1
|
Sardari V, Mohammadian M, Asfia S, Maurer F, Örüm D, Seemann R, John T, Kaestner L, Wagner C, Maleki M, Darras A. Deposit of Red Blood Cells at low concentrations in evaporating droplets is dominated by a central edge growth. J Colloid Interface Sci 2025; 679:939-946. [PMID: 39413590 DOI: 10.1016/j.jcis.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Evaporation of blood droplets and diluted blood samples is a topic of intensive research, as it is considered a potential low-cost diagnostic tool. So far, samples with a volume fraction down to a few percent of red blood cells have been studied, and these were reportedly dominated by a "coffee-ring" deposit. In this study, samples with lower volume fractions were used to investigate the growth of the evaporative deposit from sessile droplets in more detail. We observed that blood samples and salt solutions with less than 1% volume fraction of red blood cells are dominated by a central deposit. We characterized the growth process of this central deposit by evaporating elongated drops and determined that it is consistent with the Kardar-Parisi-Zhang process in the presence of quenched disorder. Our results showed a sensitivity of the deposit size to fibrinogen concentration and the shape of red blood cells, suggesting that this parameter could be developed into a new and cost-effective clinical marker for inflammation and red blood cell deformation.
Collapse
Affiliation(s)
- Vahideh Sardari
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Mahsa Mohammadian
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Shima Asfia
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Felix Maurer
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Diana Örüm
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Ralf Seemann
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Thomas John
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Lars Kaestner
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany; Department of Theoretical Medicine and Biosciences, Saarland University, Homburg, D-66421, Germany
| | - Christian Wagner
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany; Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, L-4365, Luxembourg
| | - Maniya Maleki
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Alexis Darras
- Department of Experimental Physics & Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany.
| |
Collapse
|
2
|
Bhatt S, Smethurst PA, Garnier G, Routh AF. Front-Tracking and Gelation in Sessile Droplet Suspensions: What Can They Tell Us about Human Blood? Biomacromolecules 2024; 25:7594-7607. [PMID: 39486045 PMCID: PMC11632657 DOI: 10.1021/acs.biomac.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024]
Abstract
Recently developed imaging techniques have been used to examine the redistribution of human red blood cells and comparator particles dispersed in carrier fluids within evaporating droplets. We demonstrate that progressive gelation initiates along an annular front, isolating a central pool that briefly remains open to particulate advection before gelation completes across the droplet center. Transition to an elastic solid is evidenced by cracking initiating proximal to front locations. The arrested flow of cellular components, termed a "halted front", has been investigated using a time-lapse analysis "signature". The presence of a deformable biocellular component is seen to be essential for front-halting. We show a dependence of front-halt radius on cell volume-fraction, potentially offering a low-cost means of measuring hematocrit. A simple model yields an estimate of the gel zero-shear yield-stress. This approach to understanding the drying dynamics of blood droplets may lead to a new generation of point-of-care diagnostics.
Collapse
Affiliation(s)
- Sheila Bhatt
- Institute
for Energy and Environmental Flows, University
of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United
Kingdom
| | - Peter A. Smethurst
- Component
Development Laboratory, NHS Blood and Transplant, Cambridge Donor Centre, Cambridge, CB2 0PT, United Kingdom
| | - Gil Garnier
- BioPRIA,
Department of Chemical Engineering, Monash
University, Clayton VIC 31688, Australia
| | - Alexander F. Routh
- Institute
for Energy and Environmental Flows, University
of Cambridge, Bullard Laboratories, Madingley Road, Cambridge, CB3 0EZ, United
Kingdom
| |
Collapse
|
3
|
Wang J, Zhang M, Wang J, Chen R. Coupling effects of human serum albumin and sodium chloride on biological desiccation patterns. Heliyon 2023; 9:e19970. [PMID: 37810140 PMCID: PMC10559562 DOI: 10.1016/j.heliyon.2023.e19970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Desiccation patterns of plasma sessile drops have attracted increasing attention, not only because of the fantastic underlying physics, but also due to their potential of being health diagnostic tools. However, plasma is a multicomponent system, which contains macromolecular proteins and inorganic salts; these components have complicated interactions to define pattern morphologies. Unfortunately, mechanisms of coupling effects of main components on pattern morphologies are still not clear, thus limiting their diagnostic applications. Here we show the coupling effects of human serum albumin (HSA) and sodium chloride (NaCl) on plasma desiccation patterns. Our experiments indicate that NaCl enhances the "coffee ring" effect of HSA to promote its aggregation at the peripheral region and narrows down its aggregation area; this would influence the distribution of internal stresses, resulting in a larger number of radial cracks, with a larger width but a shorter length, than cracks in pure HSA. In the meantime, HSA experiences the gelation process that propagates from the peripheral region to central region and causes the spatiotemporal deviation in the degree of solidification, which induces a higher concentration of NaCl in the central region, thus leading to the formation of crystal patterns. Our further experiments demonstrate that these characteristic patterns are correlated to the variation in the concentration of NaCl, which can be caused by hyponatremia and hypernatremia in real biofluids. Our findings not only provide a new mechanistic insight into biological desiccation patterns, but also bridge the gap between the understanding and diagnostic applications of these desiccation patterns.
Collapse
Affiliation(s)
- Jihong Wang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| | - Jun Wang
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| | - Ruoyang Chen
- School of Physics and School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, China
| |
Collapse
|
4
|
Katre P, Banerjee S, Balusamy S, Sahu KC. Stability and Retention Force Factor for Binary-Nanofluid Sessile Droplets on an Inclined Substrate. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Pallavi Katre
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502 284, Telangana India
| | - Sayak Banerjee
- Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502 284, Telangana India
| | - Saravanan Balusamy
- Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502 284, Telangana India
| | - Kirti Chandra Sahu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502 284, Telangana India
| |
Collapse
|
5
|
Kumar V, Dash S. Evaporation-Based Low-Cost Method for the Detection of Adulterant in Milk. ACS OMEGA 2021; 6:27200-27207. [PMID: 34693139 PMCID: PMC8529649 DOI: 10.1021/acsomega.1c03887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Adulteration of milk poses a severe health hazard, and it is crucial to develop adulterant-detection techniques that are scalable and easy to use. Water and urea are two of the most common adulterants in commercial milk. Detection of these adulterants is both challenging and costly in urban and rural areas. Here we report on an evaporation-based low-cost technique for the detection of added water and urea in milk. The evaporative deposition is shown to be affected by the presence of adulterants in milk. We observe a specific pattern formation of nonvolatile milk solids deposited at the end of the evaporation of a droplet of unadulterated milk. These patterns alter with the addition of water and urea. The evaporative deposits are dependent on the concentrations of water and urea added. The sensitivity of detection of urea in milk improves with the dilution of milk with water. We show that our method can be used to detect a urea concentration as low as 0.4% in milk. Based on the detection level of urea, we present a regime map that shows the concentration of urea that can be detected at different extents of dilution of milk.
Collapse
|
6
|
Yu M, Le Floch-Fouéré C, Pauchard L, Boissel F, Fu N, Chen XD, Saint-Jalmes A, Jeantet R, Lanotte L. Skin layer stratification in drying droplets of dairy colloids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Wang Q, Shi T, Wan M, Wei J, Wang F, Mao C. Research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. J Mater Chem B 2021; 9:283-294. [PMID: 33241834 DOI: 10.1039/d0tb02055a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Micro/nanomotors bring new possibilities for the detection and therapy of diseases related to the blood environment with their unique motion effect. This work reviews the research progress of using micro/nanomotors in the detection and therapy of diseases related to the blood environment. First, we outline the advantages of using micro/nanomotors in blood-related disease detection. To be specific, the motion capability of micro/nanomotors can increase plasma or blood fluid convection and accelerate the interaction between the sample and the capture probe. This allows the effective reduction of the amount of reagents and treatment steps. Therefore, the application of micro/nanomotors significantly improves the analytical performance. Second, we discuss the key challenges and future prospects of micro/nanomotors in the treatment of blood-environment related diseases. It is very important to design a unique treatment plan according to the etiology and specific microenvironment of the disease. The next generation of micro/nanomotors is expected to bring exciting progress to the detection and therapy of blood-environment related diseases.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. and School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Shi
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fenghe Wang
- Jiangsu Province Key Laboratory of Environmental Engineering, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Pal A, Gope A, Iannacchione G. Temperature and Concentration Dependence of Human Whole Blood and Protein Drying Droplets. Biomolecules 2021; 11:231. [PMID: 33562850 PMCID: PMC7915023 DOI: 10.3390/biom11020231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022] Open
Abstract
The drying of bio-colloidal droplets can be used in many medical and forensic applications. The whole human blood is the most complex bio-colloid system, whereas bovine serum albumin (BSA) is the simplest. This paper focuses on the drying characteristics and the final morphology of these two bio-colloids. The experiments were conducted by varying their initial concentrations, and the solutions were dried under various controlled substrate temperatures using optical and scanning electron microscopy. The droplet parameters (the contact angle, the fluid front, and the first-order image statistics) reveal the drying process's unique features. Interestingly, both BSA and blood drying droplets' contact angle measurements show evidence of a concentration-driven transition as the behavior changes from non-monotonic to monotonic decrease. This result indicates that this transition behavior is not limited to multi-component bio-colloid (blood) only, but may be a phenomenon of a bio-colloidal solution containing a large number of interacting components. The high dilution of blood behaves like the BSA solution. The ring-like deposition, the crack morphology, and the microstructures suggest that the components have enough time to segregate and deposit onto the substrate under ambient conditions. However, there is insufficient time for evaporative-driven segregation to occur at elevated temperatures, as expected.
Collapse
Affiliation(s)
- Anusuya Pal
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| | - Amalesh Gope
- Department of English, Tezpur University, Tezpur 784028, Assam, India;
| | - Germano Iannacchione
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, MA 01609, USA;
| |
Collapse
|
9
|
Pal A, Gope A, Obayemi JD, Iannacchione GS. Concentration-driven phase transition and self-assembly in drying droplets of diluting whole blood. Sci Rep 2020; 10:18908. [PMID: 33144671 PMCID: PMC7609771 DOI: 10.1038/s41598-020-76082-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Multi-colloidal systems exhibit a variety of structural and functional complexity owing to their ability to interact amongst different components into self-assembled structures. This paper presents experimental confirmations that reveal an interesting sharp phase transition during the drying state and in the dried film as a function of diluting concentrations ranging from 100% (undiluted whole blood) to 12.5% (diluted concentrations). An additional complementary contact angle measurement exhibits a monotonic decrease with a peak as a function of drying. This peak is related to a change in visco-elasticity that decreases with dilution, and disappears at the dilution concentration for the observed phase transition equivalent to 62% (v/v). This unique behavior is clearly commensurate with the optical image statistics and morphological analysis; and it is driven by the decrease in the interactions between various components within this bio-colloid. The implications of these phenomenal systems may address many open-ended questions of complex hierarchical structures.
Collapse
Affiliation(s)
- Anusuya Pal
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, 01609, USA.
| | - Amalesh Gope
- Department of English, Tezpur University, Tezpur, 784028, India
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, 01609, USA
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, 01609, USA
| | - Germano S Iannacchione
- Order-Disorder Phenomena Laboratory, Department of Physics, Worcester Polytechnic Institute, Worcester, 01609, USA
| |
Collapse
|
10
|
Pathak B, Christy J, Sefiane K, Gozuacik D. Complex Pattern Formation in Solutions of Protein and Mixed Salts Using Dehydrating Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9728-9737. [PMID: 32787115 DOI: 10.1021/acs.langmuir.0c01122] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A sessile droplet of a complex fluid exhibits several stages of drying leading to the formation of a final pattern on the substrate. We report such pattern formation in dehydrating droplets of protein (BSA) and salts (MgCl2 and KCl) at various concentrations of the two components (protein and salts) as part of a parametric study for the understanding of complex patterns of dehydrating biofluid droplets (blood and urine), which will eventually be used for diagnosis of bladder cancer. The exact analysis of the biofluid patterns will require a rigorous parametric study; however, the current work provides an initial understanding of the effect of the basic components present in a biofluid droplet. Arrangement of the protein and the salts, due to evaporation, leads to the formation of some very distinctive final structures at the end of the droplet lifetime. Furthermore, these structures can be manipulated by varying the initial ratio of the two components in the solution. MgCl2 forms chains of crystals beyond a threshold initial concentration of protein (>3 wt %). However, the formation of such a crystal is also limited by the maximum concentration of the salt initially present in the droplet (≤1 wt %). On the other hand, KCl forms dendritic and rectangular crystals in the presence of BSA. The formation of these crystals also depends on the relative concentration of salt and protein in the droplet. We also investigated the dried-out patterns in dehydrating droplets of mixed salts (MgCl2 + KCl) and protein. The patterns can be tuned from a continuous dendritic structure to a snow-flake type structure just by altering the initial ratio of the two salts in the mixture, keeping all other parameters constant.
Collapse
Affiliation(s)
- Binita Pathak
- Department of Mechanical Engineering, Indian Institute of Technology, BHU, Varanasi 221005, India
| | - John Christy
- School of Engineering, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JL, United Kingdom
| | - Khellil Sefiane
- School of Engineering, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3JL, United Kingdom
- Tianjin Key Lab of Refrigeration Technology, Tianjin University of Commerce, Tianjin City 300134, PR China
| | - Devrim Gozuacik
- Koç University, School of Medicine, KUTTAM Research Center for Translational Medicine, Topkapı-Zeytinburnu, 34010 Istanbul, Turkey
| |
Collapse
|
11
|
Hydrodynamic and physicochemical phenomena in liquid droplets under the action of nanosecond spark discharges: A review. Adv Colloid Interface Sci 2019; 271:101986. [PMID: 31325652 DOI: 10.1016/j.cis.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/02/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022]
Abstract
This review presents experimental studies of phenomena occurring in droplets of various liquids under the effect of nanosecond spark discharges. Inorganic liquids and liquids of biological origin are considered here. Attention is payed to hydrodynamic and physico-chemical phenomena in droplets, including a movement of sessile droplets on a substrate under the effect of the discharges, internal flows in droplets (excited by the discharges), plasma capillary phenomena, features of the droplets drying under the effect of the discharges, traces (patterns) left by the droplets, exposed to the discharges, on the substrates etc.
Collapse
|
12
|
Le Floch-Fouéré C, Lanotte L, Jeantet R, Pauchard L. The solute mechanical properties impact on the drying of dairy and model colloidal systems. SOFT MATTER 2019; 15:6190-6199. [PMID: 31328216 DOI: 10.1039/c9sm00373h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The evaporation of colloidal solutions is frequently observed in nature and in everyday life. The investigation of the mechanisms taking place during the desiccation of biological fluids is currently a scientific challenge with potential biomedical and industrial applications. In the last few decades, seminal works have been performed mostly on dried droplets of saliva, urine and plasma. However, the full understanding of the drying process in biocolloids is far from being achieved and, notably, the impact of solute properties on the morphological characteristics of the evaporating droplets, such as colloid segregation, skin formation and crack pattern development, is still to be elucidated. For this purpose, the use of model colloidal solutions, whose rheological behavior is more easily deducible, could represent a significant boost. In this work, we compare the drying of droplets of whey proteins and casein micelles, the two main milk protein classes, to that of dispersions of silica particles and polymer-coated silica particles, respectively. The mechanical behavior of such biological colloids and model silica dispersions was investigated through the analysis of crack formation, and the measurements of their mechanical properties using indentation testing. The study reveals numerous analogies between dairy and the corresponding model systems, thus confirming the latter as a plausible powerful tool to highlight the signature of the matter at the molecular scale during the drying process.
Collapse
Affiliation(s)
| | - Luca Lanotte
- Laboratoire STLO, UMR1253, INRA, Agrocampus Ouest, F-35000 Rennes, France.
| | - Romain Jeantet
- Laboratoire STLO, UMR1253, INRA, Agrocampus Ouest, F-35000 Rennes, France.
| | - Ludovic Pauchard
- Laboratoire FAST, Univ. Paris-Sud, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
13
|
Lanotte L, Boissel F, Schuck P, Jeantet R, Le Floch-Fouéré C. Drying-induced mechanisms of skin formation in mixtures of high protein dairy powders. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Dhar P. Thermofluidic Transport in Droplets under Electromagnetic Stimulus: A Comprehensive Review. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0088-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|