG model as the CG2 model. Utilizing the mapping relation, we have developed a scheme that constructs an FA polymer model from the KG model. In the scheme, the KG model, the monomer level CG model, and the FA model are successively constructed. The scheme is applied to polyethylene (PE), cis 1,4-polybutadiene (PB), and poly(methyl methacrylate) (PMMA). As a validation, the structures of PE and PB constructed by the scheme were carefully checked through comparison with those obtained using long-time FA molecular dynamics (MD) simulations. We found that both short- and long-range chain structures constructed by the scheme reproduced those obtained by the FA MD simulations. Then, as an interesting application, the scheme is applied to generate an entangled PMMA structure. The results showed that the scheme provides an efficient and easy way to construct amorphous structures of FA polymers.
Collapse
Affiliation(s)
- Hiroya Nitta
- JSOL Corporation, KUDAN-KAIKAN TERRACE 1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Taku Ozawa
- JSOL Corporation, KUDAN-KAIKAN TERRACE 1-6-5, Kudanminami, Chiyoda-ku, Tokyo 102-0074, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
4
|
Junier I, Ghobadpour E, Espeli O, Everaers R. DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling. Front Microbiol 2023; 14:1192831. [PMID: 37965550 PMCID: PMC10642903 DOI: 10.3389/fmicb.2023.1192831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
DNA supercoiling is central to many fundamental processes of living organisms. Its average level along the chromosome and over time reflects the dynamic equilibrium of opposite activities of topoisomerases, which are required to relax mechanical stresses that are inevitably produced during DNA replication and gene transcription. Supercoiling affects all scales of the spatio-temporal organization of bacterial DNA, from the base pair to the large scale chromosome conformation. Highlighted in vitro and in vivo in the 1960s and 1970s, respectively, the first physical models were proposed concomitantly in order to predict the deformation properties of the double helix. About fifteen years later, polymer physics models demonstrated on larger scales the plectonemic nature and the tree-like organization of supercoiled DNA. Since then, many works have tried to establish a better understanding of the multiple structuring and physiological properties of bacterial DNA in thermodynamic equilibrium and far from equilibrium. The purpose of this essay is to address upcoming challenges by thoroughly exploring the relevance, predictive capacity, and limitations of current physical models, with a specific focus on structural properties beyond the scale of the double helix. We discuss more particularly the problem of DNA conformations, the interplay between DNA supercoiling with gene transcription and DNA replication, its role on nucleoid formation and, finally, the problem of scaling up models. Our primary objective is to foster increased collaboration between physicists and biologists. To achieve this, we have reduced the respective jargon to a minimum and we provide some explanatory background material for the two communities.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
| | - Elham Ghobadpour
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Université Grenoble Alpes, Grenoble, France
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| | - Olivier Espeli
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ralf Everaers
- École Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, Lyon, France
| |
Collapse
|
5
|
Giunta G, Smith L, Bartha K, Karimi-Varzaneh HA, Carbone P. Understanding the balance between additives' miscibility and plasticisation effect in polymer composites: a computational study. SOFT MATTER 2023; 19:2377-2384. [PMID: 36920461 DOI: 10.1039/d2sm01642g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasticisers are small organic molecules routinely added to polymer composites that modify the processability of the compounds by adsorbing on the filler's surface or dispersing into the polymer matrix. Here using a simple yet chemically specific coarse-grained model, we demonstrate that the filler surface coverage and the degree of dispersion into the polymer matrix can be tuned without modifying the chemistry of the plasticisers but only by varying their conformational flexibility. We show that when the adsorption mechanism and clustering into the bulk are entropically driven as in this work, this is a general phenomenon independent on the polymer chemistry and its molecular weight. Our findings suggest a simple practical design rule that requires only minor modifications of the plasticisers' chemistry to achieve maximum adsorption onto the filler surface or dispersion into the polymer matrix.
Collapse
Affiliation(s)
- Giuliana Giunta
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| | - Lois Smith
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| | - Kristof Bartha
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| | | | - Paola Carbone
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, M13 9PL, Manchester, UK.
| |
Collapse
|
6
|
Svaneborg C, Everaers R. Multiscale equilibration of highly entangled isotropic model polymer melts. J Chem Phys 2023; 158:054903. [PMID: 36754791 DOI: 10.1063/5.0123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a computationally efficient multiscale method for preparing equilibrated, isotropic long-chain model polymer melts. As an application, we generate Kremer-Grest melts of 1000 chains with 200 entanglements and 25 000-2000 beads/chain, which cover the experimentally relevant bending rigidities up to and beyond the limit of the isotropic-nematic transition. In the first step, we employ Monte Carlo simulations of a lattice model to equilibrate the large-scale chain structure above the tube scale while ensuring a spatially homogeneous density distribution. We then use theoretical insight from a constrained mode tube model to introduce the bead degrees of freedom together with random walk conformational statistics all the way down to the Kuhn scale of the chains. This is followed by a sequence of simulations with carefully parameterized force-capped bead-spring models, which slowly introduce the local bead packing while reproducing the larger-scale chain statistics of the target Kremer-Grest system at all levels of force-capping. Finally, we can switch to the full Kremer-Grest model without perturbing the structure. The resulting chain statistics is in excellent agreement with literature results on all length scales accessible in brute-force simulations of shorter chains.
Collapse
Affiliation(s)
- Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Everaers
- ENSL, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'École Normale Supérieure de Lyon, F-69342 Lyon, France
| |
Collapse
|
7
|
Schmid F. Understanding and Modeling Polymers: The Challenge of Multiple Scales. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128Mainz, Germany
| |
Collapse
|
8
|
Abstract
Polymer science is one of the few fundamental research fields where the results can be transferred into real-life products almost immediately. Industries need collaborations with the best researchers (universities or national laboratories) to elevate the field and favor the development of new materials, which will boost the chemical and materials business economy and ensure that innovative and sustainable polymer products are constantly being brought to the market. The mechanisms to ensure a seamless and fruitful collaboration are numerous, but few approaches really manage to incorporate the full range of polymer research from a molecular understanding to a macroscopic control of properties. We review some of the main components of standard industry-academia collaborations and propose to develop polymer open centers that put the business development objective as the starting point of the collaboration and allow those to gather and focus on different scientific fields toward a common objective.
Collapse
|
9
|
Dietz JD, Hoy RS. Facile equilibration of well-entangled semiflexible bead-spring polymer melts. J Chem Phys 2022; 156:014103. [PMID: 34998323 DOI: 10.1063/5.0072386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The widely used double-bridging hybrid (DBH) method for equilibrating simulated entangled polymer melts [Auhl et al., J. Chem. Phys. 119, 12718-12728 (2003)] loses its effectiveness as chain stiffness increases into the semiflexible regime because the energy barriers associated with double-bridging Monte Carlo moves become prohibitively high. Here we overcome this issue by combining DBH with the use of core-softened pair potentials. This reduces the energy barriers substantially, allowing us to equilibrate melts with N ≃ 40Ne and chain stiffnesses all the way up to the isotropic-nematic transition using simulations of no more than 100 × 106 time steps. For semiflexible chains, our method is several times faster than the standard DBH; we exploit this speedup to develop improved expressions for Kremer-Grest melts' chain-stiffness-dependent Kuhn length ℓK and entanglement length Ne.
Collapse
Affiliation(s)
- Joseph D Dietz
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
10
|
Berressem F, Scherer C, Andrienko D, Nikoubashman A. Ultra-coarse-graining of homopolymers in inhomogeneous systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:254002. [PMID: 33845463 DOI: 10.1088/1361-648x/abf6e2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
We develop coarse-grained (CG) models for simulating homopolymers in inhomogeneous systems, focusing on polymer films and droplets. If the CG polymers interact solely through two-body potentials, then the films and droplets either dissolve or collapse into small aggregates, depending on whether the effective polymer-polymer interactions have been determined from reference simulations in the bulk or at infinite dilution. To address this shortcoming, we include higher order interactions either through an additional three-body potential or a local density-dependent potential (LDP). We parameterize the two- and three-body potentials via force matching, and the LDP through relative entropy minimization. While the CG models with three-body interactions fail at reproducing stable polymer films and droplets, CG simulations with an LDP are able to do so. Minor quantitative differences between the reference and the CG simulations, namely a slight broadening of interfaces accompanied by a smaller surface tension in the CG simulations, can be attributed to the deformation of polymers near the interfaces, which cannot be resolved in the CG representation, where the polymers are mapped to spherical beads.
Collapse
Affiliation(s)
- Fabian Berressem
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Christoph Scherer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
11
|
Tubiana L, Kobayashi H, Potestio R, Dünweg B, Kremer K, Virnau P, Daoulas K. Comparing equilibration schemes of high-molecular-weight polymer melts with topological indicators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:204003. [PMID: 33765663 DOI: 10.1088/1361-648x/abf20c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Recent theoretical studies have demonstrated that the behaviour of molecular knots is a sensitive indicator of polymer structure. Here, we use knots to verify the ability of two state-of-the-art algorithms-configuration assembly and hierarchical backmapping-to equilibrate high-molecular-weight (MW) polymer melts. Specifically, we consider melts with MWs equivalent to several tens of entanglement lengths and various chain flexibilities, generated with both strategies. We compare their unknotting probability, unknotting length, knot spectra, and knot length distributions. The excellent agreement between the two independent methods with respect to knotting properties provides an additional strong validation of their ability to equilibrate dense high-MW polymeric liquids. By demonstrating this consistency of knotting behaviour, our study opens the way for studying topological properties of polymer melts beyond time and length scales accessible to brute-force molecular dynamics simulations.
Collapse
Affiliation(s)
- Luca Tubiana
- Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Hideki Kobayashi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Raffaello Potestio
- Physics Department, University of Trento, via Sommarive, 14 I-38123 Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy
| | - Burkhard Dünweg
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Peter Virnau
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Germany
| | - Kostas Daoulas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
13
|
Zhang J, Meyer H, Virnau P, Daoulas KC. Can Soft Models Describe Polymer Knots? Macromolecules 2020; 53:10475-10486. [PMID: 33335339 PMCID: PMC7735749 DOI: 10.1021/acs.macromol.0c02079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Similar to macroscopic ropes and cables, long polymers create knots. We address the fundamental question whether and under which conditions it is possible to describe these intriguing objects with crude models that capture only mesoscale polymer properties. We focus on melts of long polymers which we describe by a model typical for mesoscopic simulations. A worm-like chain model defines the polymer architecture. To describe nonbonded interactions, we deliberately choose a generic "soft" repulsive potential that leads to strongly overlapping monomers and coarse local liquid structure. The soft model is parametrized to accurately reproduce mesoscopic structure and conformations of reference polymer melts described by a microscopic model. The microscopically resolved samples retain all generic features affecting polymer topology and provide, therefore, reliable reference data on knots. We compare characteristic knotting properties in mesoscopic and microscopically resolved melts for different cases of chain stiffness. We conclude that mesoscopic models can reliably describe knots in those melts, where the length scale characterizing polymer stiffness is substantially larger than the size of monomer-monomer excluded volume. In this case, simplified local liquid structure influences knotting properties only marginally. In contrast, mesoscopic models perform poorly in melts with flexible chains. We qualitatively explain our findings through a free energy model of simple knots available in the literature.
Collapse
Affiliation(s)
- Jianrui Zhang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hendrik Meyer
- Institut
Charles Sadron, CNRS UPR 22, Université
de Strasbourg, 23 rue du Loess, 67034 Strasbourg, France
| | - Peter Virnau
- Institut
für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
- Graduate
School of Excellence Materials Science in Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Kostas Ch. Daoulas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
14
|
Combined Molecular Dynamics Simulation and Rouse Model Analysis of Static and Dynamic Properties of Unentangled Polymer Melts with Different Chain Architectures. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2489-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Gula IA, Karimi-Varzaneh HA, Svaneborg C. Computational Study of Cross-Link and Entanglement Contributions to the Elastic Properties of Model PDMS Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00682] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Igor A. Gula
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | - Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
16
|
Svaneborg C, Everaers R. Characteristic Time and Length Scales in Melts of Kremer–Grest Bead–Spring Polymers with Wormlike Bending Stiffness. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02437] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Everaers
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l’ENS de Lyon, F-69342 Lyon, France
| |
Collapse
|
17
|
Everaers R, Karimi-Varzaneh HA, Fleck F, Hojdis N, Svaneborg C. Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ralf Everaers
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l’ENS de Lyon, F-69342 Lyon, France
| | | | - Frank Fleck
- Continental Reifen Deutschland GmbH, Jädekamp 30, D-30419 Hannover, Germany
| | - Nils Hojdis
- Institute of Applied Polymer Chemistry, Aachen University of Applied Sciences, Heinrich-Mussmann-Str.1, 52428 Jülich, Germany
| | - Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
18
|
Dutta S, Wade MA, Walsh DJ, Guironnet D, Rogers SA, Sing CE. Dilute solution structure of bottlebrush polymers. SOFT MATTER 2019; 15:2928-2941. [PMID: 30724969 DOI: 10.1039/c9sm00033j] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Bottlebrush polymers are a class of macromolecules that have recently found use in a wide variety of materials, ranging from lubricating brushes and nanostructured coatings to elastomeric gels that exhibit structural colors. These polymers are characterized by dense branches extending from a central backbone and thus have properties distinct from linear polymers. It remains a challenge to specifically understand conformational properties of these molecules, due to the wide range of architectural parameters that can be present in a system, and thus there is a need to accurately characterize and model these molecules. In this paper, we use a combination of viscometry, light scattering, and computer simulations to gain insight into the conformational properties of dilute solution bottlebrush polymers. We focus on a series of model bottlebrushes consisting of a poly(norbornene) (PNB) backbone with poly(lactic acid) (PLA) side chains. We demonstrate that intrinsic viscosity and hydrodynamic radius are experimental observations sensitive to molecular architecture, exhibiting distinct differences with different choices of branches and backbone lengths. Informed by the atomistic structure of this PNB-PLA system, we rationalize a coarse-grained simulation model that we evaluate using a combination of Brownian dynamics and Monte Carlo simulations. We show that this exhibits quantitative matching to experimental results, enabling us to characterize the overall shape of the bottlebrush via a number of metrics that can be extended to more general bottlebrush architectures.
Collapse
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Schram RD, Rosa A, Everaers R. Local loop opening in untangled ring polymer melts: a detailed "Feynman test" of models for the large scale structure. SOFT MATTER 2019; 15:2418-2429. [PMID: 30778466 DOI: 10.1039/c8sm02587h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conformational statistics of ring polymers in melts or dense solutions is strongly affected by their quenched microscopic topological state. The effect is particularly strong for untangled (i.e. non-concatenated and unknotted) rings, which are known to crumple and segregate. Here we study these systems using a computationally efficient multi-scale approach, where we combine massive simulations on the fiber level with the explicit construction of untangled ring melt configurations based on theoretical ideas for their large scale structure. We find (i) that topological constraints may be neglected on scales below the standard entanglement length, Le, (ii) that rings with a size 1 ≤ Lr/Le ≤ 30 exhibit nearly ideal lattice tree behavior characterized by primitive paths which are randomly branched on the entanglement scale, and (iii) that larger rings are compact with gyration radii Rg2(Lr) ∝ Lr2/3. The detailed comparison between equilibrated and constructed ensembles allows us to perform a "Feynman test" of our understanding of untangled rings: can we convert ideas for the large scale ring structure into algorithms for constructing (nearly) equilibrated ring melt samples? We show that most structural observables are quantitatively reproduced by two different construction schemes: hierarchical crumpling and ring melts derived from the analogy to interacting branched polymers. However, the latter fail the "Feynman test" with respect to the magnetic radius, Rm, which we have defined based on an analogy to magnetostatics. While Rm is expected to vanish for double-folded structures, the observed values of Rm2(Lr) ∝ Rg2(Lr) provide a simple and computationally convenient measure of the presence of a non-negligible amount of local loop opening in crumpled rings.
Collapse
Affiliation(s)
- Raoul D Schram
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France.
| | | | | |
Collapse
|
20
|
|
21
|
Zhang G, Chazirakis A, Harmandaris VA, Stuehn T, Daoulas KC, Kremer K. Hierarchical modelling of polystyrene melts: from soft blobs to atomistic resolution. SOFT MATTER 2019; 15:289-302. [PMID: 30543257 DOI: 10.1039/c8sm01830h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate that hierarchical backmapping strategies incorporating generic blob-based models can equilibrate melts of high-molecular-weight polymers, described with chemically specific, atomistic models. The central idea is first to represent polymers by chains of large soft blobs (spheres) and efficiently equilibrate the melt on large scales. Then, the degrees of freedom of more detailed models are reinserted step by step. The procedure terminates when the atomistic description is reached. Reinsertions are feasible computationally because the fine-grained melt must be re-equilibrated only locally. We consider polystyrene (PS) which is sufficiently complex to serve method development because of stereo-chemistry and bulky side groups. Our backmapping strategy bridges mesoscopic and atomistic scales by incorporating a blob-based, a moderately coarse-grained (CG), and a united-atom model of PS. We demonstrate that the generic blob-based model can be parameterised to reproduce the mesoscale properties of a specific polymer - here PS. The moderately CG model captures stereo-chemistry. To perform backmapping we improve and adjust several fine-graining techniques. We prove equilibration of backmapped PS melts by comparing their structural and conformational properties with reference data from smaller systems, equilibrated with less efficient methods.
Collapse
Affiliation(s)
- Guojie Zhang
- Institute for Systems Rheology, Advanced Institute of Engineering Science for Intelligent Manufacturing, Guangzhou University, 510006 Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
22
|
Ramos J, Vega J, Martínez-Salazar J. Predicting experimental results for polyethylene by computer simulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Keshavarz M, Engelkamp H, Xu J, van den Boomen OI, Maan JC, Christianen PCM, Rowan AE. Confining Potential as a Function of Polymer Stiffness and Concentration in Entangled Polymer Solutions. J Phys Chem B 2017; 121:5613-5620. [DOI: 10.1021/acs.jpcb.6b12667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masoumeh Keshavarz
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans Engelkamp
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Jialiang Xu
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Onno I. van den Boomen
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan C. Maan
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Peter C. M. Christianen
- High
Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and
Materials, Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands
| | - Alan E. Rowan
- Institute
for Molecules and Materials, Department of Molecular Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|