1
|
Hoy RS. Generating Ultradense Jammed Ellipse Packings Using Biased SWAP. J Phys Chem B 2025; 129:763-770. [PMID: 39739335 DOI: 10.1021/acs.jpcb.4c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Using a Lubachevsky-Stillinger-like growth algorithm combined with biased SWAP Monte Carlo and transient degrees of freedom, we generate ultradense disordered jammed ellipse packings. For all aspect ratios α, these packings exhibit significantly smaller intermediate-wavelength density fluctuations and greater local nematic order than their less-dense counterparts. The densest packings are disordered despite having packing fractions ϕJ(α) that are within less than 0.5% of that of the monodisperse-ellipse crystal [ϕxtal = π/(2√3) ≃ 0.9069] over the range 1.2 ≲ α ≲ 1.45 and coordination numbers ZJ(α) that are within less than 0.5% of isostaticity [Ziso = 6] over the range 1.2 ≲ α ≲ 2.6. Lower-α packings are strongly fractionated and consist of polycrystals of intermediate-size particles, with the largest and smallest particles isolated at the grain boundaries. Higher-α packings are also fractionated, but in a qualitatively different fashion; they are composed─of increasingly large locally nematic domains─reminiscent of liquid glasses.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
2
|
Ma Z, Jia M, Liu J, Xu W. Microstructural characterization of DEM-based random packings of monodisperse and polydisperse non-convex particles. J Chem Phys 2024; 161:184104. [PMID: 39513448 DOI: 10.1063/5.0233933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Understanding of hard particles in morphologies and sizes on microstructures of particle random packings is of significance to evaluate physical and mechanical properties of many discrete media, such as granular materials, colloids, porous ceramics, active cells, and concrete. The majority of previous lines of research mainly dedicated microstructure analysis of convex particles, such as spheres, ellipsoids, spherocylinders, cylinders, and convex-polyhedra, whereas little is known about non-convex particles that are more close to practical discrete objects in nature. In this study, the non-convex morphology of a three-dimensional particle is devised by using a mathematical-controllable parameterized method, which contains two construction modes, namely, the uniformly distributed contraction centers and the randomly distributed contraction centers. Accordingly, three shape parameters are conceived to regulate the particle geometrical morphology from a perfect sphere to arbitrary non-convexities. Random packing models of hard non-convex particles with mono-/poly-dispersity in sizes are then established using the discrete element modeling Diverse microstructural indicators are utilized to characterize configurations of non-convex particle random packings. The compactness of non-convex particles in packings is characterized by the random close packing fraction fd and the corresponding average coordination number Z. In addition, four statistical descriptors, encompassing the radial distribution function g(r), two-point probability function S2(i)(r), lineal-path function L(i)(r), and cumulative pore size distribution function F(δ), are exploited to demonstrate the high-order microstructure information of non-convex particle random packings. The results demonstrate that the particle shape and size distribution have significant effects on Z and fd; the construction mode of the randomly distributed contraction centers can yield higher fd than that of the uniformly distributed contraction centers, in which the upper limit of fd approaches to 0.632 for monodisperse sphere packings. Moreover, non-convex particles of sizes following the famous Fuller distribution of the power-law distribution of the exponent q = 2.5, have the highest fd (≈0.761) with respect to other q. In contrast, the particle shapes have an almost negligible effect on the four statistical descriptors, but they are remarkably sensitive to particle packing fraction fp and size distribution. The results can provide sound guidance for custom-design of granular media by tailoring specific microstructures of particles.
Collapse
Affiliation(s)
- Zhihong Ma
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China
| | - Mingkun Jia
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China
| | - Jiaping Liu
- Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China
| | - Wenxiang Xu
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, China
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China
| |
Collapse
|
3
|
Sun Y, Wang C, Yang J, Shi W, Pang Q, Wang Y, Li J, Hu B, Xia C. Evident structural anisotropies arising from near-zero particle asphericity in granular spherocylinder packings. Phys Rev E 2024; 110:014903. [PMID: 39161035 DOI: 10.1103/physreve.110.014903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024]
Abstract
With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction from that of granular spheres. These observations can help improve statistical mechanical models for the orientational order transformation of nonspherical granular particle packings, which involves complex interplays between particle shape, frictional contacts, and external force field.
Collapse
Affiliation(s)
| | | | | | | | | | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | | | | | | |
Collapse
|
4
|
de Anda J, Kuchma SL, Webster SS, Boromand A, Lewis KA, Lee CK, Contreras M, Medeiros Pereira VF, Schmidt W, Hogan DA, O’Hern CS, O’Toole GA, Wong GCL. How P. aeruginosa cells with diverse stator composition collectively swarm. mBio 2024; 15:e0332223. [PMID: 38426789 PMCID: PMC11005332 DOI: 10.1128/mbio.03322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the wild-type (WT) strain, with MotAB stators produced at an approximately 40-fold higher level than MotCD stators. However, utilization of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily utilized at low viscosities. Importantly, we find that cells with MotCD stators are ~10× more likely to have an active motor compared to cells uses the MotAB stators. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa, transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator utilization. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the "jamming transition" in active granular matter.IMPORTANCEIt is now known that there exist multifactorial influences on swarming motility for P. aeruginosa, but it is not clear precisely why stator selection in the flagellum motor is so important. We show differential production and utilization of the stators. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies: the fraction of flagellum-active cells in a population on average with MotCD is active ~10× more often than with MotAB. What emerges from this complex landscape of stator utilization and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility and how the stators potentially relate to surface sensing circuitry.
Collapse
Affiliation(s)
- Jaime de Anda
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Sherry L. Kuchma
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Shanice S. Webster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arman Boromand
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut, USA
| | - Kimberley A. Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Calvin K. Lee
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Maria Contreras
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | | | - William Schmidt
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Corey S. O’Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
5
|
Li JJ, Guo RX, Ai BQ. Trapping of deformable active particles by a periodic background potential. Phys Rev E 2024; 109:044143. [PMID: 38755904 DOI: 10.1103/physreve.109.044143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
The dynamic behaviors, specifically trapping and sorting, of active particles interacting with periodic substrates have garnered significant attention. This study investigates numerically the trapping of soft, deformable particles on a periodic potential substrate, which can be experimentally verified through optical tweezers. The research demonstrates that multiple factors, including the relative size of traps, self-propelled velocity, shape parameters, ratio of particles to traps, and translational diffusion, can influence the trapping effect. Within certain parameter boundaries, it is shown that all particles can be consistently trapped. The research reveals that stable trapping typically occurs at median values of the relative trap size. An increase in the self-propelled velocity, the shape parameter, and the translational diffusion coefficient tends to facilitate the escapement of the particles from the traps. It is noteworthy that particles with larger shape parameters can escape even when the restoring force exceeds the self-propelled force. In addition, as the ratio of particles to traps grows, the fraction of trapped particles steadily reduces. Notably, rigid particles are consistently divided and trapped by traps closely approximating an integer multiple of the particles' area, up until the ratio reaches the aforesaid integer value. These findings can potentially enhance the understanding of the interactive effects between active deformable particles and periodic substrates. Moreover, this work suggests a different experimental approach to sort active particles based on rigidity disparities.
Collapse
Affiliation(s)
- Jia-Jian Li
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Rui-Xue Guo
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Xie Z, Atherton TJ. Jamming on convex deformable surfaces. SOFT MATTER 2024; 20:1070-1078. [PMID: 38206105 DOI: 10.1039/d2sm01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Jamming is a fundamental transition that governs the behavior of particulate media, including sand, foams and dense suspensions. Upon compression, such media change from freely flowing to a disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft materials and deformable substrates, including emulsions and biological matter, remains unknown. Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties continuously tunable between those of classically jammed and conventional elastic media. The compact and curved geometry significantly alters the vibrational spectra of the structures relative to jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework that unifies our understanding of solidification processes that take place on deformable media and lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly processes.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| |
Collapse
|
7
|
Zhang J, Wang D, Jin W, Xia A, Pashine N, Kramer-Bottiglio R, Shattuck MD, O'Hern CS. Designing the pressure-dependent shear modulus using tessellated granular metamaterials. Phys Rev E 2023; 108:034901. [PMID: 37849141 DOI: 10.1103/physreve.108.034901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 10/19/2023]
Abstract
Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus 〈G〉 increases as a power law in pressure p for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase or decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct tessellated granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on p. We find that the slope of the shear modulus with pressure λ_{c}<0 for all packings in single cells with PBC where the number of particles per cell N≥6. In contrast, single cells with FXW and FLW can possess λ_{c}>0, as well as λ_{c}<0, for N≤16. We show that we can force the mechanical properties of multicell granular metamaterials to possess those of single cells by constraining the end points of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a platform for the design of soft materials with specified mechanical properties.
Collapse
Affiliation(s)
- Jerry Zhang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Annie Xia
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Nidhi Pashine
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Rebecca Kramer-Bottiglio
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Zhang S, Jin W, Wang D, Xu D, Zhang J, Shattuck MD, O'Hern CS. Local and global measures of the shear moduli of jammed disk packings. Phys Rev E 2023; 107:054903. [PMID: 37329065 DOI: 10.1103/physreve.107.054903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Strain-controlled isotropic compression gives rise to jammed packings of repulsive, frictionless disks with either positive or negative global shear moduli. We carry out computational studies to understand the contributions of the negative shear moduli to the mechanical response of jammed disk packings. We first decompose the ensemble-averaged, global shear modulus as 〈G〉=(1-F_{-})〈G_{+}〉+F_{-}〈G_{-}〉, where F_{-} is the fraction of jammed packings with negative shear moduli and 〈G_{+}〉 and 〈G_{-}〉 are the average values from packings with positive and negative moduli, respectively. We show that 〈G_{+}〉 and 〈|G_{-}|〉 obey different power-law scaling relations above and below pN^{2}∼1. For pN^{2}>1, both 〈G_{+}〉N and 〈|G_{-}|〉N∼(pN^{2})^{β}, where β∼0.5 for repulsive linear spring interactions. Despite this, 〈G〉N∼(pN^{2})^{β^{'}} with β^{'}≳0.5 due to the contributions from packings with negative shear moduli. We show further that the probability distribution of global shear moduli P(G) collapses at fixed pN^{2} and different values of p and N. We calculate analytically that P(G) is a Γ distribution in the pN^{2}≪1 limit. As pN^{2} increases, the skewness of P(G) decreases and P(G) becomes a skew-normal distribution with negative skewness in the pN^{2}≫1 limit. We also partition jammed disk packings into subsystems using Delaunay triangulation of the disk centers to calculate local shear moduli. We show that the local shear moduli defined from groups of adjacent triangles can be negative even when G>0. The spatial correlation function of local shear moduli C(r[over ⃗]) displays weak correlations for pn_{sub}^{2}<10^{-2}, where n_{sub} is the number of particles within each subsystem. However, C(r[over ⃗]) begins to develop long-ranged spatial correlations with fourfold angular symmetry for pn_{sub}^{2}≳10^{-2}.
Collapse
Affiliation(s)
- Shiyun Zhang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Weiwei Jin
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Dong Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Ding Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
de Anda J, Kuchma SL, Webster SS, Boromand A, Lewis KA, Lee CK, Contreras M, Pereira VFM, Hogan DA, O'Hern CS, O'Toole GA, Wong GCL. How individual P. aeruginosa cells with diverse stator distributions collectively form a heterogeneous macroscopic swarming population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536285. [PMID: 37090636 PMCID: PMC10120709 DOI: 10.1101/2023.04.10.536285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the WT strain, with MotAB stators produced ∼40-fold more than MotCD stators. However, recruitment of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily recruited at low viscosities. Importantly, we find that cells with MotCD stators are ∼10x more likely to have an active motor compared to cells without, so wild-type, WT, populations are intrinsically heterogeneous and not reducible to MotAB-dominant or MotCD-dominant behavior. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa , transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator recruitment. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the 'jamming transition' in active granular matter. Importance After extensive study, it is now known that there exist multifactorial influences on swarming motility in P. aeruginosa , but it is not clear precisely why stator selection in the flagellum motor is so important or how this process is collectively initiated or arrested. Here, we show that for P. aeruginosa PA14, MotAB stators are produced ∼40-fold more than MotCD stators, but recruitment of MotCD over MotAB stators requires higher liquid viscosities. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies, the fraction of flagellum-active cells in a population on average, with MotCD active ∼10x more often than MotAB. What emerges from this complex landscape of stator recruitment and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility, and how they potentially relate to surface sensing circuitry.
Collapse
|
10
|
Manning ML. Essay: Collections of Deformable Particles Present Exciting Challenges for Soft Matter and Biological Physics. PHYSICAL REVIEW LETTERS 2023; 130:130002. [PMID: 37067323 DOI: 10.1103/physrevlett.130.130002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Indexed: 05/11/2023]
Abstract
The field of soft matter physics has expanded rapidly over the past several decades, as physicists realize that a broad set of materials and systems are amenable to a physical understanding based on the interplay of entropy, elasticity, and geometry. The fields of biological physics and the physics of living systems have similarly emerged as bona fide independent areas of physics in part because tools from molecular and cell biology and optical physics allow scientists to make new quantitative measurements to test physical principles in living systems. This Essay will highlight two exciting future challenges I see at the intersection of these two fields: characterizing emergent behavior and harnessing actuation in highly deformable active objects. I will attempt to show how this topic is a natural extension of older and more recent discoveries and why I think it is likely to unfurl into a wide range of projects that can transform both fields. Progress in this area will enable new platforms for creating adaptive smart materials that can execute large-scale changes in shape in response to stimuli and improve our understanding of biological function, potentially allowing us to identify new targets for fighting disease. Part of a series of Essays which concisely present author visions for the future of their field.
Collapse
Affiliation(s)
- M Lisa Manning
- Syracuse University, Department of Physics and BioInspired Institute, Syracuse, New York 13244, USA
| |
Collapse
|
11
|
Pan D, Meng F, Jin Y. Shear hardening in frictionless amorphous solids near the jamming transition. PNAS NEXUS 2023; 2:pgad047. [PMID: 36896136 PMCID: PMC9991460 DOI: 10.1093/pnasnexus/pgad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
The jamming transition, generally manifested by a rapid increase of rigidity under compression (i.e. compression hardening), is ubiquitous in amorphous materials. Here we study shear hardening in deeply annealed frictionless packings generated by numerical simulations, reporting critical scalings absent in compression hardening. We demonstrate that hardening is a natural consequence of shear-induced memory destruction. Based on an elasticity theory, we reveal two independent microscopic origins of shear hardening: (i) the increase of the interaction bond number and (ii) the emergence of anisotropy and long-range correlations in the orientations of bonds-the latter highlights the essential difference between compression and shear hardening. Through the establishment of physical laws specific to anisotropy, our work completes the criticality and universality of jamming transition, and the elasticity theory of amorphous solids.
Collapse
Affiliation(s)
- Deng Pan
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fanlong Meng
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yuliang Jin
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
12
|
Gnidovec A, Božič A, Čopar S. Dense packings of geodesic hard ellipses on a sphere. SOFT MATTER 2022; 18:7670-7678. [PMID: 36172841 DOI: 10.1039/d2sm00624c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Packing problems are abundant in nature and have been researched thoroughly both experimentally and in numerical models. In particular, packings of anisotropic, elliptical particles often emerge in models of liquid crystals, colloids, and granular and jammed matter. While most theoretical studies on anisotropic particles have thus far dealt with packings in Euclidean geometry, there are many experimental systems where anisotropically-shaped particles are confined to a curved surface, such as Pickering emulsions stabilized by ellipsoidal particles or protein adsorbates on lipid vesicles. Here, we study random close packing configurations in a two-dimensional model of spherical geodesic ellipses. We focus on the interplay between finite-size effects and curvature that is most prominent at smaller system sizes. We demonstrate that on a spherical surface, monodisperse ellipse packings are inherently disordered, with a non-monotonic dependence of both their packing fraction and the mean contact number on the ellipse aspect ratio, as has also been observed in packings of ellipsoids in both 2D and 3D flat space. We also point out some fundamental differences with previous Euclidean studies and discuss the effects of curvature on our results. Importantly, we show that the underlying spherical surface introduces frustration and results in disordered packing configurations even in systems of monodispersed particles, in contrast to the 2D Euclidean case of ellipse packing. This demonstrates that closed curved surfaces can be effective at introducing disorder in a system and could facilitate the study of monodispersed random packings.
Collapse
Affiliation(s)
- Andraž Gnidovec
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Simon Čopar
- University of Ljubljana, Faculty of Mathematics and Physics, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Damavandi OK, Hagh VF, Santangelo CD, Manning ML. Energetic rigidity. II. Applications in examples of biological and underconstrained materials. Phys Rev E 2022; 105:025004. [PMID: 35291184 DOI: 10.1103/physreve.105.025004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
This is the second paper devoted to energetic rigidity, in which we apply our formalism to examples in two dimensions: Underconstrained random regular spring networks, vertex models, and jammed packings of soft particles. Spring networks and vertex models are both highly underconstrained, and first-order constraint counting does not predict their rigidity, but second-order rigidity does. In contrast, spherical jammed packings are overconstrained and thus first-order rigid, meaning that constraint counting is equivalent to energetic rigidity as long as prestresses in the system are sufficiently small. Aspherical jammed packings on the other hand have been shown to be jammed at hypostaticity, which we use to argue for a modified constraint counting for systems that are energetically rigid at quartic order.
Collapse
Affiliation(s)
- Ojan Khatib Damavandi
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - Varda F Hagh
- James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Christian D Santangelo
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - M Lisa Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
14
|
Zhang X, Dai D. Aspects of bulk properties of amorphous jammed disks under isotopic compression. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:140. [PMID: 34792637 DOI: 10.1140/epje/s10189-021-00145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
By investigating the bidisperse disks under isotropic compression, we show the importance of non-affine deformation on the bulk properties of jammed disordered matter and how the mechanical properties are affected by the variation of microscopic quantities with the excess volume density [Formula: see text] and the friction coefficient [Formula: see text]. In theory, we derive a simple formula for the pressure of disk packings which sets up a bridge between the pressure and other statistical quantities like the contact number density and the average normal force. This pressure formula is used to derive the reduced pressure [Formula: see text] and the reduced bulk modulus [Formula: see text] for disk packings with linear interactions and under affine compression without new contacts. Combining theoretical formulae with Discrete Element Method (DEM) simulations, we investigate the average contact number [Formula: see text] and the average reduced overlap [Formula: see text] and give the analysis on how [Formula: see text] and [Formula: see text] are affected by the variation of Z and [Formula: see text]. For frictionless disk packings, we find that the affine assumption causes large deviation on Z and [Formula: see text] relative to those of non-affine compression and therefore fails to predict the quantitative results of [Formula: see text]. For packings with a fixed [Formula: see text], due to the non-affine deformation, [Formula: see text] varies approximately linear with the increasing [Formula: see text] and Z increases sharply near the jamming point and then approaches a saturation value. With a fixed [Formula: see text] and the increasing [Formula: see text], [Formula: see text] changes by a small amount while Z presents obvious decrease. The decrease of Z causes the decrease of the slope of function [Formula: see text] and the value of [Formula: see text] at a fixed [Formula: see text].
Collapse
Affiliation(s)
- Xinggang Zhang
- Institute of Physics, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Dan Dai
- College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
15
|
Wang D, Treado JD, Boromand A, Norwick B, Murrell MP, Shattuck MD, O'Hern CS. The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions. SOFT MATTER 2021; 17:9901-9915. [PMID: 34697616 PMCID: PMC9118367 DOI: 10.1039/d1sm01228b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are determined by a shape-energy function with terms that constrain the particle surface area, volume, and curvature, and prevent interparticle overlap. We show that jammed packings of deformable particles without bending energy possess low-frequency, quartic vibrational modes, whose number decreases with increasing asphericity and matches the number of missing contacts relative to the isostatic value. In contrast, jammed packings of deformable particles with non-zero bending energy are isostatic in 3D, with no quartic modes. We find that the contributions to the eigenmodes of the dynamical matrix from the shape degrees of freedom are significant over the full range of frequency and shape parameters for particles with zero bending energy. We further show that the ensemble-averaged shear modulus 〈G〉 scales with pressure P as 〈G〉 ∼ Pβ, with β ≈ 0.75 for jammed packings of deformable particles with zero bending energy. In contrast, β ≈ 0.5 for packings of deformable particles with non-zero bending energy, which matches the value for jammed packings of soft, spherical particles with fixed shape. These studies underscore the importance of incorporating particle deformability and shape change when modeling the properties of jammed soft materials.
Collapse
Affiliation(s)
- Dong Wang
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.
| | - John D Treado
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Arman Boromand
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.
| | - Blake Norwick
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Michael P Murrell
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06520, USA
- Systems Biology Institute, Yale University, West Haven, Connecticut, 06516, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA.
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
16
|
Ikeda H. Testing mean-field theory for jamming of non-spherical particles: contact number, gap distribution, and vibrational density of states. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:120. [PMID: 34580779 DOI: 10.1140/epje/s10189-021-00116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We perform numerical simulations of the jamming transition of non-spherical particles in two dimensions. In particular, we systematically investigate how the physical quantities at the jamming transition point behave when the shapes of the particle deviate slightly from the perfect disks. For efficient numerical simulation, we first derive an analytical expression of the gap function, using the perturbation theory around the reference disks. Starting from disks, we observe the effects of the deformation of the shapes of particles by the n-th-order term of the Fourier series [Formula: see text]. We show that the several physical quantities, such as the number of contacts, gap distribution, and characteristic frequencies of the vibrational density of states, show the power-law behaviors with respect to the linear deviation from the reference disks. The power-law behaviors do not depend on n and are fully consistent with the mean-field theory of the jamming of non-spherical particles. This result suggests that the mean-field theory holds very generally for nearly spherical particles.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
17
|
Zhang J, VanderWerf K, Li C, Zhang S, Shattuck MD, O'Hern CS. Mechanical response of packings of nonspherical particles: A case study of two-dimensional packings of circulo-lines. Phys Rev E 2021; 104:014901. [PMID: 34412339 DOI: 10.1103/physreve.104.014901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023]
Abstract
We investigate the mechanical response of jammed packings of circulo-lines in two spatial dimensions, interacting via purely repulsive, linear spring forces, as a function of pressure P during athermal, quasistatic isotropic compression. The surface of a circulo-line is defined as the collection of points that is equidistant to a line; circulo-lines are composed of a rectangular central shaft with two semicircular end caps. Prior work has shown that the ensemble-averaged shear modulus for jammed disk packings scales as a power law, 〈G(P)〉∼P^{β}, with β∼0.5, over a wide range of pressure. For packings of circulo-lines, we also find robust power-law scaling of 〈G(P)〉 over the same range of pressure for aspect ratios R≳1.2. However, the power-law scaling exponent β∼0.8-0.9 is much larger than that for jammed disk packings. To understand the origin of this behavior, we decompose 〈G〉 into separate contributions from geometrical families, G_{f}, and from changes in the interparticle contact network, G_{r}, such that 〈G〉=〈G_{f}〉+〈G_{r}〉. We show that the shear modulus for low-pressure geometrical families for jammed packings of circulo-lines can both increase and decrease with pressure, whereas the shear modulus for low-pressure geometrical families for jammed disk packings only decreases with pressure. For this reason, the geometrical family contribution 〈G_{f}〉 is much larger for jammed packings of circulo-lines than for jammed disk packings at finite pressure, causing the increase in the power-law scaling exponent for 〈G(P)〉.
Collapse
Affiliation(s)
- Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Chengling Li
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Shiyun Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.,Department of Physics, Yale University, New Haven, Connecticut 06520, USA.,Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
18
|
Tuckman PJ, VanderWerf K, Yuan Y, Zhang S, Zhang J, Shattuck MD, O'Hern CS. Contact network changes in ordered and disordered disk packings. SOFT MATTER 2020; 16:9443-9455. [PMID: 32940321 PMCID: PMC9118336 DOI: 10.1039/d0sm01137a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, "polydispersity" strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes. Jump changes occur when a contact network becomes mechanically unstable, particles "rearrange", and the potential energy (when the strain is applied at constant packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives are discontinuous. During point changes, a single contact is either added to or removed from the contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third- and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the importance of point changes by studying the transition from a hexagonal crystal to a disordered crystal induced by applying polydispersity strain. During this transition, the system only undergoes point changes, with no jump changes. We emphasize that one must understand point changes, as well as jump changes, to predict the mechanical properties of jammed packings.
Collapse
Affiliation(s)
- Philip J Tuckman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shiyun Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA. and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
19
|
Heussinger C. Packings of frictionless spherocylinders. Phys Rev E 2020; 102:022903. [PMID: 32942494 DOI: 10.1103/physreve.102.022903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We present simulation results on the properties of packings of frictionless spherocylindrical particles. Starting from a random distribution of particles in space, a packing is produced by minimizing the potential energy of interparticle contacts until a force-equilibrated state is reached. For different particle aspect ratios α=10⋯40, we calculate contacts z, pressure as well as bulk and shear modulus. Most important is the fraction f_{0}(α) of spherocylinders with contacts at both ends, as it governs the jamming threshold z_{c}(α)=8+2f_{0}(α). These results highlight the important role of the axial "sliding" degree of freedom of a spherocylinder, which is a zero-energy mode but only if no end contacts are present.
Collapse
Affiliation(s)
- Claus Heussinger
- Institute for Theoretical Physics, Georg August University Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Wentworth-Nice P, Ridout SA, Jenike B, Liloia A, Graves AL. Structured randomness: jamming of soft discs and pins. SOFT MATTER 2020; 16:5305-5313. [PMID: 32467960 DOI: 10.1039/d0sm00577k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Simulations are used to find the zero temperature jamming threshold, φj, for soft, bidisperse disks in the presence of small fixed particles, or "pins", arranged in a lattice. The presence of pins leads, as one expects, to a decrease in φj. Structural properties of the system near the jamming threshold are calculated as a function of the pin density. While the correlation length exponent remains ν = 1/2 at low pin densities, the system is mechanically stable with more bonds, yet fewer contacts than the Maxwell criterion implies in the absence of pins. In addition, as pin density increases, novel bond orientational order and long-range spatial order appear, which are correlated with the square symmetry of the pin lattice.
Collapse
Affiliation(s)
| | - Sean A Ridout
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Jenike
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Ari Liloia
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| | - Amy L Graves
- Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA.
| |
Collapse
|
21
|
Ikeda H, Brito C, Wyart M, Zamponi F. Jamming with Tunable Roughness. PHYSICAL REVIEW LETTERS 2020; 124:208001. [PMID: 32501092 DOI: 10.1103/physrevlett.124.208001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
We introduce a new model to study the effect of surface roughness on the jamming transition. By performing numerical simulations, we show that for a smooth surface, the jamming transition density and the contact number at the transition point both increase upon increasing asphericity, as for ellipsoids and spherocylinders. Conversely, for a rough surface, both quantities decrease, in quantitative agreement with the behavior of frictional particles. Furthermore, in the limit corresponding to the Coulomb friction law, the model satisfies a generalized isostaticity criterion proposed in previous studies. We introduce a counting argument that justifies this criterion and interprets it geometrically. Finally, we propose a simple theory to predict the contact number at finite friction from the knowledge of the force distribution in the infinite friction limit.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo Tokyo 153-8902, Japan
| | - Carolina Brito
- Instituto de Física, UFRGS, 91501-970, Porto Alegre, Brazil
| | - Matthieu Wyart
- Institute of Physics, EPFL, CH-1015 Lausanne, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'École Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
22
|
Yuan Y, Deng W, Li S. Structural universality in disordered packings with size and shape polydispersity. SOFT MATTER 2020; 16:4528-4539. [PMID: 32356543 DOI: 10.1039/d0sm00110d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We numerically investigate disordered jammed packings with both size and shape polydispersity, using frictionless superellipsoidal particles. We implement the set Voronoi tessellation technique to evaluate the local specific volume, i.e., the ratio of cell volume over particle volume, for each individual particle. We focus on the average structural properties for different types of particles binned by their sizes and shapes. We generalize the basic observation that the larger particles are locally packed more densely than the smaller ones in a polydisperse-sized packing into systems with coupled particle shape dispersity. For this purpose, we define the normalized free volume vf to measure the local compactness of a particle and study its dependency on the normalized particle size A. The definition of vf relies on the calibrated monodisperse specific volume for a certain particle shape. For packings with shape dispersity, we apply the previously introduced concept of equivalent diameter for a non-spherical particle to define A properly. We consider three systems: (A) linear superposition states of mixed-shape packings, (B) merely polydisperse-sized packings, and (C) packings with coupled size and shape polydispersity. For (A), the packing is simply considered as a mixture of different subsystems corresponding to monodisperse packings for different shape components, leading to A = 1, and vf = 1 by definition. We propose a concise model to estimate the shape-dependent factor αc, which defines the equivalent diameter for a certain particle. For (B), vf collapses as a function of A, independent of specific particle shape and size polydispersity. Such structural universality is further validated by a mean-field approximation. For (C), we find that the master curve vf(A) is preserved when particles possess similar αc in a packing. Otherwise, the dispersity of αc among different particles causes the deviation from vf(A). These findings show that a polydisperse packing can be estimated as the combination of various building blocks, i.e., bin components, with a universal relation vf(A).
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
VanderWerf K, Boromand A, Shattuck MD, O'Hern CS. Pressure Dependent Shear Response of Jammed Packings of Frictionless Spherical Particles. PHYSICAL REVIEW LETTERS 2020; 124:038004. [PMID: 32031840 PMCID: PMC9128574 DOI: 10.1103/physrevlett.124.038004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Indexed: 05/09/2023]
Abstract
The mechanical response of packings of purely repulsive, spherical particles to athermal, quasistatic simple shear near jamming onset is highly nonlinear. Previous studies have shown that, at small pressure p, the ensemble-averaged static shear modulus ⟨G-G_{0}⟩ scales with p^{α}, where α≈1, but above a characteristic pressure p^{**}, ⟨G-G_{0}⟩∼p^{β}, where β≈0.5. However, we find that the shear modulus G^{i} for an individual packing typically decreases linearly with p along a geometrical family where the contact network does not change. We resolve this discrepancy by showing that, while the shear modulus does decrease linearly within geometrical families, ⟨G⟩ also depends on a contribution from discontinuous jumps in ⟨G⟩ that occur at the transitions between geometrical families. For p>p^{**}, geometrical-family and rearrangement contributions to ⟨G⟩ are of opposite signs and remain comparable for all system sizes. ⟨G⟩ can be described by a scaling function that smoothly transitions between two power-law exponents α and β. We also demonstrate the phenomenon of compression unjamming, where a jammed packing unjams via isotropic compression.
Collapse
Affiliation(s)
- Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Arman Boromand
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
24
|
Tian J, Jiao Y. Predicting maximally random jammed packing density of non-spherical hard particles via analytical continuation of fluid equation of state. Phys Chem Chem Phys 2020; 22:22635-22644. [DOI: 10.1039/d0cp03799k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We developed a formalism for accurately predicting the density of MRJ packing state of a wide spectrum of congruent non-spherical hard particles in 3D via analytical fluid EOS.
Collapse
Affiliation(s)
| | - Yang Jiao
- Materials Science and Engineering
- Arizona State University
- Tempe
- USA
- Department of Physics
| |
Collapse
|
25
|
Nath T, Heussinger C. Rheology in dense assemblies of spherocylinders: Frictional vs. frictionless. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:157. [PMID: 31863209 DOI: 10.1140/epje/i2019-11925-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Using molecular dynamics simulations, we study the steady shear flow of dense assemblies of anisotropic spherocylindrical particles of varying aspect ratios. Comparing frictionless and frictional particles we discuss the specific role of frictional inter-particle forces for the rheological properties of the system. In the frictional system we evidence a shear-thickening regime, similar to that for spherical particles. Furthermore, friction suppresses the alignment of the spherocylinders along the flow direction. Finally, the jamming density in frictional systems is rather insensitive to variations in aspect ratio, quite contrary to what is known from frictionless systems.
Collapse
Affiliation(s)
- Trisha Nath
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077, Göttingen, Germany
| | - Claus Heussinger
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
26
|
Yuan Y, VanderWerf K, Shattuck MD, O'Hern CS. Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering. SOFT MATTER 2019; 15:9751-9761. [PMID: 31742301 PMCID: PMC6902436 DOI: 10.1039/c9sm01932d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial dimensions. We consider more than 200 different particle shapes by varying the three shape parameters that define superellipsoids. We characterize the structural and mechanical properties of both disordered and ordered packings using two packing-generation protocols. We perform athermal quasi-static compression simulations starting from either random, dilute configurations (Protocol 1) or thermalized, dense configurations (Protocol 2), which allows us to tune the orientational order of the packings. In general, we find that superellipsoid packings are hypostatic, with coordination number zJ < ziso, where ziso = 2df and df = 5 or 6 depending on whether the particles are axi-symmetric or not. Over the full range of orientational order, we find that the number of quartic modes of the dynamical matrix for the packings always matches the number of missing contacts relative to the isostatic value. This result suggests that there are no mechanically redundant contacts for ordered, yet hypostatic packings of superellipsoidal particles. Additionally, we find that the packing fraction at jamming onset for disordered packings of superellipsoidal depends on at least two particle shape parameters, e.g. the asphericity A and reduced aspect ratio β of the particles.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
27
|
Shiraishi K, Mizuno H, Ikeda A. Vibrational properties of two-dimensional dimer packings near the jamming transition. Phys Rev E 2019; 100:012606. [PMID: 31499851 DOI: 10.1103/physreve.100.012606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Jammed particulate systems composed of various shapes of particles undergo the jamming transition as they are compressed or decompressed. To date, sphere packings have been extensively studied in many previous works, where isostaticity at the transition and scaling laws with the pressure of various quantities, including the contact number and the vibrational density of states, have been established. Additionally, much attention has been paid to nonspherical packings, and particularly recent work has made progress in understanding ellipsoidal packings. In this work, we study the dimer packings in two dimensions, which have been much less understood than systems of spheres and ellipsoids. We first study the contact number of dimers near the jamming transition. It turns out that packings of dimers have "rotational rattlers," each of which still has a free rotational motion. After correcting this effect, we show that dimers become isostatic at the jamming, and the excess contact number obeys the same critical law and finite-size scaling law as those of spheres. We next study the vibrational properties of dimers near the transition. We find that the vibrational density of states of dimers exhibits two characteristic plateaus that are separated by a peak. The high-frequency plateau is dominated by the translational degree of freedom, while the low-frequency plateau is dominated by the rotational degree of freedom. We establish the critical scaling laws of the characteristic frequencies of the plateaus and the peak near the transition. In addition, we present detailed characterizations of the real space displacement fields of vibrational modes in the translational and rotational plateaus.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
28
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Phys Rev E 2019; 100:032906. [PMID: 31639991 DOI: 10.1103/physreve.100.032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/10/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state shear strain applied at a fixed finite rate. Energy dissipation occurs via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension and resulting in a Newtonian rheology. We study the resulting pressure p and deviatoric shear stress σ of the interacting spherocylinders as a function of packing fraction ϕ, strain rate γ[over ̇], and a parameter α that measures the asphericity of the particles; α is varied to consider the range from nearly circular disks to elongated rods. We consider the direction of anisotropy of the stress tensor, the macroscopic friction μ=σ/p, and the divergence of the transport coefficient η_{p}=p/γ[over ̇] as ϕ is increased to the jamming transition ϕ_{J}. From a phenomenological analysis of Herschel-Bulkley rheology above jamming, we estimate ϕ_{J} as a function of asphericity α and show that the variation of ϕ_{J} with α is the main cause for differences in rheology as α is varied; when plotted as ϕ/ϕ_{J}, rheological curves for different α qualitatively agree. However, a detailed scaling analysis of the divergence of η_{p} for our most elongated particles suggests that the jamming transition of spherocylinders may be in a different universality class than that of circular disks. We also compute the number of contacts per particle Z in the system and show that the value at jamming Z_{J} is a nonmonotonic function of α that is always smaller than the isostatic value. We measure the probability distribution of contacts per unit surface length P(ϑ) at polar angle ϑ with respect to the spherocylinder spine and find that as α→0 this distribution seems to diverge at ϑ=π/2, giving a finite limiting probability for contacts on the vanishingly small flat sides of the spherocylinder. Finally, we consider the variation of the average contact force as a function of location on the particle surface.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
29
|
Boromand A, Signoriello A, Lowensohn J, Orellana CS, Weeks ER, Ye F, Shattuck MD, O'Hern CS. The role of deformability in determining the structural and mechanical properties of bubbles and emulsions. SOFT MATTER 2019; 15:5854-5865. [PMID: 31246221 DOI: 10.1039/c9sm00775j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We perform computational studies of jammed particle packings in two dimensions undergoing isotropic compression using the well-characterized soft particle (SP) model and deformable particle (DP) model that we developed for bubbles and emulsions. In the SP model, circular particles are allowed to overlap, generating purely repulsive forces. In the DP model, particles minimize their perimeter, while deforming at fixed area to avoid overlap during compression. We compare the structural and mechanical properties of jammed packings generated using the SP and DP models as a function of the packing fraction ρ, instead of the reduced number density φ. We show that near jamming onset the excess contact number Δz = z - zJ and shear modulus G scale as Δρ0.5 in the large system limit for both models, where Δρ = ρ - ρJ and zJ ≈ 4 and ρJ ≈ 0.842 are the values at jamming onset. Δz and G for the SP and DP models begin to differ for ρ ⪆ 0.88. In this regime, Δz ∼ G can be described by a sum of two power-laws in Δρ, i.e. Δz ∼ G ∼ C0Δρ0.5 + C1Δρ1.0 to lowest order. We show that the ratio C1/C0 is much larger for the DP model compared to that for the SP model. We also characterize the void space in jammed packings as a function of ρ. We find that the DP model can describe the formation of Plateau borders as ρ → 1. We further show that the results for z and the shape factor A versus ρ for the DP model agree with recent experimental studies of foams and emulsions.
Collapse
Affiliation(s)
- Arman Boromand
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA. and Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Alexandra Signoriello
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Janna Lowensohn
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Carlos S Orellana
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Eric R Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA. and Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
30
|
Liu L, Yuan Y, Deng W, Li S. Determining random packing density and equivalent packing size of superballs via binary mixtures with spheres. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Tayeb R, Mao Y, Zhang Y. Smoothed particle hydrodynamics simulation of granular system under cyclic compressions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
|
33
|
Soik SM, Sharp TA. Effects of spherical confinement and backbone stiffness on flexible polymer jamming. Phys Rev E 2019; 99:052505. [PMID: 31212486 DOI: 10.1103/physreve.99.052505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/07/2022]
Abstract
We use molecular simulations to study jamming of a crumpled bead-spring model polymer in a finite container and compare to jamming of repulsive spheres. After proper constraint counting, the onset of rigidity is seen to occur isostatically as in the case of repulsive spheres. Despite this commonality, the presence of the curved container wall and polymer backbone bonds introduce new mechanical properties. Notably, these include additional bands in the vibrational density of states that reflect the material structure as well as oscillations in local contact number and density near the wall but with lower amplitude for polymers. Polymers have fewer boundary contacts, and this low-density surface layer strongly reduces the global bulk modulus. We further show that bulk-modulus dependence on backbone stiffness can be described by a model of stiffnesses in series and discuss potential experimental and biological applications.
Collapse
Affiliation(s)
- Samuel M Soik
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tristan A Sharp
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
34
|
Gniewek P, Schreck CF, Hallatschek O. Biomechanical Feedback Strengthens Jammed Cellular Packings. PHYSICAL REVIEW LETTERS 2019; 122:208102. [PMID: 31172757 DOI: 10.1103/physrevlett.122.208102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Growth in confined spaces can drive cellular populations through a jamming transition from a fluidlike state to a solidlike state. Experiments have found that jammed budding yeast populations can build up extreme compressive pressures (over 1 MPa), which in turn feed back onto cellular physiology by slowing or even stalling cell growth. Using numerical simulations, we investigate how this feedback impacts the mechanical properties of model jammed cell populations. We find that feedback directs growth toward poorly coordinated regions, resulting in an excess number of cell-cell contacts that rigidify cell packings. Cell packings possess anomalously large shear and bulk moduli that depend sensitively on the strength of feedback. These results demonstrate that mechanical feedback on the single-cell level is a simple mechanism by which living systems may tune their population-level mechanical properties.
Collapse
Affiliation(s)
- Pawel Gniewek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Carl F Schreck
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Marschall T, Keta YE, Olsson P, Teitel S. Orientational Ordering in Athermally Sheared, Aspherical, Frictionless Particles. PHYSICAL REVIEW LETTERS 2019; 122:188002. [PMID: 31144891 DOI: 10.1103/physrevlett.122.188002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We numerically simulate the uniform athermal shearing of bidisperse, frictionless, two-dimensional spherocylinders and three-dimensional prolate ellipsoids. We focus on the orientational ordering of particles as an asphericity parameter α→0 and particles approach spherical. We find that the nematic order parameter S_{2} is nonmonotonic in the packing fraction ϕ and that, as α→0, S_{2} stays finite at jamming and above. The approach to spherical particles thus appears to be singular. We also find that sheared particles continue to rotate above jamming and that particle contacts preferentially lie along the narrowest width of the particles, even as α→0.
Collapse
Affiliation(s)
- Theodore Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Yann-Edwin Keta
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
- Département de Physique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
- Département de Physique, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
36
|
Harrington M, Liu AJ, Durian DJ. Machine learning characterization of structural defects in amorphous packings of dimers and ellipses. Phys Rev E 2019; 99:022903. [PMID: 30934296 DOI: 10.1103/physreve.99.022903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Structural defects within amorphous packings of symmetric particles can be characterized using a machine learning approach that incorporates structure functions of radial distances and angular arrangement. This yields a scalar field, softness, that correlates with the probability that a particle is about to be rearranged. However, when particle shapes are elongated, as in the case of dimers and ellipses, we find that the standard structure functions produce imprecise softness measurements. Moreover, ellipses exhibit deformation profiles in stark contrast to circular particles. In order to account for the effects of orientation and alignment, we introduce structure functions to recover the predictive performance of softness, as well as provide physical insight into local and extended dynamics. We study a model disordered solid, a bidisperse two-dimensional granular pillar, driven by uniaxial compression and composed entirely of monomers, dimers, or ellipses. We demonstrate how the computation of softness via a support vector machine extends to dimers and ellipses with the introduction of orientational structure functions. Then we highlight the spatial extent of rearrangements and defects, as well as their cross correlation, for each particle shape. Finally, we demonstrate how an additional machine learning algorithm, recursive feature elimination, provides an avenue to better understand how softness arises from particular structural aspects. We identify the most crucial structure functions in determining softness and discuss their physical implications.
Collapse
Affiliation(s)
- Matt Harrington
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Douglas J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Treado JD, Mei Z, Regan L, O’Hern CS. Void distributions reveal structural link between jammed packings and protein cores. Phys Rev E 2019; 99:022416. [PMID: 30934238 PMCID: PMC6902428 DOI: 10.1103/physreve.99.022416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/07/2022]
Abstract
Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently, we have shown that protein cores possess packing fraction ϕ≈0.56, which is the same as dense, random packing of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void regions. We find that the distributions of surface Voronoi cell volumes and local porosities obey similar statistics in both systems. We also measure the probability that accessible, connected void regions percolate as a function of the size of a spherical probe particle and show that both systems possess the same critical probe size. We measure the critical exponent τ that characterizes the size distribution of connected void clusters at the onset of percolation. We find that the cluster size statistics are similar for void percolation in packings of amino-acid-shaped particles and randomly placed spheres, but different from that for void percolation in jammed sphere packings. We propose that the connected void regions are a defining structural feature of proteins and can be used to differentiate experimentally observed proteins from decoy structures that are generated using computational protein design software. This work emphasizes that jammed packings of amino-acid-shaped particles can serve as structural and mechanical analogs of protein cores, and could therefore be useful in modeling the response of protein cores to cavity-expanding and -reducing mutations.
Collapse
Affiliation(s)
- John D. Treado
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Zhe Mei
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Corey S. O’Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
38
|
Boromand A, Signoriello A, Ye F, O'Hern CS, Shattuck MD. Jamming of Deformable Polygons. PHYSICAL REVIEW LETTERS 2018; 121:248003. [PMID: 30608748 DOI: 10.1103/physrevlett.121.248003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/13/2018] [Indexed: 06/09/2023]
Abstract
We introduce the deformable particle (DP) model for cells, foams, emulsions, and other soft particulate materials, which adds to the benefits and eliminates deficiencies of existing models. The DP model combines the ability to model individual soft particles with the shape-energy function of the vertex model, and adds arbitrary particle deformations. We focus on 2D deformable polygons with a shape-energy function that is minimized for area a_{0} and perimeter p_{0} and repulsive interparticle forces. We study the onset of jamming versus particle asphericity, A=p_{0}^{2}/4πa_{0}, and find that the packing fraction grows with A until reaching A^{*}=1.16 of the underlying Voronoi cells at confluence. We find that DP packings above and below A^{*} are solidlike, which helps explain the solid-to-fluid transition at A^{*} in the vertex model as a transition from tension- to compression-dominated regimes.
Collapse
Affiliation(s)
- Arman Boromand
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Alexandra Signoriello
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of the City University of New York, New York, New York 10031, USA
| |
Collapse
|
39
|
Brito C, Ikeda H, Urbani P, Wyart M, Zamponi F. Universality of jamming of nonspherical particles. Proc Natl Acad Sci U S A 2018; 115:11736-11741. [PMID: 30381457 PMCID: PMC6243269 DOI: 10.1073/pnas.1812457115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amorphous packings of nonspherical particles such as ellipsoids and spherocylinders are known to be hypostatic: The number of mechanical contacts between particles is smaller than the number of degrees of freedom, thus violating Maxwell's mechanical stability criterion. In this work, we propose a general theory of hypostatic amorphous packings and the associated jamming transition. First, we show that many systems fall into a same universality class. As an example, we explicitly map ellipsoids into a system of "breathing" particles. We show by using a marginal stability argument that in both cases jammed packings are hypostatic and that the critical exponents related to the contact number and the vibrational density of states are the same. Furthermore, we introduce a generalized perceptron model which can be solved analytically by the replica method. The analytical solution predicts critical exponents in the same hypostatic jamming universality class. Our analysis further reveals that the force and gap distributions of hypostatic jamming do not show power-law behavior, in marked contrast to the isostatic jamming of spherical particles. Finally, we confirm our theoretical predictions by numerical simulations.
Collapse
Affiliation(s)
- Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Harukuni Ikeda
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Pierfrancesco Urbani
- Institut de Physique Théorique, Université Paris Saclay, CNRS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif-sur-Yvette, France
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
40
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|