1
|
Saintillan D. Dispersion of run-and-tumble microswimmers through disordered media. Phys Rev E 2023; 108:064608. [PMID: 38243487 DOI: 10.1103/physreve.108.064608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Understanding the transport properties of microorganisms and self-propelled particles in porous media has important implications for human health as well as microbial ecology. In free space, most microswimmers perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium, collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions. The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance function f(ϕ,Pe) of the obstacle area fraction ϕ and Péclet number Pe, or ratio of the swimmer run length to the obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media (Peϕ≪1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model is also easily generalized to describe dispersion in three dimensions.
Collapse
Affiliation(s)
- David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
2
|
Kalinay P, Slanina F. Dichotomic ratchet in a two-dimensional corrugated channel. Phys Rev E 2021; 104:064115. [PMID: 35030943 DOI: 10.1103/physreve.104.064115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
We consider a particle diffusing in a two-dimensional (2D) channel of varying width h(x). It is driven by a force of constant magnitude f but random orientation there or back along the channel. We derive the effective generalized Fick-Jacobs equation for this system, which describes the dynamics of such a particle in the longitudinal coordinate x. Aside from the effective diffusion coefficient D(x), our mapping also generates an additional effective potential -γ(x) added to the entropic potential -log[h(x)]. It acquires an increasing or decreasing component in asymmetric periodic channels, and thus it explains appearance of the ratchet current. We study this effect on a trial example and compare the results of our true 2D theory with a commonly used effective one-dimensional description; the data are verified by the numerical solution of the full 2D problem.
Collapse
Affiliation(s)
- Pavol Kalinay
- Institute of Physics, Slovak Academy of Sciences, Dúbravska cesta 9, 84511, Bratislava, Slovakia
| | - František Slanina
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, CZ-18221, Prague, Czech Republic
| |
Collapse
|
3
|
Zhang B, Tan F, Zhao N. Polymer looping kinetics in active heterogeneous environments. SOFT MATTER 2021; 17:10334-10349. [PMID: 34734953 DOI: 10.1039/d1sm01259b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A typical biological environment is usually featured by crowding and heterogeneity, leading to complex reaction kinetics of the immersed macromolecules. In the present work, we adopt Langevin dynamics simulations to systematically investigate polymer looping kinetics in active heterogeneous media crowded with a mixture of mobile active particles and immobile obstacles. For comparison, a parallel study is also performed in the passive heterogeneous media. We explicitly analyze the change of looping time and looping probability with the variation of obstacle ratio, volume fraction and crowder size. We reveal the novel phenomena of inhibition-facilitation transition of the looping rate induced by heterogeneity, crowdedness and activity. In addition, our results demonstrate a very non-trivial crowder size effect on the looping kinetics. The underlying mechanism is rationalized by the interplay of polymer diffusion, conformational change and looping free-energy barrier. The competing effect arising from active particles and obstacles on structural and dynamical properties of the polymer yields a consistent scenario for our observations. Lastly, the non-exponential kinetics of the looping process is also analyzed. We find that both activity and crowding can strengthen the heterogeneity degree of the looping kinetics.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Fei Tan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Perez LJ, Bhattacharjee T, Datta SS, Parashar R, Sund NL. Impact of confined geometries on hopping and trapping of motile bacteria in porous media. Phys Rev E 2021; 103:012611. [PMID: 33601519 DOI: 10.1103/physreve.103.012611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/04/2021] [Indexed: 11/07/2022]
Abstract
We use a random walk particle-tracking (RWPT) approach to elucidate the impact of porous media confinement and cell-cell interactions on bacterial transport. The model employs stochastic alternating motility states consisting of hopping movement and trapping reorientation. The stochastic motility patterns are defined based on direct visualization of individual trajectory data. We validate our model against experimental data, at single-cell resolution, of bacterial E. coli motion in three-dimensional confined porous media. Results show that the model is able to efficiently simulate the spreading dynamics of motile bacteria as it captures the impact of cell-cell interaction and pore confinement, which marks the transition to a late-time subdiffusive regime. Furthermore, the model is able to qualitatively reproduce the observed directional persistence. Our RWPT model constitutes a meshless simple method which is easy to implement and does not invoke ad hoc assumptions but represents the basis for a multiscale approach to the study of bacterial dispersal in porous systems.
Collapse
Affiliation(s)
- Lazaro J Perez
- Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada 89512, USA
| | - Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Rishi Parashar
- Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada 89512, USA
| | - Nicole L Sund
- Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada 89512, USA
| |
Collapse
|
5
|
Dos Santos MAF, Dornelas V, Colombo EH, Anteneodo C. Critical patch size reduction by heterogeneous diffusion. Phys Rev E 2020; 102:042139. [PMID: 33212705 DOI: 10.1103/physreve.102.042139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Population survival depends on a large set of factors and on how they are distributed in space. Due to landscape heterogeneity, species can occupy particular regions that provide the ideal scenario for development, working as a refuge from harmful environmental conditions. Survival occurs if population growth overcomes the losses caused by adventurous individuals that cross the patch edge. In this work, we consider a single species dynamics in a patch with a space-dependent diffusion coefficient. We show analytically, within the Stratonovich framework, that heterogeneous diffusion reduces the minimal patch size for population survival when contrasted with the homogeneous case with the same average diffusivity. Furthermore, this result is robust regardless of the particular choice of the diffusion coefficient profile. We also discuss how this picture changes beyond the Stratonovich framework. Particularly, the Itô case, which is nonanticipative, can promote the opposite effect, while Hänggi-Klimontovich interpretation reinforces the reduction effect.
Collapse
Affiliation(s)
- M A F Dos Santos
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900, Rio de Janeiro, RJ, Brazil
| | - V Dornelas
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900, Rio de Janeiro, RJ, Brazil
- ICTP-SAIFR & IFT-UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP, Brazil
| | - E H Colombo
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - C Anteneodo
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente 225, 22451-900, Rio de Janeiro, RJ, Brazil
- Institute of Science and Technology for Complex Systems (INCT-SC), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Biswas A, Cruz JM, Parmananda P, Das D. First passage of an active particle in the presence of passive crowders. SOFT MATTER 2020; 16:6138-6144. [PMID: 32555827 DOI: 10.1039/d0sm00350f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We experimentally study the stochastic transport of a self-propelled camphor boat, driven by Marangoni forces, through a crowd of passive paper discs floating on water. We analyze the statistics of the first passage times of the active particle to travel from the center of a circular container to its boundary. While the mean times rise monotonically as a function of the covered area fraction φ of the passive paper discs, their fluctuations show a non-monotonic behavior - being higher at low and high value of φ compared to intermediate values. The reason is traced to an interplay of two distinct sources of fluctuations - one intrinsic to the dynamics, while the other due to the crowding.
Collapse
Affiliation(s)
- Animesh Biswas
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - J M Cruz
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - P Parmananda
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Powai-400076, Mumbai, India.
| |
Collapse
|
7
|
Colin R, Drescher K, Sourjik V. Chemotactic behaviour of Escherichia coli at high cell density. Nat Commun 2019; 10:5329. [PMID: 31767843 PMCID: PMC6877613 DOI: 10.1038/s41467-019-13179-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
At high cell density, swimming bacteria exhibit collective motility patterns, self-organized through physical interactions of a however still debated nature. Although high-density behaviours are frequent in natural situations, it remained unknown how collective motion affects chemotaxis, the main physiological function of motility, which enables bacteria to follow environmental gradients in their habitats. Here, we systematically investigate this question in the model organism Escherichia coli, varying cell density, cell length, and suspension confinement. The characteristics of the collective motion indicate that hydrodynamic interactions between swimmers made the primary contribution to its emergence. We observe that the chemotactic drift is moderately enhanced at intermediate cell densities, peaks, and is then strongly suppressed at higher densities. Numerical simulations reveal that this suppression occurs because the collective motion disturbs the choreography necessary for chemotactic sensing. We suggest that this physical hindrance imposes a fundamental constraint on high-density behaviours of motile bacteria, including swarming and the formation of multicellular aggregates and biofilms.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, Germany.
- Loewe Center for Synthetic Microbiology, Karl-von-Frisch-Strasse 16, Marburg, Germany.
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, Germany
- Loewe Center for Synthetic Microbiology, Karl-von-Frisch-Strasse 16, Marburg, Germany
- Fachbereich Physik, Philipps-Universität Marburg, Karl-von-Frisch-Str. 16, 35043, Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, Marburg, Germany.
- Loewe Center for Synthetic Microbiology, Karl-von-Frisch-Strasse 16, Marburg, Germany.
| |
Collapse
|
8
|
Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat Commun 2019; 10:4110. [PMID: 31511558 PMCID: PMC6739365 DOI: 10.1038/s41467-019-12010-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vasco C Braz
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
9
|
Dornelas V, Colombo EH, Anteneodo C. Single-species fragmentation: The role of density-dependent feedback. Phys Rev E 2019; 99:062225. [PMID: 31330753 DOI: 10.1103/physreve.99.062225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 11/07/2022]
Abstract
Internal feedback is commonly present in biological populations and can play a crucial role in the emergence of collective behavior. To describe the temporal evolution of the distribution of a single-species population, we consider a generalization of the Fisher-KPP equation. This equation includes the elementary processes of random motion, reproduction, and, importantly, nonlocal interspecific competition, which introduces a spatial scale of interaction. In addition, we take into account feedback mechanisms in diffusion and growth processes, mimicked by power-law density dependencies. This feedback includes, for instance, anomalous diffusion, reaction to overcrowding or to the rarefaction of the population, as well as Allee-like effects. We show that, depending on the kind of feedback that takes place, the population can self-organize splitting into disconnected subpopulations, in the absence of external constraints. Through extensive numerical simulations, we investigate the temporal evolution and the characteristics of the stationary population distribution in the one-dimensional case. We discuss the crucial role that density-dependence has on pattern formation, particularly on fragmentation, which can bring important consequences to processes such as epidemic spread and speciation.
Collapse
Affiliation(s)
- V Dornelas
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, 22451-900, Rio de Janeiro, Brazil
| | - E H Colombo
- IFISC (CSIC-UIB), Campus Universitat Illes Balears, 07122, Palma de Mallorca, Spain
| | - C Anteneodo
- Department of Physics, PUC-Rio, Rua Marquês de São Vicente, 225, 22451-900, Rio de Janeiro, Brazil.,Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Mokhtari Z, Zippelius A. Dynamics of Active Filaments in Porous Media. PHYSICAL REVIEW LETTERS 2019; 123:028001. [PMID: 31386530 DOI: 10.1103/physrevlett.123.028001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 06/10/2023]
Abstract
The motion of active polymers in a two-dimensional porous medium is shown to depend critically on flexibility, activity, and degree of polymerization. For a given Péclet number, we observe a transition from localization to diffusion as the stiffness of the chains is increased. Whereas stiff chains move almost unhindered through the porous medium, flexible ones spiral and get stuck. Their motion can be accounted for by the model of a continuous time random walk with a renewal process corresponding to unspiraling. The waiting time distribution is shown to develop heavy tails for decreasing stiffness, resulting in subdiffusive and ultimately caged behavior.
Collapse
Affiliation(s)
- Zahra Mokhtari
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Annette Zippelius
- Institute for Theoretical Physics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Brun-Cosme-Bruny M, Bertin E, Coasne B, Peyla P, Rafaï S. Effective diffusivity of microswimmers in a crowded environment. J Chem Phys 2019; 150:104901. [DOI: 10.1063/1.5081507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
| | - Eric Bertin
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Benoît Coasne
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Philippe Peyla
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| | - Salima Rafaï
- University of Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
| |
Collapse
|
12
|
Libberton B, Binz M, van Zalinge H, Nicolau DV. Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries. Phys Rev E 2019; 99:012408. [PMID: 30780339 DOI: 10.1103/physreve.99.012408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 12/23/2022]
Abstract
Bacterial movement in confined spaces is routinely encountered either in a natural environment or in artificial structures. Consequently, the ability to understand and predict the behavior of motile bacterial cells in confined geometries is essential to many applications, spanning from the more classical, such as the management complex microbial networks involved in diseases, biomanufacturing, mining, and environment, to the more recent, such as single cell DNA sequencing and computation with biological agents. Fortunately, the development of this understanding can be helped by the decades-long advances in semiconductor microfabrication, which allow the design and the construction of complex confining structures used as test beds for the study of bacterial motility. To this end, here we use microfabricated channels with varying sizes to study the interaction of Escherichia coli with solid confining spaces. It is shown that an optimal channel size exists for which the hydrostatic potential allows the most efficient movement of the cells. The improved understanding of how bacteria move will result in the ability to design better microfluidic structures based on their interaction with bacterial movement.
Collapse
Affiliation(s)
- Ben Libberton
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom
| | - Marie Binz
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom
| | - Harm van Zalinge
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom
| | - Dan V Nicolau
- Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ Liverpool, United Kingdom
| |
Collapse
|
13
|
Chepizhko O, Franosch T. Ideal circle microswimmers in crowded media. SOFT MATTER 2019; 15:452-461. [PMID: 30574653 PMCID: PMC6336149 DOI: 10.1039/c8sm02030b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/08/2018] [Indexed: 05/26/2023]
Abstract
Microswimmers are exposed in nature to crowded environments and their transport properties depend in a subtle way on the interaction with obstacles. Here, we investigate a model for a single ideal circle swimmer exploring a two-dimensional disordered array of impenetrable obstacles. The microswimmer moves on circular orbits in the freely accessible space and follows the surface of an obstacle for a certain time upon collision. Depending on the obstacle density and the radius of the circular orbits, the microswimmer displays either long-range transport or is localized in a finite region. We show that there are transitions from two localized states to a diffusive state each driven by an underlying static percolation transition. We determine the non-equilibrium state diagram and calculate the mean-square displacements and diffusivities by computer simulations. Close to the transition lines transport becomes subdiffusive which is rationalized as a dynamic critical phenomenon.
Collapse
Affiliation(s)
- Oleksandr Chepizhko
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Conrad JC, Poling-Skutvik R. Confined Flow: Consequences and Implications for Bacteria and Biofilms. Annu Rev Chem Biomol Eng 2018; 9:175-200. [DOI: 10.1146/annurev-chembioeng-060817-084006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria overwhelmingly live in geometrically confined habitats that feature small pores or cavities, narrow channels, or nearby interfaces. Fluid flows through these confined habitats are ubiquitous in both natural and artificial environments colonized by bacteria. Moreover, these flows occur on time and length scales comparable to those associated with motility of bacteria and with the formation and growth of biofilms, which are surface-associated communities that house the vast majority of bacteria to protect them from host and environmental stresses. This review describes the emerging understanding of how flow near surfaces and within channels and pores alters physical processes that control how bacteria disperse, attach to surfaces, and form biofilms. This understanding will inform the development and deployment of technologies for drug delivery, water treatment, and antifouling coatings and guide the structuring of bacterial consortia for production of chemicals and pharmaceuticals.
Collapse
Affiliation(s)
- Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
15
|
Nonlinear population dynamics in a bounded habitat. J Theor Biol 2018; 446:11-18. [PMID: 29499251 DOI: 10.1016/j.jtbi.2018.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 11/21/2022]
Abstract
A key issue in ecology is whether a population will survive long term or go extinct. This is the question we address in this paper for a population in a bounded habitat. We will restrict our study to the case of a single species in a one-dimensional habitat of length L. The evolution of the population density distribution ρ(x, t), where x is the position and t the time, is governed by elementary processes such as growth and dispersal, which, in standard models, are typically described by a constant per capita growth rate and normal diffusion, respectively. However, feedbacks in the regulatory mechanisms and external factors can produce density-dependent rates. Therefore, we consider a generalization of the standard evolution equation, which, after dimensional scaling and assuming large carrying capacity, becomes ∂tρ=∂x(ρν-1∂xρ)+ρμ, where μ,ν∈R. This equation is complemented by absorbing boundaries, mimicking adverse conditions outside the habitat. For this nonlinear problem, we obtain, analytically, exact expressions of the critical habitat size Lc for population survival, as a function of the exponents and initial conditions. We find that depending on the values of the exponents (ν, μ), population survival can occur for either L ≥ Lc, L ≤ Lc or for any L. This generalizes the usual statement that Lc represents the minimum habitat size. In addition, nonlinearities introduce dependence on the initial conditions, affecting Lc.
Collapse
|