1
|
Shaibe N, Erb JM, Anlage SM. Superuniversal Statistics of Complex Time Delays in Non-Hermitian Scattering Systems. PHYSICAL REVIEW LETTERS 2025; 134:147203. [PMID: 40279582 DOI: 10.1103/physrevlett.134.147203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/03/2025] [Indexed: 04/27/2025]
Abstract
The Wigner-Smith time delay of flux conserving systems is a real quantity that measures how long an excitation resides in an interaction region. The complex generalization of time delay to non-Hermitian systems is still under development, in particular, its statistical properties in the short-wavelength limit of complex chaotic scattering systems has not been investigated. From the experimentally measured multiport scattering (S) matrices of one-dimensional graphs, a two-dimensional billiard, and a three-dimensional cavity, we calculate the complex Wigner-Smith (τ_{WS}), as well as each individual reflection (τ_{xx}) and transmission (τ_{xy}) time delay. The complex reflection time-delay differences (τ_{δR}) between each port are calculated, and the transmission time-delay differences (τ_{δT}) are introduced for systems exhibiting nonreciprocal scattering. Large time delays are associated with scattering singularities such as coherent perfect absorption, reflectionless scattering, slow light, and unidirectional invisibility. We demonstrate that the large-delay tails of the distributions of the real and imaginary parts of each time-delay quantity are superuniversal, independent of experimental parameters: wave propagation dimension D, number of scattering channels M, Dyson symmetry class β, and uniform attenuation η. The tails determine the abundance of the singularities in generic scattering systems, and the superuniversality is in direct contrast with the well-established time-delay statistics of unitary scattering systems, where the tail of the τ_{WS} distribution depends explicitly on the values of M and β. We relate the distribution statistics to the topological properties of the corresponding singularities. Although the results presented here are based on classical microwave experiments, they are applicable to any non-Hermitian wave-chaotic scattering system in the short-wavelength limit, such as optical or acoustic resonators.
Collapse
Affiliation(s)
- Nadav Shaibe
- University of Maryland, College Park, Maryland Quantum Materials Center, Department of Physics, Maryland 20742-4111, USA
| | - Jared M Erb
- University of Maryland, College Park, Maryland Quantum Materials Center, Department of Physics, Maryland 20742-4111, USA
| | - Steven M Anlage
- University of Maryland, College Park, Maryland Quantum Materials Center, Department of Physics, Maryland 20742-4111, USA
| |
Collapse
|
2
|
Farooq O, Akhshani A, Ławniczak M, Białous M, Sirko L. Coupled unidirectional chaotic microwave graphs. Phys Rev E 2024; 110:014206. [PMID: 39160997 DOI: 10.1103/physreve.110.014206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
We experimentally investigate the undirected open microwave network Γ with internal absorption composed of two coupled directed halves, unidirectional networks Γ_{+} and Γ_{-}, corresponding to two possible directions of motion on their edges. The two-port scattering matrix of the network Γ is measured and the spectral statistics and the elastic enhancement factor of the network are evaluated. The comparison of the number of experimental resonances with the theoretical one predicted by the Weyl's law shows that within the experimental resolution the resonances are doubly degenerate. This conclusion was also corroborated by the numerical calculations. Though the network is characterized by the time-reversal symmetry, the missing level spectral statistics and the elastic enhancement factor are rather close to the Gaussian unitary ensemble predictions in random matrix theory. We used numerical calculations for the open nondissipative quantum graph possessing the same structure as the microwave network Γ to investigate the doublet structures in the spectrum which otherwise would not be experimentally resolved. We show that the doublet size distribution is close to the Poisson distribution.
Collapse
|
3
|
Dietz B, Klaus T, Masi M, Miski-Oglu M, Richter A, Skipa T, Wunderle M. Closed and open superconducting microwave waveguide networks as a model for quantum graphs. Phys Rev E 2024; 109:034201. [PMID: 38632749 DOI: 10.1103/physreve.109.034201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
We report on high-precision measurements that were performed with superconducting waveguide networks with the geometry of a tetrahedral and a honeycomb graph. They consist of junctions of valency three that connect straight rectangular waveguides of equal width but incommensurable lengths. The experiments were performed in the frequency range of a single transversal mode, where the associated Helmholtz equation is effectively one-dimensional and waveguide networks may serve as models of quantum graphs with the joints and waveguides corresponding to the vertices and bonds. The tetrahedral network comprises T junctions, while the honeycomb network exclusively consists of Y junctions, that join waveguides with relative angles 90^{∘} and 120^{∘}, respectively. We demonstrate that the vertex scattering matrix, which describes the propagation of the modes through the junctions, strongly depends on frequency and is nonsymmetric at a T junction and thus differs from that of a quantum graph with Neumann boundary conditions at the vertices. On the other hand, at a Y junction, similarity can be achieved in a certain frequency range. We investigate the spectral properties of closed waveguide networks and fluctuation properties of the scattering matrix of open ones and find good agreement with random matrix theory predictions for the honeycomb waveguide graph.
Collapse
Affiliation(s)
- Barbara Dietz
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tobias Klaus
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Marco Masi
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Maksym Miski-Oglu
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - Achim Richter
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Tatjana Skipa
- Darmstadt University of Applied Sciences, D-64295 Darmstadt, Germany
| | - Marcus Wunderle
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| |
Collapse
|
4
|
Wang CZ, Kononchuk R, Kuhl U, Kottos T. Loss-Induced Violation of the Fundamental Transmittance-Asymmetry Bound in Nonlinear Complex Wave Systems. PHYSICAL REVIEW LETTERS 2023; 131:123801. [PMID: 37802952 DOI: 10.1103/physrevlett.131.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a fundamental bound dictating that the maximum transmittance asymmetry is inversely proportional to the asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom, we show that the implementation of losses can lead to an increase of the AIR without deteriorating the AT. We develop a general theory that provides a new upper bound for AT in nonlinear complex systems and highlights the importance of their structural complexity and of losses. Our predictions are confirmed numerically and experimentally using a microwave complex network of coaxial cables.
Collapse
Affiliation(s)
- Cheng-Zhen Wang
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Rodion Kononchuk
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Ulrich Kuhl
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), 06200, Nice, France
| | - Tsampikos Kottos
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
5
|
Akhshani A, Białous M, Sirko L. Quantum graphs and microwave networks as narrow-band filters for quantum and microwave devices. Phys Rev E 2023; 108:034219. [PMID: 37849123 DOI: 10.1103/physreve.108.034219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
We investigate properties of the transmission amplitude of quantum graphs and microwave networks composed of regular polygons such as triangles and squares. We show that for the graphs composed of regular polygons, with the edges of the length l, the transmission amplitude displays a band of transmission suppression with some narrow peaks of full transmission. The peaks are distributed symmetrically with respect to the symmetry axis kl=π, where k is the wave vector. For microwave networks the transmission peak amplitudes are reduced and their symmetry is broken due to the influence of internal absorption. We demonstrate that for the graphs composed of the same polygons but separated by the edges of length l^{'}
Collapse
Affiliation(s)
- Afshin Akhshani
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
6
|
Riser R, Tian P, Kanzieper E. Power spectra and autocovariances of level spacings beyond the Dyson conjecture. Phys Rev E 2023; 107:L032201. [PMID: 37073062 DOI: 10.1103/physreve.107.l032201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 04/20/2023]
Abstract
Introduced in the early days of random matrix theory, the autocovariances δI_{k}^{j}=cov(s_{j},s_{j+k}) of level spacings {s_{j}} accommodate detailed information on the correlations between individual eigenlevels. It was first conjectured by Dyson that the autocovariances of distant eigenlevels in the unfolded spectra of infinite-dimensional random matrices should exhibit a power-law decay δI_{k}^{j}≈-1/βπ^{2}k^{2}, where β is the symmetry index. In this Letter, we establish an exact link between the autocovariances of level spacings and their power spectrum, and show that, for β=2, the latter admits a representation in terms of a fifth Painlevé transcendent. This result is further exploited to determine an asymptotic expansion for autocovariances that reproduces the Dyson formula as well as provides the subleading corrections to it. High-precision numerical simulations lend independent support to our results.
Collapse
Affiliation(s)
- Roman Riser
- Department of Mathematics, Holon Institute of Technology, Holon 5810201, Israel
- Department of Physics and Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 3498838, Israel
| | - Peng Tian
- Department of Mathematics, Holon Institute of Technology, Holon 5810201, Israel
| | - Eugene Kanzieper
- Department of Mathematics, Holon Institute of Technology, Holon 5810201, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
7
|
Ławniczak M, Akhshani A, Farooq O, Białous M, Bauch S, Dietz B, Sirko L. Distributions of the Wigner reaction matrix for microwave networks with symplectic symmetry in the presence of absorption. Phys Rev E 2023; 107:024203. [PMID: 36932527 DOI: 10.1103/physreve.107.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
We report on experimental studies of the distribution of the reflection coefficients, and the imaginary and real parts of Wigner's reaction (K) matrix employing open microwave networks with symplectic symmetry and varying size of absorption. The results are compared to analytical predictions derived for the single-channel scattering case within the framework of random-matrix theory (RMT). Furthermore, we performed Monte Carlo simulations based on the Heidelberg approach for the scattering (S) and K matrix of open quantum-chaotic systems and the two-point correlation function of the S-matrix elements. The analytical results and the Monte Carlo simulations depend on the size of absorption. To verify them, we performed experiments with microwave networks for various absorption strengths. We show that deviations from RMT predictions observed in the spectral properties of the corresponding closed quantum graph and attributed to the presence of nonuniversal short periodic orbits does not have any visible effects on the distributions of the reflection coefficients and the K and S matrices associated with the corresponding open quantum graph.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Afshin Akhshani
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Omer Farooq
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China.,Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
8
|
Lu J, Hofmann T, Kuhl U, Stöckmann HJ. Implications of Spectral Interlacing for Quantum Graphs. ENTROPY (BASEL, SWITZERLAND) 2023; 25:109. [PMID: 36673250 PMCID: PMC9858025 DOI: 10.3390/e25010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Quantum graphs are ideally suited to studying the spectral statistics of chaotic systems. Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The latter ones correspond to totally disassembled graphs with a spectrum being the superposition of the spectra of the individual bonds. According to the interlacing theorem, Neumann and Dirichlet eigenvalues on average alternate as a function of the wave number, with the consequence that the Neumann spectral statistics deviate from random matrix predictions. There is, e.g., a strict upper bound for the spacing of neighboring Neumann eigenvalues given by the number of bonds (in units of the mean level spacing). Here, we present analytic expressions for level spacing distribution and number variance for ensemble averaged spectra of Dirichlet graphs in dependence of the bond number, and compare them with numerical results. For a number of small Neumann graphs, numerical results for the same quantities are shown, and their deviations from random matrix predictions are discussed.
Collapse
Affiliation(s)
- Junjie Lu
- Institut de Physique de Nice, CNRS, Université Côte d’Azur, 06108 Nice, France
| | - Tobias Hofmann
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ulrich Kuhl
- Institut de Physique de Nice, CNRS, Université Côte d’Azur, 06108 Nice, France
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | |
Collapse
|
9
|
Białous M, Sirko L. Enhancement factor in the regime of semi-Poisson statistics in a singular microwave cavity. Phys Rev E 2022; 106:064208. [PMID: 36671148 DOI: 10.1103/physreve.106.064208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
We investigated properties of a singular billiard, that is, a quantum billiard which contains a pointlike (zero-range) perturbation. A singular billiard was simulated experimentally by a rectangular microwave flat resonator coupled to microwave power via wire antennas which act as singular scatterers. The departure from regularity was quantitatively estimated by the short-range plasma model in which the parameter η takes the values 1 and 2 for the Poisson and semi-Poisson statistics, respectively. We show that in the regime of semi-Poisson statistics the experimental power spectrum and the second nearest-neighbor-spacing distribution P(2,s) are in good agreement with their theoretical predictions. Furthermore, the measurement of the two-port scattering matrix allowed us to evaluate experimentally the enhancement factor F(γ^{tot}) in the regime of the semi-Poisson statistics as a function of the total absorption factor γ^{tot}. The experimental results were compared with the analytical formula for F(γ^{tot}) evaluated in this article. The agreement between the experiment and theory is good.
Collapse
Affiliation(s)
- Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
10
|
Ma S, Antonsen TM, Anlage SM. Eigenfunction and eigenmode-spacing statistics in chaotic photonic crystal graphs. Phys Rev E 2022; 106:054215. [PMID: 36559373 DOI: 10.1103/physreve.106.054215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The statistical properties of wave chaotic systems of varying dimensionalities and realizations have been studied extensively. These systems are commonly characterized by the statistics of the eigenmode spacings and the statistics of the eigenfunctions. Here, we propose photonic crystal (PC) defect waveguide graphs as a physical setting for chaotic graph studies. Photonic crystal waveguides possess a dispersion relation for the propagating modes, which is engineerable. Graphs constructed by joining these waveguides possess junctions and bends with distinct scattering properties. We present numerically determined statistical properties of an ensemble of such PC graphs including both eigenfunction amplitude and eigenmode-spacing studies. Our proposed system is compatible with silicon nanophotonic technology and opens chaotic graph studies to a new community of researchers.
Collapse
Affiliation(s)
- Shukai Ma
- Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Thomas M Antonsen
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742-3285, USA
| | - Steven M Anlage
- Quantum Materials Center, University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742-3285, USA
| |
Collapse
|
11
|
Che J, Zhang X, Zhang W, Dietz B, Chai G. Fluctuation properties of the eigenfrequencies and scattering matrix of closed and open unidirectional graphs with chaotic wave dynamics. Phys Rev E 2022; 106:014211. [PMID: 35974604 DOI: 10.1103/physreve.106.014211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
We present experimental and numerical results for the fluctuation properties in the eigenfrequency spectra and of the scattering matrix of closed and open unidirectional quantum graphs, respectively. Unidirectional quantum graphs, that are composed of bonds connected by reflectionless vertices, were introduced by Akila and Gutkin [Akila and Gutkin, J. Phys. A: Math. Theor. 48, 345101 (2015)1751-811310.1088/1751-8113/48/34/345101]. The nearest-neighbor spacing distribution of their eigenvalues was shown to comply with random-matrix theory predictions for typical chaotic systems with completely violated time-reversal invariance. The occurrence of short periodic orbits confined to a fraction of the system, that lead in conventional quantum graphs to deviations of the long-range spectral correlations from the behavior expected for typical chaotic systems, is suppressed in unidirectional ones. Therefore, we pose the question whether such graphs may serve as a more appropriate model for closed and open chaotic systems with violated time-reversal invariance than conventional ones. We compare the fluctuation properties of their eigenvalues and scattering matrix elements and observe especially in the long-range correlations larger deviations from random-matrix theory predictions for the unidirectional graphs. These are attributed to a loss of complexity of the underlying dynamic, induced by the unidirectionality.
Collapse
Affiliation(s)
- Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaodong Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weihua Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Guozhi Chai
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
12
|
Farooq O, Ławniczak M, Akhshani A, Bauch S, Sirko L. The Generalized Euler Characteristics of the Graphs Split at Vertices. ENTROPY 2022; 24:e24030387. [PMID: 35327898 PMCID: PMC8947457 DOI: 10.3390/e24030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022]
Abstract
We show that there is a relationship between the generalized Euler characteristic Eo(|VDo|) of the original graph that was split at vertices into two disconnected subgraphs i=1,2 and their generalized Euler characteristics Ei(|VDi|). Here, |VDo| and |VDi| denote the numbers of vertices with the Dirichlet boundary conditions in the graphs. The theoretical results are experimentally verified using microwave networks that simulate quantum graphs. We demonstrate that the evaluation of the generalized Euler characteristics Eo(|VDo|) and Ei(|VDi|) allow us to determine the number of vertices where the two subgraphs were initially connected.
Collapse
|
13
|
Castañeda-Ramírez F, Martínez-Argüello AM, Hofmann T, Rehemanjiang A, Martínez-Mares M, Méndez-Bermúdez JA, Kuhl U, Stöckmann HJ. Microwave graph analogs for the voltage drop in three-terminal devices with orthogonal, unitary, and symplectic symmetry. Phys Rev E 2022; 105:014202. [PMID: 35193290 DOI: 10.1103/physreve.105.014202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
Transmission measurements through three-port microwave graphs are performed, in analogy to three-terminal voltage drop devices with orthogonal, unitary, and symplectic symmetry. The terminal used as a probe is symmetrically located between two chaotic subgraphs, and each graph is connected to one port, the input and the output, respectively. The analysis of the experimental data clearly exhibits the weak localization and antilocalization phenomena. We find a good agreement with theoretical predictions, provided that the effects of dissipation and imperfect coupling to the ports are taken into account.
Collapse
Affiliation(s)
- F Castañeda-Ramírez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 Ciudad de México, Mexico
| | - A M Martínez-Argüello
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos, Mexico
| | - T Hofmann
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - A Rehemanjiang
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - M Martínez-Mares
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 Ciudad de México, Mexico
| | - J A Méndez-Bermúdez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla, Puebla, Mexico
| | - U Kuhl
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), 06108 Nice, France
| | - H-J Stöckmann
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
14
|
Hofmann T, Lu J, Kuhl U, Stöckmann HJ. Spectral duality in graphs and microwave networks. Phys Rev E 2021; 104:045211. [PMID: 34781486 DOI: 10.1103/physreve.104.045211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Quantum graphs and their experimental counterparts, microwave networks, are ideally suited to study the spectral statistics of chaotic systems. The graph spectrum is obtained from the zeros of a secular determinant derived from energy and charge conservation. Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The first ones are realized in experiments, since the standard junctions connecting the bonds obey Neumann boundary conditions due to current conservation. On average, the corresponding Neumann and Dirichlet eigenvalues alternate as a function of the wave number, with the consequence that the Neumann spectrum is described by random matrix theory only locally, but adopts features of the interlacing Dirichlet spectrum for long-range correlations. Another spectral interlacing is found for the Green's function, which in contrast to the secular determinant is experimentally accessible. This is illustrated by microwave studies and numerics.
Collapse
Affiliation(s)
- Tobias Hofmann
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Junjie Lu
- Institut de Physique de Nice, CNRS, Université Côte d'Azur, 06108 Nice, France, European Union
| | - Ulrich Kuhl
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institut de Physique de Nice, CNRS, Université Côte d'Azur, 06108 Nice, France, European Union
| | | |
Collapse
|
15
|
Chen L, Anlage SM, Fyodorov YV. Statistics of Complex Wigner Time Delays as a Counter of S-Matrix Poles: Theory and Experiment. PHYSICAL REVIEW LETTERS 2021; 127:204101. [PMID: 34860068 DOI: 10.1103/physrevlett.127.204101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
We study the statistical properties of the complex generalization of Wigner time delay τ_{W} for subunitary wave-chaotic scattering systems. We first demonstrate theoretically that the mean value of the Re[τ_{W}] distribution function for a system with uniform absorption strength η is equal to the fraction of scattering matrix poles with imaginary parts exceeding η. The theory is tested experimentally with an ensemble of microwave graphs with either one or two scattering channels and showing broken time-reversal invariance and variable uniform attenuation. The experimental results are in excellent agreement with the developed theory. The tails of the distributions of both real and imaginary time delay are measured and are also found to agree with theory. The results are applicable to any practical realization of a wave-chaotic scattering system in the short-wavelength limit, including quantum wires and dots, acoustic and electromagnetic resonators, and quantum graphs.
Collapse
Affiliation(s)
- Lei Chen
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Steven M Anlage
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Yan V Fyodorov
- Department of Mathematics, Kings College London, London WC26 2LS, United Kingdom
- L. D. Landau Institute for Theoretical Physics, Semenova 1a, 142432 Chernogolovka, Russia
| |
Collapse
|
16
|
Białous M, Dulian P, Sawicki A, Sirko L. Delay-time distribution in the scattering of short Gaussian pulses in microwave networks. Phys Rev E 2021; 104:024223. [PMID: 34525523 DOI: 10.1103/physreve.104.024223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/06/2021] [Indexed: 11/07/2022]
Abstract
We investigate delay-time distributions in the scattering of short Gaussian pulses in microwave networks which simulate quantum graphs. We show that in the limit of short delay times the delay-time distribution is very sensitive to the internal structure of the networks. Therefore, it can be used to reveal their local structure including the boundary conditions at the vertices of the networks. In the frequency domain the pulses comprise many resonance frequencies of the networks. Furthermore, we show that the time-delay distribution averaged over different internal configurations of a finite network decays exponentially. Our experimental results for four-vertex and isoscattering microwave networks are in very good agreement with the theoretical ones obtained from the modified theory of U. Smilansky and H. Schanz [J. Phys. A 51, 075302 (2018)1751-811310.1088/1751-8121/aaa0df]. We modified the theory to account for internal absorption of microwave networks.
Collapse
Affiliation(s)
- Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Piotr Dulian
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Adam Sawicki
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
17
|
Ławniczak M, Kurasov P, Bauch S, Białous M, Akhshani A, Sirko L. A new spectral invariant for quantum graphs. Sci Rep 2021; 11:15342. [PMID: 34321508 PMCID: PMC8319202 DOI: 10.1038/s41598-021-94331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
The Euler characteristic i.e., the difference between the number of vertices |V| and edges |E| is the most important topological characteristic of a graph. However, to describe spectral properties of differential equations with mixed Dirichlet and Neumann vertex conditions it is necessary to introduce a new spectral invariant, the generalized Euler characteristic [Formula: see text], with [Formula: see text] denoting the number of Dirichlet vertices. We demonstrate theoretically and experimentally that the generalized Euler characteristic [Formula: see text] of quantum graphs and microwave networks can be determined from small sets of lowest eigenfrequencies. If the topology of the graph is known, the generalized Euler characteristic [Formula: see text] can be used to determine the number of Dirichlet vertices. That makes the generalized Euler characteristic [Formula: see text] a new powerful tool for studying of physical systems modeled by differential equations on metric graphs including isoscattering and neural networks where both Neumann and Dirichlet boundary conditions occur.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warszawa, Poland.
| | - Pavel Kurasov
- Department of Mathematics, Stockholm University, 106 91, Stockholm, Sweden.
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warszawa, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warszawa, Poland
| | - Afshin Akhshani
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668, Warszawa, Poland.
| |
Collapse
|
18
|
Białous M, Dietz B, Sirko L. Missing-level statistics in a dissipative microwave resonator with partially violated time-reversal invariance. Phys Rev E 2021; 103:052204. [PMID: 34134203 DOI: 10.1103/physreve.103.052204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/07/2022]
Abstract
We report on the experimental investigation of the fluctuation properties in the resonance frequency spectra of a flat resonator simulating a dissipative quantum billiard subject to partial time-reversal-invariance violation (TIV) which is induced by two magnetized ferrites. The cavity has the shape of a quarter bowtie billiard of which the corresponding classical dynamics is chaotic. Due to dissipation it is impossible to identify a complete list of resonance frequencies. Based on a random-matrix theory approach we derive analytical expressions for statistical measures of short- and long-range correlations in such incomplete spectra interpolating between the cases of preserved time-reversal invariance and complete TIV and demonstrate their applicability to the experimental spectra.
Collapse
Affiliation(s)
- Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
19
|
López-González JL, Franco-Villafañe JA, Méndez-Sánchez RA, Zavala-Vivar G, Flores-Olmedo E, Arreola-Lucas A, Báez G. Deviations from Poisson statistics in the spectra of free rectangular thin plates. Phys Rev E 2021; 103:043004. [PMID: 34005940 DOI: 10.1103/physreve.103.043004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 11/07/2022]
Abstract
The counterintuitive fact that wave chaos appears in the bending spectrum of free rectangular thin plates is presented. After extensive numerical simulations, varying the ratio between the length of its sides, it is shown that (i) frequency levels belonging to different symmetry classes cross each other and (ii) for levels within the same symmetry sector, only avoided crossings appear. The consequence of anticrossings is studied by calculating the distribution of the ratio of consecutive level spacings for each symmetry class. The resulting ratio distributions disagree with the expected Poissonian result. They are then compared with some well-known transition distributions between Poisson and the Gaussian orthogonal random matrix ensemble. It is found that the distribution of the ratio of consecutive level spacings agrees with the prediction of the Rosenzweig-Porter model. Also, the normal-mode vibration amplitudes are found experimentally on aluminum plates, before and after an avoided crossing for symmetrical-symmetrical, symmetrical-antisymmetrical, and antisymmetrical-symmetrical classes. The measured modes show an excellent agreement with our numerical predictions. The expected Poissonian distribution is recovered for the simply supported rectangular plate.
Collapse
Affiliation(s)
- J L López-González
- Instituto de Física, Universidad Autónoma de San Luis Potosí, 78290, San Luis Potosí, SLP, México
| | - J A Franco-Villafañe
- CONACyT-Instituto de Física, Universidad Autónoma de San Luis Potosí, 78290, San Luis Potosí, SLP, México
| | - R A Méndez-Sánchez
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, P.O. Box 48-3, 62251 Cuernavaca, Mor. México
| | - G Zavala-Vivar
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México 02200, México
| | - E Flores-Olmedo
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México 02200, México
| | - A Arreola-Lucas
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México 02200, México
| | - G Báez
- Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México 02200, México
| |
Collapse
|
20
|
Che J, Lu J, Zhang X, Dietz B, Chai G. Missing-level statistics in classically chaotic quantum systems with symplectic symmetry. Phys Rev E 2021; 103:042212. [PMID: 34005854 DOI: 10.1103/physreve.103.042212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 11/07/2022]
Abstract
We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical predictions, we extend the random-matrix theory (RMT) approach introduced in Bohigas and Pato [O. Bohigas and M. P. Pato, Phys. Rev. E 74, 036212 (2006)PLEEE81539-375510.1103/PhysRevE.74.036212] for incomplete spectra of quantum systems with orthogonal symmetry. We validate these RMT predictions by randomly extracting a fraction of levels from complete sequences obtained numerically for quantum graphs and experimentally for microwave networks with symplectic symmetry and then apply them to incomplete experimental spectra to demonstrate their applicability. Independently of their symmetry class, quantum graphs exhibit nongeneric features which originate from nonuniversal contributions. Part of the associated eigenfrequencies can be identified in the level dynamics of parameter-dependent quantum graphs and extracted, thereby yielding spectra with systematically missing eigenfrequencies. We demonstrate that, even though the RMT approach relies on the assumption that levels are missing at random, it is possible to determine the fraction of missing levels and assign the appropriate symmetry class by comparison of their fluctuation properties with the RMT predictions.
Collapse
Affiliation(s)
- Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junjie Lu
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China.,Institut de Physique de Nice, CNRS UMR 7010, Université Côte d'Azur, 06108 Nice, France
| | - Xiaodong Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guozhi Chai
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
21
|
Ławniczak M, Lipovský J, Białous M, Sirko L. Application of topological resonances in experimental investigation of a Fermi golden rule in microwave networks. Phys Rev E 2021; 103:032208. [PMID: 33862759 DOI: 10.1103/physreve.103.032208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
We investigate experimentally a Fermi golden rule in two-edge and five-edge microwave networks with preserved time reversal invariance. A Fermi golden rule gives rates of decay of states obtained by perturbing embedded eigenvalues of graphs and networks. We show that the embedded eigenvalues are connected with the topological resonances of the analyzed systems and we find the trajectories of the topological resonances on the complex plane.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Jiří Lipovský
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czechia
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
22
|
Corps ÁL, Relaño A. Long-range level correlations in quantum systems with finite Hilbert space dimension. Phys Rev E 2021; 103:012208. [PMID: 33601518 DOI: 10.1103/physreve.103.012208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/17/2020] [Indexed: 11/07/2022]
Abstract
We study the spectral statistics of quantum systems with finite Hilbert spaces. We derive a theorem showing that eigenlevels in such systems cannot be globally uncorrelated, even in the case of fully integrable dynamics, as a consequence of the unfolding procedure. We provide an analytic expression for the power spectrum of the δ_{n} statistic for a model of intermediate statistics with level repulsion but independent spacings, and we show both numerically and analytically that the result is spoiled by the unfolding procedure. Then, we provide a simple model to account for this phenomenon, and test it by means of numerics on the disordered XXZ chain, the paradigmatic model of many-body localization, and the rational Gaudin-Richardson model, a prototypical model for quantum integrability.
Collapse
Affiliation(s)
- Ángel L Corps
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| | - Armando Relaño
- Departamento de Estructura de la Materia, Física Térmica y Electrónica and GISC, Universidad Complutense de Madrid, Avenida Complutense s/n, E-28040 Madrid, Spain
| |
Collapse
|
23
|
Isoscattering strings of concatenating graphs and networks. Sci Rep 2021; 11:1575. [PMID: 33452312 PMCID: PMC7810996 DOI: 10.1038/s41598-020-80950-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022] Open
Abstract
We identify and investigate isoscattering strings of concatenating quantum graphs possessing n units and 2n infinite external leads. We give an insight into the principles of designing large graphs and networks for which the isoscattering properties are preserved for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n \rightarrow \infty $$\end{document}n→∞. The theoretical predictions are confirmed experimentally using \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n=2$$\end{document}n=2 units, four-leads microwave networks. In an experimental and mathematical approach our work goes beyond prior results by demonstrating that using a trace function one can address the unsettled until now problem of whether scattering properties of open complex graphs and networks with many external leads are uniquely connected to their shapes. The application of the trace function reduces the number of required entries to the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2n \times 2n $$\end{document}2n×2n scattering matrices \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hat{S}}$$\end{document}S^ of the systems to 2n diagonal elements, while the old measures of isoscattering require all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2n)^2$$\end{document}(2n)2 entries. The studied problem generalizes a famous question of Mark Kac “Can one hear the shape of a drum?”, originally posed in the case of isospectral dissipationless systems, to the case of infinite strings of open graphs and networks.
Collapse
|
24
|
Ławniczak M, van Tiggelen B, Sirko L. Experimental investigation of distributions of the off-diagonal elements of the scattering matrix and Wigner's K[over ̂] matrix for networks with broken time reversal invariance. Phys Rev E 2020; 102:052214. [PMID: 33327135 DOI: 10.1103/physreve.102.052214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/03/2020] [Indexed: 11/07/2022]
Abstract
We present an extensive experimental study of the distributions of the real and imaginary parts of the off-diagonal elements of the scattering matrix S[over ̂] and the Wigner's reaction K[over ̂] matrix for open microwave networks with broken time (T) reversal invariance. Microwave Faraday circulators were applied in order to break T invariance. The experimental distributions of the real and imaginary parts of the off-diagonal entries of the scattering matrix S[over ̂] are compared with the theoretical predictions from the supersymmetry random matrix theory [A. Nock, S. Kumar, H.-J. Sommers, and T. Guhr, Ann. Phys. (NY) 342, 103 (2014)10.1016/j.aop.2013.11.006]. Furthermore, we show that the experimental results are in very good agreement with the recent predictions for the distributions of the real and imaginary parts of the off-diagonal elements of the Wigner's reaction K[over ̂] matrix obtained within the framework of the Gaussian unitary ensemble of random matrix theory [S. B. Fedeli and Y. V. Fyodorov, J. Phys. A: Math. Theor. 53, 165701 (2020)1751-811310.1088/1751-8121/ab73ab]. Both theories include losses as tunable parameters and are therefore well adapted to the experimental verification.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | | | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
25
|
Chen L, Kottos T, Anlage SM. Perfect absorption in complex scattering systems with or without hidden symmetries. Nat Commun 2020; 11:5826. [PMID: 33203847 PMCID: PMC7673030 DOI: 10.1038/s41467-020-19645-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Wavefront shaping (WFS) schemes for efficient energy deposition in weakly lossy targets is an ongoing challenge for many classical wave technologies relevant to next-generation telecommunications, long-range wireless power transfer, and electromagnetic warfare. In many circumstances these targets are embedded inside complicated enclosures which lack any type of (geometric or hidden) symmetry, such as complex networks, buildings, or vessels, where the hypersensitive nature of multiple interference paths challenges the viability of WFS protocols. We demonstrate the success of a general WFS scheme, based on coherent perfect absorption (CPA) electromagnetic protocols, by utilizing a network of coupled transmission lines with complex connectivity that enforces the absence of geometric symmetries. Our platform allows for control of the local losses inside the network and of the violation of time-reversal symmetry via a magnetic field; thus establishing CPA beyond its initial concept as the time-reversal of a laser cavity, while offering an opportunity for better insight into CPA formation via the implementation of semiclassical tools.
Collapse
Affiliation(s)
- Lei Chen
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Tsampikos Kottos
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, CT, 06459, USA
| | - Steven M Anlage
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
26
|
Lu J, Che J, Zhang X, Dietz B. Experimental and numerical investigation of parametric spectral properties of quantum graphs with unitary or symplectic symmetry. Phys Rev E 2020; 102:022309. [PMID: 32942473 DOI: 10.1103/physreve.102.022309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022]
Abstract
We present experimental and numerical results for the parametric fluctuation properties in the spectra of classically chaotic quantum graphs with unitary or symplectic symmetry. A level dynamics is realized by changing the lengths of a few bonds parametrically. The long-range correlations in the spectra reveal at a fixed parameter value deviations from those expected for generic chaotic systems with corresponding universality class. They originate from modes which are confined to individual bonds or explore only a fraction of the quantum graph. Similarly, discrepancies are observed in the avoided-crossing distribution, velocity correlation function, and the curvature distribution of the level dynamics which also may be attributed to such localized modes. We demonstrate that these may be easily identified by inspecting the level dynamics and consequently their nonuniversal contributions to the parametric spectral properties may be diminished considerably. This is corroborated by numerical studies.
Collapse
Affiliation(s)
- Junjie Lu
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiongning Che
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaodong Zhang
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Barbara Dietz
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
27
|
Yunko V, Białous M, Sirko L. Edge switch transformation in microwave networks. Phys Rev E 2020; 102:012210. [PMID: 32794898 DOI: 10.1103/physreve.102.012210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022]
Abstract
We investigated the spectra of resonances of four-vertex microwave networks simulating both quantum graphs with preserved and with partially violated time-reversal invariance before and after an edge switch operation. We show experimentally that under the edge switch operation, the spectra of the microwave networks with preserved time-reversal symmetry are level-1 interlaced, i.e., ν_{n-r}≤ν[over ̃]_{n}≤ν_{n+r}, where r=1, in agreement with the recent theoretical predictions of Aizenman et al. [M. Aizenman, H. Schanz, U. Smilansky, and S. Warzel, Acta Phys. Pol. A 132, 1699 (2017)ATPLB60587-424610.12693/APhysPolA.132.1699]. Here, we denote by {ν_{n}}_{n=1}^{∞} and {ν[over ̃]_{n}}_{n=1}^{∞} the spectra of microwave networks before and after the edge switch transformation. We demonstrate that the experimental distribution P(ΔN) of the spectral shift ΔN is close to the theoretical one. Furthermore, we show experimentally that in the case of the four-vertex networks with partially violated time-reversal symmetry, the spectra are level-1 interlaced. Our experimental results are supplemented by the numerical calculations performed for quantum graphs with violated time-reversal symmetry. In this case, the edge switch transformation also leads to the spectra which are level-1 interlaced. Moreover, we demonstrate that for microwave networks simulating graphs with violated time-reversal symmetry, the experimental distribution P(ΔN) of the spectral shift ΔN agrees, within the experimental uncertainty, with the numerical one.
Collapse
Affiliation(s)
- Vitalii Yunko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
28
|
Ławniczak M, Kurasov P, Bauch S, Białous M, Yunko V, Sirko L. Hearing Euler characteristic of graphs. Phys Rev E 2020; 101:052320. [PMID: 32575246 DOI: 10.1103/physreve.101.052320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 11/07/2022]
Abstract
The Euler characteristic χ=|V|-|E| and the total length L are the most important topological and geometrical characteristics of a metric graph. Here |V| and |E| denote the number of vertices and edges of a graph. The Euler characteristic determines the number β of independent cycles in a graph while the total length determines the asymptotic behavior of the energy eigenvalues via Weyl's law. We show theoretically and confirm experimentally that the Euler characteristic can be determined (heard) from a finite sequence of the lowest eigenenergies λ_{1},...,λ_{N} of a simple quantum graph, without any need to inspect the system visually. In the experiment quantum graphs are simulated by microwave networks. We demonstrate that the sequence of the lowest resonances of microwave networks with β≤3 can be directly used in determining whether a network is planar, i.e., can be embedded in the plane. Moreover, we show that the measured Euler characteristic χ can be used as a sensitive revealer of the fully connected graphs.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Pavel Kurasov
- Department of Mathematics, Stockholm University, S-106 91 Stockholm, Sweden
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Vitalii Yunko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
29
|
Białous M, Dietz B, Sirko L. Experimental investigation of the elastic enhancement factor in a microwave cavity emulating a chaotic scattering system with varying openness. Phys Rev E 2019; 100:012210. [PMID: 31499840 DOI: 10.1103/physreve.100.012210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/07/2022]
Abstract
A characteristic of chaotic scattering is the excess of elastic over inelastic scattering processes quantified by the elastic enhancement factor F_{M}(T,γ), which depends on the number of open channels M, the average transmission coefficient T, and internal absorption γ. Using a microwave cavity with the shape of a chaotic quarter-bow-tie billiard, we study the elastic enhancement factor experimentally as a function of the openness, which is defined as the ratio of the Heisenberg time and the Weisskopf (dwell) time and is directly related to M and the size of internal absorption. In the experiments 2≤M≤9 open channels with an average transmission coefficient 0.34<T<0.98 and moderate internal absorption strength in the range of γ=0.9-2.8 are achieved. The experimental results for the enhancement factor are shown to agree well with random matrix theory predictions. Furthermore, in order to corroborate the wave-chaotic features of the microwave system, the spectral fluctuation properties are studied for M=2 channels. Agreement with those exhibited by typical, fully chaotic systems is illustrated, which is exemplary for the nearest-neighbor spacing distribution and the average power spectrum. Here we take into account the incompleteness of the sequence of resonance frequencies ascribed to the small yet nonvanishing internal absorption.
Collapse
Affiliation(s)
- Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Barbara Dietz
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
30
|
Ławniczak M, Lipovský J, Sirko L. Non-Weyl Microwave Graphs. PHYSICAL REVIEW LETTERS 2019; 122:140503. [PMID: 31050459 DOI: 10.1103/physrevlett.122.140503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 06/09/2023]
Abstract
One of the most important characteristics of a quantum graph is the average density of resonances, ρ=(L/π), where L denotes the length of the graph. This is a very robust measure. It does not depend on the number of vertices in a graph and holds also for most of the boundary conditions at the vertices. Graphs obeying this characteristic are called Weyl graphs. Using microwave networks that simulate quantum graphs we show that there exist graphs that do not adhere to this characteristic. Such graphs are called non-Weyl graphs. For standard coupling conditions we demonstrate that the transition from a Weyl graph to a non-Weyl graph occurs if we introduce a balanced vertex. A vertex of a graph is called balanced if the numbers of infinite leads and internal edges meeting at a vertex are the same. Our experimental results confirm the theoretical predictions of [E. B. Davies and A. Pushnitski, Analysis and PDE 4, 729 (2011)] and are in excellent agreement with the numerical calculations yielding the resonances of the networks.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Jiří Lipovský
- Department of Physics, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czechia
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
31
|
Investigation of the diagonal elements of the Wigner's reaction matrix for networks with violated time reversal invariance. Sci Rep 2019; 9:5630. [PMID: 30948771 PMCID: PMC6449383 DOI: 10.1038/s41598-019-42123-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/25/2019] [Indexed: 11/11/2022] Open
Abstract
The distributions of the diagonal elements of the Wigner’s reaction \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{K}$$\end{document}Kˆ matrix for open systems with violated time reversal T invariance in the case of large absorption are for the first time experimentally studied. The Wigner’s reaction matrix links the properties of chaotic systems with the scattering processes in the asymptotic region. Microwave networks consisting of microwave circulators were used in the experiment to simulate quantum graphs with violated T invariance. The distributions of the diagonal elements of the reaction \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{K}$$\end{document}Kˆ matrix were experimentally evaluated by measuring of the two-port scattering matrix \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{S}$$\end{document}Sˆ. The violation of T invariance in the networks with large absorption was demonstrated by calculating the enhancement factor W of the matrix \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{S}$$\end{document}Sˆ. Our experimental results are in very good agreement with the analytic ones attained for the Gaussian unitary ensemble in the random matrix theory. The obtained results suggest that the distributions P(ʋ) and P(u) of the imaginary and the real parts of the diagonal elements of the Wigner’s reaction \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hat{K}$$\end{document}Kˆ matrix together with the enhancement factor W can be used as a powerful tool for identification of systems with violated T symmetry and quantification of their absorption.
Collapse
|
32
|
Ławniczak M, Białous M, Yunko V, Bauch S, Sirko L. Missing-level statistics and analysis of the power spectrum of level fluctuations of three-dimensional chaotic microwave cavities. Phys Rev E 2018; 98:012206. [PMID: 30110821 DOI: 10.1103/physreve.98.012206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 06/08/2023]
Abstract
We present an experimental study of missing-level statistics of three-dimensional chaotic microwave cavities. The investigation is reinforced by the power spectrum of level fluctuations analysis, which also takes into account the missing levels. On the basis of our data sets we demonstrate that the power spectrum of level fluctuations in combination with short- and long-range spectral fluctuations provides a powerful tool for the determination of the fraction of randomly missing levels in systems that display wave chaos such as the three-dimensional chaotic microwave cavities. The experimental results are in good agreement with the analytical expressions that explicitly take into account the fraction of observed levels φ. We also show that in the case of incomplete spectra with many unresolved states the above procedures may fail. In such a case the random matrix theory calculations can be useful for the determination of missing levels.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Vitalii Yunko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|