1
|
Akhmetov F, Vorberger J, Milov I, Makhotkin I, Ackermann M. Ab initio-simulated optical response of hot electrons in gold and ruthenium. OPTICS EXPRESS 2024; 32:19117-19132. [PMID: 38859054 DOI: 10.1364/oe.522772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/13/2024] [Indexed: 06/12/2024]
Abstract
Optical femtosecond pump-probe experiments allow to measure the dynamics of ultrafast heating of metals with high accuracy. However, the theoretical analysis of such experiments is often complicated because of the indirect connection of the measured signal and the desired temperature transients. Establishing such a connection requires an accurate model of the optical constants of a metal, depending on both the electron temperature Te and the lattice temperature Tl. In this paper, we present first-principles simulations of the two-temperature scenario with Te ≫ Tl, showing the optical response of hot electrons to laser irradiation in gold and ruthenium. Comparing our simulations with the Kubo-Greenwood approach, we discuss the influence of electron-phonon and electron-electron scattering on the intraband contribution to optical constants. Applying the simulated optical constants to the analysis of ultrafast heating of ruthenium thin films we highlight the importance of the latter scattering channel to understand the measured heating dynamics.
Collapse
|
2
|
Ziaja B, Bekx JJ, Masek M, Medvedev N, Lipp V, Saxena V, Stransky M. Application of Boltzmann kinetic equations to model X-ray-created warm dense matter and plasma. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220216. [PMID: 37393933 PMCID: PMC10876064 DOI: 10.1098/rsta.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/28/2023] [Indexed: 07/04/2023]
Abstract
In this review, we describe the application of Boltzmann kinetic equations for modelling warm dense matter and plasma formed after irradiation of solid materials with intense femtosecond X-ray pulses. Classical Boltzmann kinetic equations are derived from the reduced N-particle Liouville equations. They include only single-particle densities of ions and free electrons present in the sample. The first version of the Boltzmann kinetic equation solver was completed in 2006. It could model non-equilibrium evolution of X-ray-irradiated finite-size atomic systems. In 2016, the code was adapted to study plasma created from X-ray-irradiated materials. Additional extension of the code was then also performed, enabling simulations in the hard X-ray irradiation regime. In order to avoid treatment of a very high number of active atomic configurations involved in the excitation and relaxation of X-ray-irradiated materials, an approach called 'predominant excitation and relaxation path' (PERP) was introduced. It limited the number of active atomic configurations by following the sample evolution only along most PERPs. The performance of the Boltzmann code is illustrated in the examples of X-ray-heated solid carbon and gold. Actual model limitations and further model developments are discussed. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Beata Ziaja
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - John Jasper Bekx
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Martin Masek
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
| | - Nikita Medvedev
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
- Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8, Czech Republic
| | - Vladimir Lipp
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Vikrant Saxena
- Center for Free-Electron Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Indian Institute of Technology Delhi,New Delhi 110016, India
| | - Michal Stransky
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2,182 21 Prague 8, Czech Republic
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
3
|
Li Z, Wang X, Hou Y, Yu Y, Li G, Hao L, Li X, Geng H, Dai C, Wu Q, Mao HK, Hu J. Quantifying the partial ionization effect of gold in the transition region between condensed matter and warm dense matter. Proc Natl Acad Sci U S A 2023; 120:e2300066120. [PMID: 37186821 PMCID: PMC10214124 DOI: 10.1073/pnas.2300066120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
It is now well known that solids under ultra-high-pressure shock compression will enter the warm dense matter (WDM) regime which connects condensed matter and hot plasma. How condensed matter turns into the WDM, however, remains largely unexplored due to the lack of data in the transition pressure range. In this letter, by employing the unique high-Z three-stage gas gun launcher technique developed recently, we compress gold into TPa shock pressure to fill the gap inaccessible by the two-stage gas gun and laser shock experiments. With the aid of high-precision Hugoniot data obtained experimentally, we observe a clear softening behavior beyond ~560 GPa. The state-of-the-art ab-initio molecular dynamics calculations reveal that the softening is caused by the ionization of 5d electrons in gold. This work quantifies the partial ionization effect of electrons under extreme conditions, which is critical to model the transition region between condensed matter and WDM.
Collapse
Affiliation(s)
- Zhiguo Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Xiang Wang
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Yong Hou
- Department of Physics, National University of Defense Technology, Changsha410073, China
| | - Yuying Yu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Guojun Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Long Hao
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Xuhai Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Huayun Geng
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Chengda Dai
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Qiang Wu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai201203, China
| | - Jianbo Hu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan621900, China
- State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang621010, China
| |
Collapse
|
4
|
Ndione PD, Weber ST, Gericke DO, Rethfeld B. Nonequilibrium band occupation and optical response of gold after ultrafast XUV excitation. Sci Rep 2022; 12:4693. [PMID: 35304492 PMCID: PMC8933472 DOI: 10.1038/s41598-022-08338-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Free electron lasers offer unique properties to study matter in states far from equilibrium as they combine short pulses with a large range of photon energies. In particular, the possibility to excite core states drives new relaxation pathways that, in turn, also change the properties of the optically and chemically active electrons. Here, we present a theoretical model for the dynamics of the nonequilibrium occupation of the different energy bands in solid gold driven by exciting deep core states. The resulting optical response is in excellent agreement with recent measurements and, combined with our model, provides a quantitative benchmark for the description of electron-phonon coupling in strongly driven gold. Focusing on sub-picosecond time scales, we find essential differences between the dynamics induced by XUV and visible light.
Collapse
Affiliation(s)
- Pascal D Ndione
- Department of Physics and OPTIMAS Research Center, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany.
| | - Sebastian T Weber
- Department of Physics and OPTIMAS Research Center, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - Dirk O Gericke
- Department of Physics, Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, CV4 7AL, UK
| | - Baerbel Rethfeld
- Department of Physics and OPTIMAS Research Center, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| |
Collapse
|
5
|
Chen Z, Tsui YY, Mo MZ, Fedosejevs R, Ozaki T, Recoules V, Sterne PA, Ng A. Electron Kinetics Induced by Ultrafast Photoexcitation of Warm Dense Matter in a 30-nm-Thick Foil. PHYSICAL REVIEW LETTERS 2021; 127:097403. [PMID: 34506197 DOI: 10.1103/physrevlett.127.097403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/16/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
We report on the study of electron kinetics induced by intense femtosecond (fs) laser excitation of electrons in the 5d band of Au. Changes in the electron system are observed from the temporal evolution of ac conductivity and conduction electron density. The results reveal an increase of electron thermalization time with excitation energy density, contrary to the Fermi-liquid behavior of the decrease of thermalization time associated with the heating of conduction electrons. This is attributed to the severe mitigation of photoexcitation by Auger decay. The study also uncovers the shortening of 5d hole lifetime with the increase of photoexcitation rates. These unique findings provide valuable insights for understanding electron kinetics under extreme nonequilibrium conditions.
Collapse
Affiliation(s)
- Z Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G-2V4, Canada
| | - Y Y Tsui
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G-2V4, Canada
| | - M Z Mo
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G-2V4, Canada
| | - R Fedosejevs
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G-2V4, Canada
| | - T Ozaki
- INRS-EMT, University of Quebec, Varennes, Quebec J3X-1S2, Canada
| | - V Recoules
- CEA, DAM, DIF, 91297 Arpajon Cedex, France
| | - P A Sterne
- Lawerence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Ng
- Department of Physics and Astronomy, University of British Colombia, Vancouver, British Colombia V6T-1Z1, Canada
| |
Collapse
|
6
|
Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids. Nat Commun 2021; 12:1638. [PMID: 33712576 PMCID: PMC7977037 DOI: 10.1038/s41467-021-21756-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
Key insights in materials at extreme temperatures and pressures can be gained by accurate measurements that determine the electrical conductivity. Free-electron laser pulses can ionize and excite matter out of equilibrium on femtosecond time scales, modifying the electronic and ionic structures and enhancing electronic scattering properties. The transient evolution of the conductivity manifests the energy coupling from high temperature electrons to low temperature ions. Here we combine accelerator-based, high-brightness multi-cycle terahertz radiation with a single-shot electro-optic sampling technique to probe the evolution of DC electrical conductivity using terahertz transmission measurements on sub-picosecond time scales with a multi-undulator free electron laser. Our results allow the direct determination of the electron-electron and electron-ion scattering frequencies that are the major contributors of the electrical resistivity. The electrical conductivity is critical to understand warm dense matter, but the accurate measurement is extremely challenging. Here the authors use multi-cycle THz pulses to measure the conductivity of gold foils strongly heated by free-electron laser, determining the individual contributions of electron-electron and electron-ion scattering.
Collapse
|
7
|
Ofori-Okai BK, Descamps A, Lu J, Seipp LE, Weinmann A, Glenzer SH, Chen Z. Toward quasi-DC conductivity of warm dense matter measured by single-shot terahertz spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:10D109. [PMID: 30399773 DOI: 10.1063/1.5038944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
We present an experimental setup capable of measuring the near DC conductivity of laser generated warm dense matter using single-shot terahertz time-domain spectroscopy. The setup uses a reflective echelon and balanced detection to record THz waveforms with a minimum detectable signal of 0.2% in a single laser pulse. We describe details of the experimental setup and the data analysis procedure and present single-shot terahertz transmission data on aluminum that has been laser heated to an electron temperature of 0.5 eV.
Collapse
Affiliation(s)
- B K Ofori-Okai
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - A Descamps
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - J Lu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - L E Seipp
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - A Weinmann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Z Chen
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
8
|
Mo MZ, Chen Z, Li RK, Dunning M, Witte BBL, Baldwin JK, Fletcher LB, Kim JB, Ng A, Redmer R, Reid AH, Shekhar P, Shen XZ, Shen M, Sokolowski-Tinten K, Tsui YY, Wang YQ, Zheng Q, Wang XJ, Glenzer SH. Heterogeneous to homogeneous melting transition visualized with ultrafast electron diffraction. Science 2018; 360:1451-1455. [PMID: 29954977 DOI: 10.1126/science.aar2058] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 05/01/2018] [Indexed: 11/02/2022]
Abstract
The ultrafast laser excitation of matters leads to nonequilibrium states with complex solid-liquid phase-transition dynamics. We used electron diffraction at mega-electron volt energies to visualize the ultrafast melting of gold on the atomic scale length. For energy densities approaching the irreversible melting regime, we first observed heterogeneous melting on time scales of 100 to 1000 picoseconds, transitioning to homogeneous melting that occurs catastrophically within 10 to 20 picoseconds at higher energy densities. We showed evidence for the heterogeneous coexistence of solid and liquid. We determined the ion and electron temperature evolution and found superheated conditions. Our results constrain the electron-ion coupling rate, determine the Debye temperature, and reveal the melting sensitivity to nucleation seeds.
Collapse
Affiliation(s)
- M Z Mo
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Z Chen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - R K Li
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Dunning
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - B B L Witte
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - J K Baldwin
- Los Alamos National Laboratory, Bikini Atoll Road, Los Alamos, NM 87545, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J B Kim
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A Ng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - R Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - A H Reid
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - P Shekhar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | - X Z Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Shen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | - K Sokolowski-Tinten
- Faculty of Physics and Centre for Nanointegration Duisburg-Essen, University of Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg, Germany
| | - Y Y Tsui
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada
| | - Y Q Wang
- Los Alamos National Laboratory, Bikini Atoll Road, Los Alamos, NM 87545, USA
| | - Q Zheng
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - X J Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
9
|
Chen Z, Mo M, Soulard L, Recoules V, Hering P, Tsui YY, Glenzer SH, Ng A. Interatomic Potential in the Nonequilibrium Warm Dense Matter Regime. PHYSICAL REVIEW LETTERS 2018; 121:075002. [PMID: 30169102 DOI: 10.1103/physrevlett.121.075002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 06/04/2018] [Indexed: 06/08/2023]
Abstract
We present a new measurement of lattice disassembly times in femtosecond-laser-heated polycrystalline Au nanofoils. The results are compared with molecular dynamics simulations incorporating a highly optimized, embedded-atom-method interatomic potential. For absorbed energy densities of 0.9-4.3 MJ/kg, the agreement between the experiment and simulation reveals a single-crystal-like behavior of homogeneous melting and corroborates the applicability of the interatomic potential in the nonequilibrium warm dense matter regime. For energy densities below 0.9 MJ/kg, the measurement is consistent with nanocrystal behavior where melting is initiated at the grain boundaries.
Collapse
Affiliation(s)
- Z Chen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M Mo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - L Soulard
- CEA, DAM, DIF, 91297 Arpajon, France
| | | | - P Hering
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Y Y Tsui
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G-2V4, Canada
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A Ng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T-1Z1, Canada
| |
Collapse
|