1
|
Nakagawa T, Jörg DJ, Watanabe H, Mizuno S, Han S, Ikeda T, Omatsu Y, Nishimura K, Fujita M, Takahashi S, Kondoh G, Simons BD, Yoshida S, Nagasawa T. A multistate stem cell dynamics maintains homeostasis in mouse spermatogenesis. Cell Rep 2021; 37:109875. [PMID: 34686326 DOI: 10.1016/j.celrep.2021.109875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
In mouse testis, a heterogeneous population of undifferentiated spermatogonia (Aundiff) harbors spermatogenic stem cell (SSC) potential. Although GFRα1+ Aundiff maintains the self-renewing pool in homeostasis, the functional basis of heterogeneity and the implications for their dynamics remain unresolved. Here, through quantitative lineage tracing of SSC subpopulations, we show that an ensemble of heterogeneous states of SSCs supports homeostatic, persistent spermatogenesis. Such heterogeneity is maintained robustly through stochastic interconversion of SSCs between a renewal-biased Plvap+/GFRα1+ state and a differentiation-primed Sox3+/GFRα1+ state. In this framework, stem cell commitment occurs not directly but gradually through entry into licensed but uncommitted states. Further, Plvap+/GFRα1+ cells divide slowly, in synchrony with the seminiferous epithelial cycle, while Sox3+/GFRα1+ cells divide much faster. Such differential cell-cycle dynamics reduces mitotic load, and thereby the potential to acquire harmful de novo mutations of the self-renewing pool, while keeping the SSC density high over the testicular open niche.
Collapse
Affiliation(s)
- Toshinori Nakagawa
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| | - David J Jörg
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Cavendish Laboratory, Department of Physics, J. J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Seungmin Han
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Tatsuro Ikeda
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Yoshiki Omatsu
- Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, World Premier International Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiko Nishimura
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Miyako Fujita
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Benjamin D Simons
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK; Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan.
| | - Takashi Nagasawa
- Department of Immunobiology and Hematology, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, World Premier International Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Jörg DJ, Morelli LG, Jülicher F. Chemical event chain model of coupled genetic oscillators. Phys Rev E 2018; 97:032409. [PMID: 29776186 DOI: 10.1103/physreve.97.032409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 06/08/2023]
Abstract
We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.
Collapse
Affiliation(s)
- David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
- Departamento de Física, FCEyN UBA, Ciudad Universitaria, 1428 Buenos Aires, Argentina
- Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|