1
|
Reyes‐Olalde J, Tapia‐Rodríguez M, Pérez‐Koldenkova V, Contreras‐Jiménez G, Hernández‐Herrera P, Corkidi G, Arciniega‐González A, De La Paz‐Sánchez M, García‐Ponce B, Garay‐Arroyo A, Álvarez‐Buylla E. A Method to Visualize Cell Proliferation of Arabidopsis thaliana: A Case Study of the Root Apical Meristem. PLANT DIRECT 2025; 9:e70060. [PMID: 40297840 PMCID: PMC12037192 DOI: 10.1002/pld3.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 04/30/2025]
Abstract
Plant growth and development rely on a delicate balance between cell proliferation and cell differentiation. The root apical meristem (RAM) of Arabidopsis thaliana is an excellent model to study the cell cycle due to the coordinated relationship between nucleus shape and cell size at each stage, allowing for precise estimation of the cell cycle duration. In this study, we present a method for high-resolution visualization of RAM cells. This is the first protocol that allows for simultaneous high-resolution imaging of cellular and nuclear stains, being compatible with DNA replication markers such as EdU, including fluorescent proteins (H2B::YFP), SYTOX DNA stains, and the cell wall stain SR2200. This protocol includes a clarification procedure that enables the acquisition of high-resolution 3D images, suitable for detailed subsequent analysis.
Collapse
Affiliation(s)
- J. Irepan Reyes‐Olalde
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
- Laboratorio de BotanicaUniversidad Estatal del Valle de TolucaOcoyoacacMexico
| | - Miguel Tapia‐Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Vadim Pérez‐Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI‐IMSSInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Gastón Contreras‐Jiménez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
- Laboratorio de Microscopía y Microdisección Láser, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Paul Hernández‐Herrera
- Departamento de Ingenería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por ComputadoraInstituto de Biotecnología, UNAMCuernavacaMéxico
- Facultad de CienciasUniversidad Autónoma de san Luis PotosíSan Luis PotosíMéxico
| | - Gabriel Corkidi
- Departamento de Ingenería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por ComputadoraInstituto de Biotecnología, UNAMCuernavacaMéxico
| | - Arturo J. Arciniega‐González
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Maria De La Paz‐Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Berenice García‐Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Adriana Garay‐Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Elena R. Álvarez‐Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| |
Collapse
|
2
|
Bobrovskikh A, Doroshkov A, Mazzoleni S, Cartenì F, Giannino F, Zubairova U. A Sight on Single-Cell Transcriptomics in Plants Through the Prism of Cell-Based Computational Modeling Approaches: Benefits and Challenges for Data Analysis. Front Genet 2021; 12:652974. [PMID: 34093652 PMCID: PMC8176226 DOI: 10.3389/fgene.2021.652974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Single-cell technology is a relatively new and promising way to obtain high-resolution transcriptomic data mostly used for animals during the last decade. However, several scientific groups developed and applied the protocols for some plant tissues. Together with deeply-developed cell-resolution imaging techniques, this achievement opens up new horizons for studying the complex mechanisms of plant tissue architecture formation. While the opportunities for integrating data from transcriptomic to morphogenetic levels in a unified system still present several difficulties, plant tissues have some additional peculiarities. One of the plants' features is that cell-to-cell communication topology through plasmodesmata forms during tissue growth and morphogenesis and results in mutual regulation of expression between neighboring cells affecting internal processes and cell domain development. Undoubtedly, we must take this fact into account when analyzing single-cell transcriptomic data. Cell-based computational modeling approaches successfully used in plant morphogenesis studies promise to be an efficient way to summarize such novel multiscale data. The inverse problem's solutions for these models computed on the real tissue templates can shed light on the restoration of individual cells' spatial localization in the initial plant organ-one of the most ambiguous and challenging stages in single-cell transcriptomic data analysis. This review summarizes new opportunities for advanced plant morphogenesis models, which become possible thanks to single-cell transcriptome data. Besides, we show the prospects of microscopy and cell-resolution imaging techniques to solve several spatial problems in single-cell transcriptomic data analysis and enhance the hybrid modeling framework opportunities.
Collapse
Affiliation(s)
- Aleksandr Bobrovskikh
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alexey Doroshkov
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Fabrizio Cartenì
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Ulyana Zubairova
- Laboratory of Plant Growth Biomechanics, Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Torres-Martínez HH, Rodríguez-Alonso G, Shishkova S, Dubrovsky JG. Lateral Root Primordium Morphogenesis in Angiosperms. FRONTIERS IN PLANT SCIENCE 2019; 10:206. [PMID: 30941149 PMCID: PMC6433717 DOI: 10.3389/fpls.2019.00206] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/07/2019] [Indexed: 05/14/2023]
Abstract
Morphogenetic processes are the basis of new organ formation. Lateral roots (LRs) are the building blocks of the root system. After LR initiation and before LR emergence, a new lateral root primordium (LRP) forms. During this period, the organization and functionality of the prospective LR is defined. Thus, proper LRP morphogenesis is a decisive process during root system formation. Most current studies on LRP morphogenesis have been performed in the model species Arabidopsis thaliana; little is known about this process in other angiosperms. To understand LRP morphogenesis from a wider perspective, we review both contemporary and earlier studies. The latter are largely forgotten, and we attempted to integrate them into present-day research. In particular, we consider in detail the participation of parent root tissue in LRP formation, cell proliferation and timing during LRP morphogenesis, and the hormonal and genetic regulation of LRP morphogenesis. Cell type identity acquisition and new stem cell establishement during LRP morphogenesis are also considered. Within each of these facets, unanswered or poorly understood questions are identified to help define future research in the field. Finally, we discuss emerging research avenues and new technologies that could be used to answer the remaining questions in studies of LRP morphogenesis.
Collapse
Affiliation(s)
| | | | | | - Joseph G. Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, Chiatante D, Ljung K, Scippa GS. Tissue-specific hormone profiles from woody poplar roots under bending stress. PHYSIOLOGIA PLANTARUM 2019; 165:101-113. [PMID: 30187489 DOI: 10.1111/ppl.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Mattia Terzaghi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
5
|
Korver RA, Koevoets IT, Testerink C. Out of Shape During Stress: A Key Role for Auxin. TRENDS IN PLANT SCIENCE 2018; 23:783-793. [PMID: 29914722 PMCID: PMC6121082 DOI: 10.1016/j.tplants.2018.05.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/19/2023]
Abstract
In most abiotic stress conditions, including salinity and water deficit, the developmental plasticity of the plant root is regulated by the phytohormone auxin. Changes in auxin concentration are often attributed to changes in shoot-derived long-distance auxin flow. However, recent evidence suggests important contributions by short-distance auxin transport from local storage and local auxin biosynthesis, conjugation, and oxidation during abiotic stress. We discuss here current knowledge on long-distance auxin transport in stress responses, and subsequently debate how short-distance auxin transport and indole-3-acetic acid (IAA) metabolism play a role in influencing eventual auxin accumulation and signaling patterns. Our analysis stresses the importance of considering all these components together and highlights the use of mathematical modeling for predictions of plant physiological responses.
Collapse
Affiliation(s)
- Ruud A Korver
- University of Amsterdam, Plant Cell Biology, Swammerdam Institute for Life Sciences, 1090GE Amsterdam, The Netherlands; Laboratory of Plant Physiology, 6708PB Wageningen University and Research, Wageningen, The Netherlands
| | - Iko T Koevoets
- Laboratory of Plant Physiology, 6708PB Wageningen University and Research, Wageningen, The Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, 6708PB Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Hernández-Hernández V, Barrio RA, Benítez M, Nakayama N, Romero-Arias JR, Villarreal C. A physico-genetic module for the polarisation of auxin efflux carriers PIN-FORMED (PIN). Phys Biol 2018; 15:036002. [PMID: 29393068 DOI: 10.1088/1478-3975/aaac99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.
Collapse
Affiliation(s)
- Valeria Hernández-Hernández
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico. Current Address: Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon, France. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|