1
|
Kailasham R, Khair AS. The influence of active agent motility on SIRS epidemiological dynamics. SOFT MATTER 2024; 20:9193-9207. [PMID: 39531013 DOI: 10.1039/d4sm00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Active Brownian disks moving in two dimensions that exchange information about their internal state stochastically are chosen to model epidemic spread in a self-propelled population of agents under the susceptible-infected-recovered-susceptible (SIRS) framework. The state of infection of an agent, or disk, governs its self-propulsion speed; consequently, the activity of the agents in the system varies in time. Two different protocols (one-to-one and one-to-many) are considered for the transmission of disease from the infected to susceptible populations. The effectiveness of the two protocols are practically identical at high values of the infection transmission rate. The one-to-many protocol, however, outperforms the one-to-one protocol at lower values of the infection transmission rate. Salient features of the macroscopic SIRS model are revisited, and compared to predictions from the agent-based model. Lastly, the motility induced phase separation in a population of such agents with a fluctuating fraction of active disks is found to be well-described by theories governing phase separation in a mixture of active and passive particles with a constant fraction of passive disks.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Hecht L, Dong I, Liebchen B. Motility-induced coexistence of a hot liquid and a cold gas. Nat Commun 2024; 15:3206. [PMID: 38615122 PMCID: PMC11016108 DOI: 10.1038/s41467-024-47533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
If two phases exist at the same time, such as a gas and a liquid, they have the same temperature. This fundamental law of equilibrium physics is known to apply even to many non-equilibrium systems. However, recently, there has been much attention in the finding that inertial self-propelled particles like Janus colloids in a plasma or microflyers could self-organize into a hot gas-like phase that coexists with a colder liquid-like phase. Here, we show that a kinetic temperature difference across coexisting phases can occur even in equilibrium systems when adding generic (overdamped) self-propelled particles. In particular, we consider mixtures of overdamped active and inertial passive Brownian particles and show that when they phase separate into a dense and a dilute phase, both phases have different kinetic temperatures. Surprisingly, we find that the dense phase (liquid) cannot only be colder but also hotter than the dilute phase (gas). This effect hinges on correlated motions where active particles collectively push and heat up passive ones primarily within the dense phase. Our results answer the fundamental question if a non-equilibrium gas can be colder than a coexisting liquid and create a route to equip matter with self-organized domains of different kinetic temperatures.
Collapse
Affiliation(s)
- Lukas Hecht
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Iris Dong
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
3
|
Kailasham R, Khair AS. Effect of speed fluctuations on the collective dynamics of active disks. SOFT MATTER 2023; 19:7764-7774. [PMID: 37791487 DOI: 10.1039/d3sm00665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Numerical simulations are performed on the collective dynamics of active disks, whose self-propulsion speed (U) varies in time, and whose orientation evolves according to rotational Brownian motion. Two protocols for the evolution of speed are considered: (i) a deterministic one involving a periodic change in U at a frequency ω; and (ii) a stochastic one in which the speeds are drawn from a power-law distribution at time-intervals governed by a Poissonian process of rate β. In the first case, an increase in ω causes the disks to go from a clustered state to a homogeneous one through an apparent phase-transition, provided that the direction of self-propulsion is allowed to reverse. Similarly, in the second case, for a fixed value of β, the extent of cluster-breakup is larger when reversals in the self-propulsion direction are permitted. Motility-induced phase separation of the disks may therefore be avoided in active matter suspensions in which the constituents are allowed to reverse their self-propulsion direction, immaterial of the precise temporal nature of the reversal (deterministic or stochastic). Equally, our results demonstrate that phase separation could occur even in the absence of a time-averaged motility of an individual active agent, provided that the rate of direction reversals is smaller than the orientational diffusion rate.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
4
|
Rojas-Vega M, de Castro P, Soto R. Wetting dynamics by mixtures of fast and slow self-propelled particles. Phys Rev E 2023; 107:014608. [PMID: 36797971 DOI: 10.1103/physreve.107.014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of "fast" and "slow" self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front.
Collapse
Affiliation(s)
| | - Pablo de Castro
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, 01140-070 São Paulo, Brazil
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
5
|
Yasuda K, Ishimoto K. Most probable path of an active Brownian particle. Phys Rev E 2022; 106:064120. [PMID: 36671105 DOI: 10.1103/physreve.106.064120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/30/2022] [Indexed: 12/23/2022]
Abstract
In this study, we investigate the transition path of a free active Brownian particle (ABP) on a two-dimensional plane between two given states. The extremum conditions for the most probable path connecting the two states are derived using the Onsager-Machlup integral and its variational principle. We provide explicit solutions to these extremum conditions and demonstrate their nonuniqueness through an analogy with the pendulum equation indicating possible multiple paths. The pendulum analogy is also employed to characterize the shape of the globally most probable path obtained by explicitly calculating the path probability for multiple solutions. We comprehensively examine a translation process of an ABP to the front as a prototypical example. Interestingly, the numerical and theoretical analyses reveal that the shape of the most probable path changes from an I to a U shape and to the ℓ shape with an increase in the transition process time. The Langevin simulation also confirms this shape transition. We also discuss further method applications for evaluating a transition path in rare events in active matter.
Collapse
Affiliation(s)
- Kento Yasuda
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| | - Kenta Ishimoto
- Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Hecht L, Mandal S, Löwen H, Liebchen B. Active Refrigerators Powered by Inertia. PHYSICAL REVIEW LETTERS 2022; 129:178001. [PMID: 36332249 DOI: 10.1103/physrevlett.129.178001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We present the operational principle for a refrigerator that uses inertial effects in active Brownian particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only. Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using them to systematically absorb and trap, e.g., toxic substances from the environment.
Collapse
Affiliation(s)
- Lukas Hecht
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Suvendu Mandal
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
7
|
Chacón E, Alarcón F, Ramírez J, Tarazona P, Valeriani C. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles. SOFT MATTER 2022; 18:2646-2653. [PMID: 35302119 DOI: 10.1039/d1sm01493e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Suspensions of active Brownian particles (ABPs) undergo motility-induced phase separation (MIPS) over a wide range of mean density and activity strength, which implies the spontaneous aggregation of particles due to the persistence of their direction of motion, even in the absence of an explicit attraction. Both similarities and qualitative differences have been obtained when the MIPS is analysed in the same terms as a liquid-gas phase coexistence in an equilibrium attractive system. Negative values of the mechanical surface tension have been reported, from the total forces across the interface, while stable fluctuations of the interfacial line could be interpreted as a positive capillary surface tension; in equilibrium liquid surfaces, these two magnitudes are equal. We present here the analysis of 2D-ABP interfaces in terms of the intrinsic density and force profiles, calculated with the particle distance to the instantaneous interfacial line. Our results provide new insight into the origin of MIPS from the local rectification of the random active force on the particles near the interface. As has been reported, this effect acts as an external potential that produces a pressure gradient across the interface, such that the mechanical surface tension of the MIPS cannot be described as that of equilibrium coexisting phases; however, our analysis shows that most of that effect comes from the tightly caged particles at the dense (inner) side of the MIPS interface, rather than from the free moving particles at the outer side that collide with the dense cluster. Moreover, a clear correlation appears between the decay of the hexatic order parameter at the dense slab and the end of the MIPS as the strength of the active force is lowered. We show that, using the strong active forces required for MIPS, the interfacial structure and properties are very similar for ABPs with purely repulsive interactions (the Weeks-Chandler-Andersen-Lennard-Jones (WCA-LJ) model truncated at its minimum) and when the interaction includes a range of the LJ attractive force.
Collapse
Affiliation(s)
- Enrique Chacón
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Francisco Alarcón
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Loma del Bosque 103, León 37150, Mexico
| | - Jorge Ramírez
- Departamento de Ingeniería Química, ETSI Industriales, Universidad Politécnica de Madrid, Madrid 28006, Spain
| | - Pedro Tarazona
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid 28040, Spain.
| |
Collapse
|
8
|
Casiulis M, Hexner D, Levine D. Self-propulsion and self-navigation: Activity is a precursor to jamming. Phys Rev E 2021; 104:064614. [PMID: 35030902 DOI: 10.1103/physreve.104.064614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Traffic jams are an everyday hindrance to transport and typically arise when many vehicles have the same or a similar destination. We show, however, that even when uniformly distributed in space and uncorrelated, targets have a crucial effect on transport. At modest densities an instability arises leading to jams with emergent correlations between the targets. By considering limiting cases of the dynamics which map onto active Brownian particles, we argue that motility induced phase separation is the precursor to jams. That is, jams are MIPS seeds that undergo an extra instability due to target accumulation. This provides a quantitative prediction of the onset density for jamming, and suggests how jamming might be delayed or prevented. We study the transition between jammed and flowing phase, and find that transport is most efficient on the cusp of jamming.
Collapse
Affiliation(s)
| | - Daniel Hexner
- Department of Mechanical Engineering, Technion-IIT, 32000 Haifa, Israel
| | - Dov Levine
- Department of Physics, Technion-IIT, 32000 Haifa, Israel
| |
Collapse
|
9
|
Mallory SA, Omar AK, Brady JF. Dynamic overlap concentration scale of active colloids. Phys Rev E 2021; 104:044612. [PMID: 34781543 DOI: 10.1103/physreve.104.044612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
By introducing the notion of a dynamic overlap concentration scale, we identify additional universal features of the mechanical properties of active colloids. We codify these features by recognizing that the characteristic length scale of an active particle's trajectory, the run length, introduces a concentration scale ϕ^{*}. Large-scale simulations of repulsive active Brownian particles (ABPs) confirm that this run-length dependent concentration, the trajectory-space analog of the overlap concentration in polymer solutions, delineates distinct concentration regimes in which interparticle collisions alter particle trajectories. Using ϕ^{*} and concentration scales associated with colloidal jamming, the mechanical equation of state for ABPs collapses onto a set of principal curves that contain several overlooked features. The inclusion of these features qualitatively alters previous predictions of the behavior for active colloids, as we demonstrate by computing the spinodal for a suspension of purely repulsive ABPs. Our findings suggest that dynamic overlap concentration scales should help unravel the behavior of active and driven systems.
Collapse
Affiliation(s)
- Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennyslvania 16802, USA
| | - Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
10
|
Maggi C, Paoluzzi M, Crisanti A, Zaccarelli E, Gnan N. Universality class of the motility-induced critical point in large scale off-lattice simulations of active particles. SOFT MATTER 2021; 17:3807-3812. [PMID: 33645615 DOI: 10.1039/d0sm02162h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the system's critical behaviour close to the critical point of the MIPS curve. By sampling steady-state configurations for large system sizes and performing finite size scaling analysis we provide exhaustive evidence that the critical behaviour of this active system belongs to the Ising universality class. In addition to the scaling observables that are also typical of passive systems, we study the critical behaviour of the kinetic temperature difference between the two active phases. This quantity, which is always zero in equilibrium, displays instead a critical behavior in the active system which is well described by the same exponent of the order parameter in agreement with mean-field theory.
Collapse
Affiliation(s)
- Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory -Piazzale A. Moro 2, I-00185, Roma, Italy. and Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy
| | - Matteo Paoluzzi
- Departamento de Fìsica de la Matèria Condensada, Universitat de Barcelona, C. MartìFranquès 1, 08028 Barcelona, Spain
| | - Andrea Crisanti
- Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy and CNR-ISC, Institute of Complex Systems, Roma, Italy.
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy and CNR-ISC, Institute of Complex Systems, Roma, Italy.
| | - Nicoletta Gnan
- Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy and CNR-ISC, Institute of Complex Systems, Roma, Italy.
| |
Collapse
|
11
|
Jose F, Anand SK, Singh SP. Phase separation of an active colloidal suspension via quorum-sensing. SOFT MATTER 2021; 17:3153-3161. [PMID: 33616149 DOI: 10.1039/d0sm02131h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present the Brownian dynamics simulation of an active colloidal suspension in two dimensions, where the self-propulsion speed of a colloid is regulated according to the local density sensed by it. The role of concentration-dependent motility in the phase-separation of colloids and their dynamics is investigated in detail. Interestingly, the system phase separates at a very low packing fraction (Φ≈ 0.125) at higher self-propulsion speeds (Pe), into a dense phase coexisting with a homogeneous phase and attains a long-range crystalline order beyond the transition point. The transition point is quantified here from the local density profiles and local and global-bond order parameters. We have shown that the characteristics of the phase diagram are qualitatively akin to the active Brownian particle (ABP) model. Moreover, our investigation reveals that the density-dependent motility amplifies the slow-down of the directed speed, which facilitates phase-separation even at low packing fractions. The effective diffusivity shows a crossover from quadratic rise to a power-law behavior of exponent 3/2 with Pe in the phase-separated regime. Furthermore, we have shown that the effective diffusion decreases exponentially with packing fraction in the phase-separated regime, while it shows a linear decrease in the single phase regime.
Collapse
Affiliation(s)
- Francis Jose
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | | | | |
Collapse
|
12
|
Schimansky-Geier L, Lindner B, Milster S, Neiman AB. Demixing of two species via reciprocally concentration-dependent diffusivity. Phys Rev E 2021; 103:022113. [PMID: 33736075 DOI: 10.1103/physreve.103.022113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022]
Abstract
We propose a model for demixing of two species by assuming a density-dependent effective diffusion coefficient of the particles. Both sorts of microswimmers diffuse as active overdamped Brownian particles with a noise intensity that is determined by the surrounding density of the respective other species within a sensing radius r_{s}. A higher concentration of the first (second) sort will enlarge the diffusion and, in consequence, the intensity of the noise experienced by the second (first) sort. Numerical and analytical investigations of steady states of the macroscopic equations prove the demixing of particles due to this reciprocally concentration-dependent diffusivity. An ambiguity of the numerical integration scheme for the purely local model (r_{s}→0) is resolved by considering nonvanishing sensing radii in a nonlocal model with r_{s}>0.
Collapse
Affiliation(s)
- Lutz Schimansky-Geier
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Benjamin Lindner
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany
| | - Sebastian Milster
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany.,Institute of Physics, Albert Ludwig University of Freiburg Hermann-Herder-Strasse 3, D-79104 Freiburg, Germany
| | - Alexander B Neiman
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA.,Neuroscience Program, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
13
|
Fazli Z, Naji A. Active particles with polar alignment in ring-shaped confinement. Phys Rev E 2021; 103:022601. [PMID: 33736018 DOI: 10.1103/physreve.103.022601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
We study steady-state properties of active, nonchiral and chiral Brownian particles with polar alignment and steric interactions confined within a ring-shaped confinement (annulus) in two dimensions. Exploring possible interplays between polar interparticle alignment, geometric confinement and the surface curvature, being incorporated here on minimal levels, we report a surface-population reversal effect, whereby active particles migrate from the outer concave boundary of the annulus to accumulate on its inner convex boundary. This contrasts the conventional picture, implying stronger accumulation of active particles on concave boundaries relative to the convex ones. The population reversal is caused by both particle alignment and surface curvature, disappearing when either of these factors is absent. We explore the ensuing consequences for the chirality-induced current and swim pressure of active particles and analyze possible roles of system parameters, such as the mean number density of particles and particle self-propulsion, chirality, and alignment strengths.
Collapse
Affiliation(s)
- Zahra Fazli
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| | - Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
14
|
Locatelli E, Bianco V, Malgaretti P. Activity-Induced Collapse and Arrest of Active Polymer Rings. PHYSICAL REVIEW LETTERS 2021; 126:097801. [PMID: 33750170 DOI: 10.1103/physrevlett.126.097801] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
We investigate, using numerical simulations, the conformations of isolated active ring polymers. We find that their behavior depends crucially on their size: Short rings (N≲100) swell, whereas longer rings (N≳200) collapse, at sufficiently high activity. By investigating the nonequilibrium process leading to the steady state, we find a universal route driving both outcomes; we highlight the central role of steric interactions, at variance with linear chains, and of topology conservation. We further show that the collapsed rings are arrested by looking at different observables, all underlining the presence of an extremely long timescales at the steady state, associated with the internal dynamics of the collapsed section. Finally, we found that in some circumstances the collapsed state spins about its axis.
Collapse
Affiliation(s)
| | - Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Complutense University of Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- IV Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Helmholtz Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany
| |
Collapse
|
15
|
Feng F, Lei T, Zhao N. Tunable depletion force in active and crowded environments. Phys Rev E 2021; 103:022604. [PMID: 33736064 DOI: 10.1103/physreve.103.022604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
We adopt two-dimensional Langevin dynamics simulations to study the effective interactions between two passive colloids in a bath crowded with active particles. We mainly pay attention to the significant effects of active particle size, crowding-activity coupling, and chirality. First, a transition of depletion force from repulsion to attraction is revealed by varying particle size. Moreover, larger active crowders with sufficient activity can generate strong attractive force, which is in contrast to the cage effect in passive media. It is interesting that the attraction induced by large active crowders follows a linear scaling with the persistence length of active particles. Second, the effective force also experiences a transition from repulsion to attraction as volume fraction increases, as a consequence of the competition between the two contrastive factors of activity and crowding. As bath volume fraction is relatively small, activity generates a dominant repulsion force, while as the bath becomes concentrated, crowding-induced attraction becomes overwhelming. Lastly, in a chiral bath, we observe a very surprising oscillation phenomenon of active depletion force, showing an evident quasiperiodic variation with increasing chirality. Aggregation of active particles in the vicinity of the colloids is carefully examined, which serves as a reasonable picture for our observations. Our findings provide an inspiring strategy for the tunable active depletion force by crowding, activity, and chirality.
Collapse
Affiliation(s)
- Fane Feng
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Ting Lei
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Nanrong Zhao
- Department of Physical Chemistry, College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Das S, Ghosh S, Chelakkot R. Aggregate morphology of active Brownian particles on porous, circular walls. Phys Rev E 2020; 102:032619. [PMID: 33075888 DOI: 10.1103/physreve.102.032619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
We study the motility-induced aggregation of active Brownian particles (ABPs) on a porous, circular wall. We observe that the morphology of aggregated dense-phase on a static wall depends on the wall porosity, particle motility, and the radius of the circular wall. Our analysis reveals two morphologically distinct, dense aggregates; a connected dense cluster that spreads uniformly on the circular wall and a localized cluster that breaks the rotational symmetry of the system. These distinct morphological states are similar to the macroscopic structures observed in aggregates on planar, porous walls. We systematically analyze the parameter regimes where the different morphological states are observed. We further extend our analysis to motile circular rings. We show that the motile ring propels almost ballistically due to the force applied by the active particles when they form a localized cluster, whereas it moves diffusively when the active particles form a continuous cluster. This property demonstrates the possibility of extracting useful work from a system of ABPs, even without artificially breaking the rotational symmetry.
Collapse
Affiliation(s)
- Suchismita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sounok Ghosh
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
17
|
Das S, Chelakkot R. Morphological transitions of active Brownian particle aggregates on porous walls. SOFT MATTER 2020; 16:7250-7255. [PMID: 32744272 DOI: 10.1039/d0sm00797h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motility-induced wall aggregation of Active Brownian Particles (ABPs) is a well-studied phenomenon. Here, we study the aggregation of ABPs on porous walls, which allows the particles to penetrate through at large motility. We show that the active aggregates undergo a morphological transition from a connected dense-phase to disconnected droplets with an increase in wall porosity and the particle self-motility, similar to wetting-dewetting transitions in equilibrium fluids. We show that both morphologically distinct states are stable, and independent of initial conditions at least in some parameter regions. Our analysis reveals that changes in wall porosity affect the intrinsic properties of the aggregates and changes the effective wall-aggregate interfacial tension, consistent with the appearance of the morphological transition. Accordingly, a close analysis of the density, as well as orientational distribution, indicates that the underlying reason for such morphological transitions is not necessarily specific to the systems with porous walls, and it can be possible to observe in a larger class of confined, active systems by tuning the properties of confining walls.
Collapse
Affiliation(s)
- Suchismita Das
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
18
|
Giannini JA, Puckett JG. Testing a thermodynamic approach to collective animal behavior in laboratory fish schools. Phys Rev E 2020; 101:062605. [PMID: 32688602 DOI: 10.1103/physreve.101.062605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/08/2020] [Indexed: 11/07/2022]
Abstract
Collective behaviors displayed by groups of social animals are observed frequently in nature. Understanding and predicting the behavior of complex biological systems is dependent on developing effective descriptions and models. While collective animal systems are characteristically nonequilibrium, we can employ concepts from equilibrium statistical mechanics to motivate the measurement of material-like properties in laboratory animal aggregates. Here, we present results from a new set of experiments that utilize high speed footage of two-dimensional schooling events, particle tracking, and projected static and dynamic light fields to observe and control the behavior of negatively phototaxic fish schools (Hemigrammus bleheri). First, we use static light fields consisting of dark circular regions to produce visual stimuli that confine the schools to a range of areas. We find that schools have a maximum density which is independent of group size, and that a swim pressurelike quantity, Π increases linearly with number density, suggesting that unperturbed schools exist on an isotherm. Next, we use dynamic light fields where the radius of the dark region shrinks linearly with time to compress the schools. We find that an effective temperature parameter depends on the compression time and our results are thus consistent with the school having a constant heat flux. These findings further evidence the utility of effective thermodynamic descriptions of nonequilibrium systems in collective animal behavior.
Collapse
Affiliation(s)
- Julia A Giannini
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - James G Puckett
- Department of Physics, Gettysburg College, Gettysburg, Pennsylvania 17325, USA
| |
Collapse
|
19
|
Li K, Guo F, Zhou X, Wang X, He L, Zhang L. An attraction-repulsion transition of force on two asymmetric wedges induced by active particles. Sci Rep 2020; 10:11702. [PMID: 32678189 PMCID: PMC7367348 DOI: 10.1038/s41598-020-68677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/21/2020] [Indexed: 02/04/2023] Open
Abstract
Effective interaction between two asymmetric wedges immersed in a two-dimensional active bath is investigated by computer simulations. The attraction–repulsion transition of effective force between two asymmetric wedges is subjected to the relative position of two wedges, the wedge-to-wedge distance, the active particle density, as well as the apex angle of two wedges. By exchanging the position of the two asymmetric wedges in an active bath, firstly a simple attraction–repulsion transition of effective force occurs, completely different from passive Brownian particles. Secondly the transition of effective force is symmetric for the long-range distance between two asymmetric wedges, while it is asymmetric for the short-range case. Our investigations may provide new possibilities to govern the motion and assembly of microscopic objects by taking advantage of the self-driven behaviour of active particles.
Collapse
Affiliation(s)
- Ke Li
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Fuchen Guo
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xiaolin Zhou
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
20
|
Malakar K, Das A, Kundu A, Kumar KV, Dhar A. Steady state of an active Brownian particle in a two-dimensional harmonic trap. Phys Rev E 2020; 101:022610. [PMID: 32168649 DOI: 10.1103/physreve.101.022610] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 01/23/2020] [Indexed: 11/07/2022]
Abstract
We find an exact series solution for the steady-state probability distribution of a harmonically trapped active Brownian particle in two dimensions in the presence of translational diffusion. This series solution allows us to efficiently explore the behavior of the system in different parameter regimes. Identifying "active" and "passive" regimes, we predict a surprising re-entrant active-to-passive transition with increasing trap stiffness. Our numerical simulations validate this finding. We discuss various interesting limiting cases wherein closed-form expressions for the distributions can be obtained.
Collapse
Affiliation(s)
- Kanaya Malakar
- Presidency University, Kolkata 700073, India.,Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Arghya Das
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Anupam Kundu
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - K Vijay Kumar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Abhishek Dhar
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| |
Collapse
|
21
|
Rana S, Samsuzzaman M, Saha A. Tuning the self-organization of confined active particles by the steepness of the trap. SOFT MATTER 2019; 15:8865-8878. [PMID: 31616877 DOI: 10.1039/c9sm01691k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We consider the collective dynamics of self-propelling particles in two dimensions. They can align themselves according to the direction of propulsion of their neighbours, together with small rotational fluctuations. They also interact with each other via soft, isotropic, repulsive potentials. The particles are confined in a circular trap. The steepness of the trap is tuneable. The average packing fraction of the particles is low. When the trap is steep, particles flock along its boundary. They form a polar cluster that spreads over the boundary. The cluster is not spatially ordered. We show that when the steepness is decreased beyond a threshold value, the cluster becomes round and compact and eventually spatial order (hexagonal) emerges in addition to the pre-established polar order. We investigate the kinetics of such ordering. We find that while rotating around the centre of the trap along its circular boundary, the cluster needs to roll around its centre of mass to be spatially ordered. We have studied the stability of the order when the trap is suddenly switched off. We find that for the particles with velocity alignment interaction, the decay of the spatial order is much slower than the particles without the alignment interaction.
Collapse
Affiliation(s)
- Shubhashis Rana
- S. N. Bose National Centre For Basic Sciences, Kolkata, 700098, India.
| | - Md Samsuzzaman
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India.
| | - Arnab Saha
- Department of Physics, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
22
|
Hermann S, Krinninger P, de Las Heras D, Schmidt M. Phase coexistence of active Brownian particles. Phys Rev E 2019; 100:052604. [PMID: 31869869 DOI: 10.1103/physreve.100.052604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 06/10/2023]
Abstract
We investigate motility-induced phase separation of active Brownian particles, which are modeled as purely repulsive spheres that move due to a constant swim force with freely diffusing orientation. We develop on the basis of power functional concepts an analytical theory for nonequilibrium phase coexistence and interfacial structure. Theoretical predictions are validated against Brownian dynamics computer simulations. We show that the internal one-body force field has four nonequilibrium contributions: (i) isotropic drag and (ii) interfacial drag forces against the forward motion, (iii) a superadiabatic spherical pressure gradient, and (iv) the quiet life gradient force. The intrinsic spherical pressure is balanced by the swim pressure, which arises from the polarization of the free interface. The quiet life force opposes the adiabatic force, which is due to the inhomogeneous density distribution. The balance of quiet life and adiabatic forces determines bulk coexistence via equality of two bulk state functions, which are independent of interfacial contributions. The internal force fields are kinematic functionals which depend on density and current but are independent of external and swim forces, consistent with power functional theory. The phase transition originates from nonequilibrium repulsion, with the agile gas being more repulsive than the quiet liquid.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
23
|
van der Linden MN, Alexander LC, Aarts DGAL, Dauchot O. Interrupted Motility Induced Phase Separation in Aligning Active Colloids. PHYSICAL REVIEW LETTERS 2019; 123:098001. [PMID: 31524482 DOI: 10.1103/physrevlett.123.098001] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Switching on high activity in a relatively dense system of active Janus colloids, we observe fast clustering, followed by cluster aggregation towards full phase separation. The phase separation process is however interrupted when large enough clusters start breaking apart. Following the cluster size distribution as a function of time, we identify three successive dynamical regimes. Tracking both the particle positions and orientations, we characterize the structural ordering and alignment in the growing clusters and thereby unveil the mechanisms at play in these regimes. In particular, we identify how alignment between the neighboring particles is responsible for the interruption of the full phase separation. Our large scale quantification of the phase separation kinetics in active colloids points towards the new physics observed when both alignment and short-range repulsions are present.
Collapse
Affiliation(s)
- Marjolein N van der Linden
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry-University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lachlan C Alexander
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry-University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry-University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
24
|
Bayati P, Popescu MN, Uspal WE, Dietrich S, Najafi A. Dynamics near planar walls for various model self-phoretic particles. SOFT MATTER 2019; 15:5644-5672. [PMID: 31245803 DOI: 10.1039/c9sm00488b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For chemically active particles suspended in a liquid solution and moving by self-phoresis, the dynamics near chemically inert, planar walls is studied theoretically by employing various choices for the activity function, i.e., the spatial distribution of the sites where various chemical reactions take place. We focus on the case of solutions composed of electrically neutral species. This analysis extends previous studies of the case that the chemical activity can be modeled effectively as the release of a "product" molecular species from parts of the surface of the particle by accounting for annihilation of the product molecules by chemical reactions, either on the rest of the surface of the particle or in the volume of the surrounding solution. We show that, for the models considered here, the emergence of "sliding" and "hovering" wall-bound states is a generic, robust feature. However, the details of these states, such as the range of parameters within which they occur, depend on the specific model for the activity function. Additionally, in certain cases there is a reversal of the direction of the motion compared to the one observed if the particle is far away from the wall. We have also studied the changes of the dynamics induced by a direct interaction between the particle and the wall by including a short-ranged repulsive component to the interaction in addition to the steric one (a procedure often employed in numerical simulations of active colloids). Upon increasing the strength of this additional component, while keeping its range fixed, significant qualitative changes occur in the phase portraits of the dynamics near the wall: for sufficiently strong short-ranged repulsion, the sliding steady states of the dynamics are transformed into hovering states. Furthermore, our studies provide evidence for an additional "oscillatory" wall-bound steady state of motion for chemically active particles due to a strong, short-ranged, and direct repulsion. This kind of particle translates along the wall at a distance from it which oscillates between a minimum and a maximum.
Collapse
Affiliation(s)
- Parvin Bayati
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mihail N Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - William E Uspal
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany and Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, HI 96822, USA
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. and Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
25
|
Liu G, Patch A, Bahar F, Yllanes D, Welch RD, Marchetti MC, Thutupalli S, Shaevitz JW. Self-Driven Phase Transitions Drive Myxococcus xanthus Fruiting Body Formation. PHYSICAL REVIEW LETTERS 2019; 122:248102. [PMID: 31322369 DOI: 10.1103/physrevlett.122.248102] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 06/10/2023]
Abstract
Combining high-resolution single cell tracking experiments with numerical simulations, we show that starvation-induced fruiting body formation in Myxococcus xanthus is a phase separation driven by cells that tune their motility over time. The phase separation can be understood in terms of cell density and a dimensionless Péclet number that captures cell motility through speed and reversal frequency. Our work suggests that M. xanthus takes advantage of a self-driven nonequilibrium phase transition that can be controlled at the single cell level.
Collapse
Affiliation(s)
- Guannan Liu
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Adam Patch
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
| | - Fatmagül Bahar
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | - David Yllanes
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, New York 13244, USA
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - Roy D Welch
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Krinninger P, Schmidt M. Power functional theory for active Brownian particles: General formulation and power sum rules. J Chem Phys 2019; 150:074112. [DOI: 10.1063/1.5061764] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philip Krinninger
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
27
|
Passucci G, Brasch ME, Henderson JH, Zaburdaev V, Manning ML. Identifying the mechanism for superdiffusivity in mouse fibroblast motility. PLoS Comput Biol 2019; 15:e1006732. [PMID: 30763309 PMCID: PMC6392322 DOI: 10.1371/journal.pcbi.1006732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/27/2019] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
We seek to characterize the motility of mouse fibroblasts on 2D substrates. Utilizing automated tracking techniques, we find that cell trajectories are super-diffusive, where displacements scale faster than t1/2 in all directions. Two mechanisms have been proposed to explain such statistics in other cell types: run and tumble behavior with Lévy-distributed run times, and ensembles of cells with heterogeneous speed and rotational noise. We develop an automated toolkit that directly compares cell trajectories to the predictions of each model and demonstrate that ensemble-averaged quantities such as the mean-squared displacements and velocity autocorrelation functions are equally well-fit by either model. However, neither model correctly captures the short-timescale behavior quantified by the displacement probability distribution or the turning angle distribution. We develop a hybrid model that includes both run and tumble behavior and heterogeneous noise during the runs, which correctly matches the short-timescale behaviors and indicates that the run times are not Lévy distributed. The analysis tools developed here should be broadly useful for distinguishing between mechanisms for superdiffusivity in other cells types and environments.
Collapse
Affiliation(s)
- Giuseppe Passucci
- Physics Department, Syracuse University, Syracuse, New York, United States of America
| | - Megan E. Brasch
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, New York, United States of America
| | - James H. Henderson
- Biomedical and Chemical Engineering Department, Syracuse University, Syracuse, New York, United States of America
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
| | - Vasily Zaburdaev
- Institute of Supercomputing Technologies, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M. Lisa Manning
- Physics Department, Syracuse University, Syracuse, New York, United States of America
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, United States of America
| |
Collapse
|
28
|
Patch A, Sussman DM, Yllanes D, Marchetti MC. Curvature-dependent tension and tangential flows at the interface of motility-induced phases. SOFT MATTER 2018; 14:7435-7445. [PMID: 30152493 DOI: 10.1039/c8sm00899j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purely repulsive active particles spontaneously undergo motility-induced phase separation (MIPS) into condensed and dilute phases. Remarkably, the mechanical tension measured along the interface between these phases is negative. In equilibrium this would imply an unstable interface that wants to expand, but these out-of-equilibrium systems display long-time stability and have intrinsically stiff boundaries. Here, we study this phenomenon in detail using active Brownian particle simulations and a novel frame of reference. By shifting from the global (or laboratory) frame to a local frame that follows the dynamics of the phase boundary, we observe correlations between the local curvature of the interface and the measured value of the tension. Importantly, our analysis reveals that curvature drives sustained local tangential motion of particles within a surface layer in both the gas and the dense regions. The combined tangential current in the gas and local "self-shearing" of the surface of the dense phase suggest a stiffening interface that redirects particles along itself to heal local fluctuations. These currents restore the otherwise wildly fluctuating interface through an out-of-equilibrium Marangoni effect. We discuss the implications of our observations on phenomenological models of interfacial dynamics.
Collapse
Affiliation(s)
- Adam Patch
- Department of Physics and Soft and Living Matter Program, Syracuse University, Physics Building, Syracuse, New York 13244, USA.
| | | | | | | |
Collapse
|
29
|
Wang Z, Chen YF, Chen HY, Sheng YJ, Tsao HK. Mechanical pressure, surface excess, and polar order of a dilute rod-like nanoswimmer suspension: role of swimmer-wall interactions. SOFT MATTER 2018; 14:2906-2914. [PMID: 29589848 DOI: 10.1039/c7sm02372c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mechanical pressure, surface excess, and polar order of a dilute rod-like nanoswimmer suspension confined by two parallel plates are explored by dissipative particle dynamics. The accumulation and preferred orientation of swimmers near the walls are distinctly shown through the density and polar order distributions for various active force, Fa, values and rod lengths. As Fa is increased, it is interesting to observe that there exists a maximum of the polar order, revealing that the dominant mechanism of the swimmer behavior can be altered by the coupling between the active force and the rod-wall interaction. As a result, the influences of the active force on the swim pressure Π(w)a contributed by the swimmers directly and the surface excess Γ* can be classified into two scaling regimes, natural rotation (weak propulsion) and forced rotation (strong propulsion). Π(w)a and Γ* are proportional to Fa2 in the former regime but become proportional to Fa in the latter regime. For all rod-wall repulsions, the swim pressure of active rods in confined systems Π(w)a always differs from that in unbounded systems Π(b)a which is simply proportional to Fa2 associated with the active diffusivity. That is, unlike thermal equilibrium systems, Π(w)a is not a state function because of the presence of the wall-torque.
Collapse
Affiliation(s)
- Zhengjia Wang
- Condensed Matter Science and Technology Institute, School of Science, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Gutiérrez-Ramos S, Hoyos M, Ruiz-Suárez JC. Induced clustering of Escherichia coli by acoustic fields. Sci Rep 2018; 8:4668. [PMID: 29549342 PMCID: PMC5856742 DOI: 10.1038/s41598-018-22960-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/26/2018] [Indexed: 11/21/2022] Open
Abstract
Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.
Collapse
Affiliation(s)
- Salomé Gutiérrez-Ramos
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH UMR 7636) CNRS, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France.,Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, PIIT Autopista al Aeropuerto Km. 9.5, Apodaca, Nuevo León, 66600, Mexico
| | - Mauricio Hoyos
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH UMR 7636) CNRS, ESPCI Paris, PSL Research University, Sorbonne Université, Université Paris Diderot, 10 rue Vauquelin, 75005 Paris, France
| | - J C Ruiz-Suárez
- Centro de Investigación y de Estudios Avanzados, Unidad Monterrey, PIIT Autopista al Aeropuerto Km. 9.5, Apodaca, Nuevo León, 66600, Mexico.
| |
Collapse
|
31
|
Noetel J, Sokolov IM, Schimansky-Geier L. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise. Phys Rev E 2018; 96:042610. [PMID: 29347544 DOI: 10.1103/physreve.96.042610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 01/24/2023]
Abstract
We consider a microswimmer that moves in two dimensions at a constant speed and changes the direction of its motion due to a torque consisting of a constant and a fluctuating component. The latter will be modeled by a symmetric Lévy-stable (α-stable) noise. The purpose is to develop a kinetic approach to eliminate the angular component of the dynamics to find a coarse-grained description in the coordinate space. By defining the joint probability density function of the position and of the orientation of the particle through the Fokker-Planck equation, we derive transport equations for the position-dependent marginal density, the particle's mean velocity, and the velocity's variance. At time scales larger than the relaxation time of the torque τ_{ϕ}, the two higher moments follow the marginal density and can be adiabatically eliminated. As a result, a closed equation for the marginal density follows. This equation, which gives a coarse-grained description of the microswimmer's positions at time scales t≫τ_{ϕ}, is a diffusion equation with a constant diffusion coefficient depending on the properties of the noise. Hence, the long-time dynamics of a microswimmer can be described as a normal, diffusive, Brownian motion with Gaussian increments.
Collapse
Affiliation(s)
- Joerg Noetel
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Igor M Sokolov
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
| | - Lutz Schimansky-Geier
- Institute of Physics, Humboldt University at Berlin, Newtonstrasse 15, D-12489 Berlin, Germany.,Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
32
|
Cugliandolo LF, Digregorio P, Gonnella G, Suma A. Phase Coexistence in Two-Dimensional Passive and Active Dumbbell Systems. PHYSICAL REVIEW LETTERS 2017; 119:268002. [PMID: 29328721 DOI: 10.1103/physrevlett.119.268002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 05/15/2023]
Abstract
We demonstrate that there is a macroscopic coexistence between regions with hexatic order and regions in the liquid or gas phase over a finite interval of packing fractions in active dumbbell systems with repulsive power-law interactions in two dimensions. In the passive limit, this interval remains finite, similar to what has been found in two-dimensional systems of hard and soft disks. We did not find discontinuous behavior upon increasing activity from the passive limit.
Collapse
Affiliation(s)
- Leticia F Cugliandolo
- Sorbonne Universités, Université Pierre et Marie Curie-Paris VI, Laboratoire de Physique Théorique et Hautes Énergies, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Kavli Institute for Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Pasquale Digregorio
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Antonio Suma
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
33
|
Levis D, Codina J, Pagonabarraga I. Active Brownian equation of state: metastability and phase coexistence. SOFT MATTER 2017; 13:8113-8119. [PMID: 29105717 DOI: 10.1039/c7sm01504f] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region. Our results show that the equations of state of ABPs account for their phase behaviour, providing a firm basis to describe MIPS as an equilibrium-like phase transition.
Collapse
Affiliation(s)
- Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.
| | | | | |
Collapse
|
34
|
Marini Bettolo Marconi U, Maggi C, Paoluzzi M. Pressure in an exactly solvable model of active fluid. J Chem Phys 2017; 147:024903. [DOI: 10.1063/1.4991731] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Claudio Maggi
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory, Piazzale A. Moro 2, I-00185 Roma, Italy
| | - Matteo Paoluzzi
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|