1
|
Okeukwu-Ogbonnaya A, Amariucai G, Natarajan B, Kim HJ. Towards quantifying the communication aspect of resilience in disaster-prone communities. Sci Rep 2024; 14:8837. [PMID: 38632294 PMCID: PMC11024194 DOI: 10.1038/s41598-024-59192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, we investigate the communication networks of urban, suburban, and rural communities from three US Midwest counties through a stochastic model that simulates the diffusion of information over time in disaster and in normal situations. To understand information diffusion in communities, we investigate the interplay of information that individuals get from online social networks, local news, government sources, mainstream media, and print media. We utilize survey data collected from target communities and create graphs of each community to quantify node-to-node and source-to-node interactions, as well as trust patterns. Monte Carlo simulation results show the average time it takes for information to propagate to 90% of the population for each community. We conclude that rural, suburban, and urban communities have different inherent properties promoting the varied flow of information. Also, information sources affect information spread differently, causing degradation of information speed if any source becomes unavailable. Finally, we provide insights on the optimal investments to improve disaster communication based on community features and contexts.
Collapse
Affiliation(s)
| | - George Amariucai
- Department of Computer Science, Kansas State University, Manhattan, KS, 66502, USA
| | | | - Hyung Jin Kim
- Landscape Architecture and Regional & Community Planning, Kansas State University, Manhattan, 66502, USA
| |
Collapse
|
2
|
Kates-Harbeck J, Nowak M. Trust based attachment. PLoS One 2023; 18:e0288142. [PMID: 37610996 PMCID: PMC10446209 DOI: 10.1371/journal.pone.0288142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
In social systems subject to indirect reciprocity, a positive reputation is key for increasing one's likelihood of future positive interactions [1-13]. The flow of gossip can amplify the impact of a person's actions on their reputation depending on how widely it spreads across the social network, which leads to a percolation problem [14]. To quantify this notion, we calculate the expected number of individuals, the "audience", who find out about a particular interaction. For a potential donor, a larger audience constitutes higher reputational stakes, and thus a higher incentive, to perform "good" actions in line with current social norms [7, 15]. For a receiver, a larger audience therefore increases the trust that the partner will be cooperative. This idea can be used for an algorithm that generates social networks, which we call trust based attachment (TBA). TBA produces graphs that share crucial quantitative properties with real-world networks, such as high clustering, small-world behavior, and powerlaw degree distributions [16-21]. We also show that TBA can be approximated by simple friend-of-friend routines based on triadic closure, which are known to be highly effective at generating realistic social network structures [19, 22-25]. Therefore, our work provides a new justification for triadic closure in social contexts based on notions of trust, gossip, and social information spread. These factors are thus identified as potential significant influences on how humans form social ties.
Collapse
Affiliation(s)
- Julian Kates-Harbeck
- Department of Physics, Harvard University, Cambridge, MA, United States of America
| | - Martin Nowak
- Department of Mathematics, Harvard University, Cambridge, MA, United States of America
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
3
|
Niu YW, Qu CQ, Wang GH, Wu JL, Yan GY. Information spreading with relative attributes on signed networks. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.11.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Iacopini I, Schäfer B, Arcaute E, Beck C, Latora V. Multilayer modeling of adoption dynamics in energy demand management. CHAOS (WOODBURY, N.Y.) 2020; 30:013153. [PMID: 32013493 DOI: 10.1063/1.5122313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Due to the emergence of new technologies, the whole electricity system is undergoing transformations on a scale and pace never observed before. The decentralization of energy resources and the smart grid have forced utility services to rethink their relationships with customers. Demand response (DR) seeks to adjust the demand for power instead of adjusting the supply. However, DR business models rely on customer participation and can only be effective when large numbers of customers in close geographic vicinity, e.g., connected to the same transformer, opt in. Here, we introduce a model for the dynamics of service adoption on a two-layer multiplex network: the layer of social interactions among customers and the power-grid layer connecting the households. While the adoption process-based on peer-to-peer communication-runs on the social layer, the time-dependent recovery rate of the nodes depends on the states of their neighbors on the power-grid layer, making an infected node surrounded by infectious ones less keen to recover. Numerical simulations of the model on synthetic and real-world networks show that a strong local influence of the customers' actions leads to a discontinuous transition where either none or all the nodes in the network are infected, depending on the infection rate and social pressure to adopt. We find that clusters of early adopters act as points of high local pressure, helping maintaining adopters, and facilitating the eventual adoption of all nodes. This suggests direct marketing strategies on how to efficiently establish and maintain new technologies such as DR schemes.
Collapse
Affiliation(s)
- Iacopo Iacopini
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Benjamin Schäfer
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Elsa Arcaute
- Centre for Advanced Spatial Analysis, University College London, London W1T 4TJ, United Kingdom
| | - Christian Beck
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
5
|
Hassanibesheli F, Donner RV. Network inference from the timing of events in coupled dynamical systems. CHAOS (WOODBURY, N.Y.) 2019; 29:083125. [PMID: 31472517 DOI: 10.1063/1.5110881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Spreading phenomena like opinion formation or disease propagation often follow the links of some underlying network structure. While the effects of network topology on spreading efficiency have already been vastly studied, we here address the inverse problem of whether we can infer an unknown network structure from the timing of events observed at different nodes. For this purpose, we numerically investigate two types of event-based stochastic processes. On the one hand, a generic model of event propagation on networks is considered where the nodes exhibit two types of eventlike activity: spontaneous events reflecting mutually independent Poisson processes and triggered events that occur with a certain probability whenever one of the neighboring nodes exhibits any of these two kinds of events. On the other hand, we study a variant of the well-known SIRS model from epidemiology and record only the timings of state switching events of individual nodes, irrespective of the specific states involved. Based on simulations of both models on different prototypical network architectures, we study the pairwise statistical similarity between the sequences of event timings at all nodes by means of event synchronization and event coincidence analysis (ECA). By taking strong mutual similarities of event sequences (functional connectivity) as proxies for actual physical links (structural connectivity), we demonstrate that both approaches can lead to reasonable prediction accuracy. In general, sparser networks can be reconstructed more accurately than denser ones, especially in the case of larger networks. In such cases, ECA is shown to commonly exhibit the better reconstruction accuracy.
Collapse
Affiliation(s)
- Forough Hassanibesheli
- Research Domain IV-Complexity Science, Potsdam Institute for Climate Impact Research-Member of the Leibniz Society, Telegrafenberg A31, 14473 Potsdam, Germany
| | - Reik V Donner
- Research Domain IV-Complexity Science, Potsdam Institute for Climate Impact Research-Member of the Leibniz Society, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
6
|
Wang S, Cheng W, Hao Y. Designing efficient hybrid strategies for information spreading in scale-free networks. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180117. [PMID: 30225005 PMCID: PMC6124100 DOI: 10.1098/rsos.180117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Designing a spreading strategy is one of the critical issues strongly affecting spreading efficiency in complex networks. In this paper, to improve the efficiency of information spreading in scale-free networks, we propose four hybrid strategies by combining two basic strategies, i.e. (i) the LS (in which information is preferentially spread from the large-degree vertices to the small-degree ones), and (ii) the SL (in which information is preferentially spread from the small-degree vertices to the large-degree ones). The objective in combining the two basic LS and SL strategies is to fully exploit the advantages of both strategies. To evaluate the spreading efficiency of the proposed four hybrid strategies, we first propose an information spreading model. Then, we introduce the details of the proposed hybrid strategies that are formulated by combining LS and SL. Third, we build a set of scale-free network structures by differently configuring the relevant parameters. In addition, finally, we conduct various Monte Carlo experiments to examine the spreading efficiency of the proposed hybrid strategies in different scale-free network structures. Experimental results indicate that the proposed hybrid strategies are effective and efficient for spreading information in scale-free networks.
Collapse
Affiliation(s)
| | - Wuyi Cheng
- School of Engineering and Technology, China University of Geosciences, Beijing, People's Republic of China
| | | |
Collapse
|
7
|
Abu-Salih B, Wongthongtham P, Chan KY, Zhu D. CredSaT: Credibility ranking of users in big social data incorporating semantic analysis and temporal factor. J Inf Sci 2018. [DOI: 10.1177/0165551518790424] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The widespread use of big social data has influenced the research community in several significant ways. In particular, the notion of social trust has attracted a great deal of attention from information processors and computer scientists as well as information consumers and formal organisations. This attention is embodied in the various shapes social trust has taken, such as its use in recommendation systems, viral marketing and expertise retrieval. Hence, it is essential to implement frameworks that are able to temporally measure a user’s credibility in all categories of big social data. To this end, this article suggests the CredSaT (Credibility incorporating Semantic analysis and Temporal factor), which is a fine-grained credibility analysis framework for use in big social data. A novel metric that includes both new and current features, as well as the temporal factor, is harnessed to establish the credibility ranking of users. Experiments on real-world datasets demonstrate the efficacy and applicability of our model in determining highly domain-based trustworthy users. Furthermore, CredSaT may also be used to identify spammers and other anomalous users.
Collapse
|