1
|
Prakash P, Baig Y, Peaudecerf FJ, Goldstein RE. Dynamics of an algae-bacteria microcosm: Photosynthesis, chemotaxis, and expulsion in inhomogeneous active matter. Proc Natl Acad Sci U S A 2025; 122:e2410225122. [PMID: 40096603 PMCID: PMC11962504 DOI: 10.1073/pnas.2410225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
In nature, there are significant relationships known between microorganisms from two kingdoms of life, as in the supply of vitamin B12 by bacteria to algae. Such interactions motivate general investigations into the spatiotemporal dynamics of metabolite exchanges. Here we study by experiment and theory a model system: a coculture of the bacterium Bacillus subtilis, an obligate aerobe that is chemotactic to oxygen, and a nonmotile mutant of the alga Chlamydomonas reinhardtii, which photosynthetically produces oxygen when illuminated. Strikingly, when a shaft of light illuminates a thin, initially uniform suspension of the two, the chemotactic influx of bacteria to the photosynthetically active region leads to expulsion of the algae from that area. We propose that this effect arises from advection by the inhomogeneous bacterial concentration. The resulting generalization of Fick's law has been proposed in the context of chemotaxis and is mathematically related to the "turbulent pumping" in magnetohydrodynamics.
Collapse
Affiliation(s)
- Praneet Prakash
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yasa Baig
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | | | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| |
Collapse
|
2
|
Calatrava V, Tejada-Jimenez M, Sanz-Luque E, Fernandez E, Galvan A, Llamas A. Chlamydomonas reinhardtii, a Reference Organism to Study Algal-Microbial Interactions: Why Can't They Be Friends? PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040788. [PMID: 36840135 PMCID: PMC9965935 DOI: 10.3390/plants12040788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/13/2023]
Abstract
The stability and harmony of ecological niches rely on intricate interactions between their members. During evolution, organisms have developed the ability to thrive in different environments, taking advantage of each other. Among these organisms, microalgae are a highly diverse and widely distributed group of major primary producers whose interactions with other organisms play essential roles in their habitats. Understanding the basis of these interactions is crucial to control and exploit these communities for ecological and biotechnological applications. The green microalga Chlamydomonas reinhardtii, a well-established model, is emerging as a model organism for studying a wide variety of microbial interactions with ecological and economic significance. In this review, we unite and discuss current knowledge that points to C. reinhardtii as a model organism for studying microbial interactions.
Collapse
Affiliation(s)
- Victoria Calatrava
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama St., Stanford, CA 94305, USA
| | - Manuel Tejada-Jimenez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edificio Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain
- Correspondence: ; Tel.: +34-957-218352
| |
Collapse
|
3
|
Bunbury F, Deery E, Sayer AP, Bhardwaj V, Harrison EL, Warren MJ, Smith AG. Exploring the onset of B 12 -based mutualisms using a recently evolved Chlamydomonas auxotroph and B 12 -producing bacteria. Environ Microbiol 2022; 24:3134-3147. [PMID: 35593514 PMCID: PMC9545926 DOI: 10.1111/1462-2920.16035] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/01/2022]
Abstract
Cobalamin (vitamin B12 ) is a cofactor for essential metabolic reactions in multiple eukaryotic taxa, including major primary producers such as algae, and yet only prokaryotes can produce it. Many bacteria can colonize the algal phycosphere, forming stable communities that gain preferential access to photosynthate and in return provide compounds such as B12 . Extended coexistence can then drive gene loss, leading to greater algal-bacterial interdependence. In this study, we investigate how a recently evolved B12 -dependent strain of Chlamydomonas reinhardtii, metE7, forms a mutualism with certain bacteria, including the rhizobium Mesorhizobium loti and even a strain of the gut bacterium E. coli engineered to produce cobalamin. Although metE7 was supported by B12 producers, its growth in co-culture was slower than the B12 -independent wild-type, suggesting that high bacterial B12 provision may be necessary to favour B12 auxotrophs and their evolution. Moreover, we found that an E. coli strain that releases more B12 makes a better mutualistic partner, and although this trait may be more costly in isolation, greater B12 release provided an advantage in co-cultures. We hypothesize that, given the right conditions, bacteria that release more B12 may be selected for, particularly if they form close interactions with B12 -dependent algae.
Collapse
Affiliation(s)
- Freddy Bunbury
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK
| | - Andrew P Sayer
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Vaibhav Bhardwaj
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ellen L Harrison
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NH, UK.,Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
4
|
Gupta G, Ndiaye A, Filteau M. Leveraging Experimental Strategies to Capture Different Dimensions of Microbial Interactions. Front Microbiol 2021; 12:700752. [PMID: 34646243 PMCID: PMC8503676 DOI: 10.3389/fmicb.2021.700752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Microorganisms are a fundamental part of virtually every ecosystem on earth. Understanding how collectively they interact, assemble, and function as communities has become a prevalent topic both in fundamental and applied research. Owing to multiple advances in technology, answering questions at the microbial system or network level is now within our grasp. To map and characterize microbial interaction networks, numerous computational approaches have been developed; however, experimentally validating microbial interactions is no trivial task. Microbial interactions are context-dependent, and their complex nature can result in an array of outcomes, not only in terms of fitness or growth, but also in other relevant functions and phenotypes. Thus, approaches to experimentally capture microbial interactions involve a combination of culture methods and phenotypic or functional characterization methods. Here, through our perspective of food microbiologists, we highlight the breadth of innovative and promising experimental strategies for their potential to capture the different dimensions of microbial interactions and their high-throughput application to answer the question; are microbial interaction patterns or network architecture similar along different contextual scales? We further discuss the experimental approaches used to build various types of networks and study their architecture in the context of cell biology and how they translate at the level of microbial ecosystem.
Collapse
Affiliation(s)
- Gunjan Gupta
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Amadou Ndiaye
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Marie Filteau
- Département des Sciences des aliments, Université Laval, Québec, QC, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
5
|
Combining SIMS and mechanistic modelling to reveal nutrient kinetics in an algal-bacterial mutualism. PLoS One 2021; 16:e0251643. [PMID: 34014955 PMCID: PMC8136852 DOI: 10.1371/journal.pone.0251643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Microbial communities are of considerable significance for biogeochemical processes, for the health of both animals and plants, and for biotechnological purposes. A key feature of microbial interactions is the exchange of nutrients between cells. Isotope labelling followed by analysis with secondary ion mass spectrometry (SIMS) can identify nutrient fluxes and heterogeneity of substrate utilisation on a single cell level. Here we present a novel approach that combines SIMS experiments with mechanistic modelling to reveal otherwise inaccessible nutrient kinetics. The method is applied to study the onset of a synthetic mutualistic partnership between a vitamin B12-dependent mutant of the alga Chlamydomonas reinhardtii and the B12-producing, heterotrophic bacterium Mesorhizobium japonicum, which is supported by algal photosynthesis. Results suggest that an initial pool of fixed carbon delays the onset of mutualistic cross-feeding; significantly, our approach allows the first quantification of this expected delay. Our method is widely applicable to other microbial systems, and will contribute to furthering a mechanistic understanding of microbial interactions.
Collapse
|
6
|
Verburg T, Schaap A, Zhang S, den Toonder J, Wang Y. Enhancement of microalgae growth using magnetic artificial cilia. Biotechnol Bioeng 2021; 118:2472-2481. [PMID: 33738795 PMCID: PMC8251745 DOI: 10.1002/bit.27756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Microalgae have shown great potential as a source of biofuels, food, and other bioproducts. More recently, microfluidic devices have been employed in microalgae-related studies. However, at small fluid volumes, the options for controlling flow conditions are more limited and mixing becomes largely reliant on diffusion. In this study, we fabricated magnetic artificial cilia (MAC) and implemented them in millimeter scale culture wells and conducted growth experiments with Scenedesmus subspicatus while actuating the MAC in a rotating magnetic field to create flow and mixing. In addition, surface of MAC was made hydrophilic using plasma treatment and its effect on growth was compared with untreated, hydrophobic MAC. The experiments showed that the growth was enhanced by ten and two times with hydrophobic and hydrophilic MAC, respectively, compared with control groups which contain no MAC. This technique can be used to investigate mixing and flow in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the methods used for creating and controlling MAC can be easily adopted in labs without microfabrication infrastructures, and they can be mastered by people with little prior experience in microfluidics.
Collapse
Affiliation(s)
- Thijn Verburg
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Shuaizhong Zhang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jaap den Toonder
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ye Wang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
7
|
Bárdfalvy D, Anjum S, Nardini C, Morozov A, Stenhammar J. Symmetric Mixtures of Pusher and Puller Microswimmers Behave as Noninteracting Suspensions. PHYSICAL REVIEW LETTERS 2020; 125:018003. [PMID: 32678625 DOI: 10.1103/physrevlett.125.018003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Suspensions of rear- and front-actuated microswimmers immersed in a fluid, known respectively as "pushers" and "pullers," display qualitatively different collective behaviors: beyond a characteristic density, pusher suspensions exhibit a hydrodynamic instability leading to collective motion known as active turbulence, a phenomenon which is absent for pullers. In this Letter, we describe the collective dynamics of a binary pusher-puller mixture using kinetic theory and large-scale particle-resolved simulations. We derive and verify an instability criterion, showing that the critical density for active turbulence moves to higher values as the fraction χ of pullers is increased and disappears for χ≥0.5. We then show analytically and numerically that the two-point hydrodynamic correlations of the 1∶1 mixture are equal to those of a suspension of noninteracting swimmers. Strikingly, our numerical analysis furthermore shows that the full probability distribution of the fluid velocity fluctuations collapses onto the one of a noninteracting system at the same density, where swimmer-swimmer correlations are strictly absent. Our results thus indicate that the fluid velocity fluctuations in 1∶1 pusher-puller mixtures are exactly equal to those of the corresponding noninteracting suspension at any density, a surprising cancellation with no counterpart in equilibrium long-range interacting systems.
Collapse
Affiliation(s)
- Dóra Bárdfalvy
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Shan Anjum
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Cesare Nardini
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| | - Alexander Morozov
- SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
8
|
Ben Said S, Tecon R, Borer B, Or D. The engineering of spatially linked microbial consortia - potential and perspectives. Curr Opin Biotechnol 2020; 62:137-145. [PMID: 31678714 PMCID: PMC7208534 DOI: 10.1016/j.copbio.2019.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 01/05/2023]
Abstract
Traditional biotechnological applications of microorganisms employ mono-cultivation or co-cultivation in well-mixed vessels disregarding the potential of spatially organized cultures. Metabolic specialization and guided species interactions facilitated through spatial isolation would enable consortia of microbes to accomplish more complex functions than currently possible, for bioproduction as well as biodegradation processes. Here, we review concepts of spatially linked microbial consortia in which spatial arrangement is optimized to increase control and facilitate new species combinations. We highlight that genome-scale metabolic network models can inform the design and tuning of synthetic microbial consortia and suggest that a standardized assembly of such systems allows the combination of 'incompatibles', potentially leading to countless novel applications.
Collapse
Affiliation(s)
- Sami Ben Said
- Microbial Systems Ecology, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | - Robin Tecon
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Benedict Borer
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Dani Or
- Soil and Terrestrial Environmental Physics, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
9
|
Wu J, Zusai D. A potential game approach to modelling evolution in a connected society. Nat Hum Behav 2019; 3:604-610. [PMID: 30962617 DOI: 10.1038/s41562-019-0571-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/04/2019] [Indexed: 11/09/2022]
Abstract
When studying human behaviour, it is important to understand not just how individuals interact, but also interactions at the level of communities and populations. Most previous modelling of networks has focused on interactions between individual agents. Here we provide a modelling framework to study the evolution of behaviour in connected populations, by regarding subpopulations as the basic unit of interaction and focusing on the population-level connection structure. We find that when the underlying game played by individuals is a potential game, utilizing such a structure greatly simplifies analysis. In addition, according to known general results on the convergence of evolution dynamics to Nash equilibria in a potential game, our formulation provides a tractable model on behavioural dynamics in social networks that needs only conventional techniques from evolutionary game theory.
Collapse
Affiliation(s)
- Jiabin Wu
- Department of Economics, University of Oregon, Eugene, OR, USA
| | - Dai Zusai
- Department of Economics, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Bauer M, Frey E. Delays in Fitness Adjustment Can Lead to Coexistence of Hierarchically Interacting Species. PHYSICAL REVIEW LETTERS 2018; 121:268101. [PMID: 30636138 DOI: 10.1103/physrevlett.121.268101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/07/2018] [Indexed: 06/09/2023]
Abstract
Organisms that exploit different environments may experience a stochastic delay in adjusting their fitness when they switch habitats. We study two such organisms whose fitness is determined by the species composition of the local environment, as they interact through a public good. We show that a delay in the fitness adjustment can lead to the coexistence of the two species in a metapopulation, although the faster-growing species always wins in well-mixed competition experiments. Coexistence is favored over wide parameter ranges and is independent of spatial clustering. It arises when species are heterogeneous in their fitness and can keep each other balanced.
Collapse
Affiliation(s)
- Marianne Bauer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| |
Collapse
|
11
|
|