1
|
Kailasham R, Khair AS. Effect of speed fluctuations on the collective dynamics of active disks. SOFT MATTER 2023; 19:7764-7774. [PMID: 37791487 DOI: 10.1039/d3sm00665d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Numerical simulations are performed on the collective dynamics of active disks, whose self-propulsion speed (U) varies in time, and whose orientation evolves according to rotational Brownian motion. Two protocols for the evolution of speed are considered: (i) a deterministic one involving a periodic change in U at a frequency ω; and (ii) a stochastic one in which the speeds are drawn from a power-law distribution at time-intervals governed by a Poissonian process of rate β. In the first case, an increase in ω causes the disks to go from a clustered state to a homogeneous one through an apparent phase-transition, provided that the direction of self-propulsion is allowed to reverse. Similarly, in the second case, for a fixed value of β, the extent of cluster-breakup is larger when reversals in the self-propulsion direction are permitted. Motility-induced phase separation of the disks may therefore be avoided in active matter suspensions in which the constituents are allowed to reverse their self-propulsion direction, immaterial of the precise temporal nature of the reversal (deterministic or stochastic). Equally, our results demonstrate that phase separation could occur even in the absence of a time-averaged motility of an individual active agent, provided that the rate of direction reversals is smaller than the orientational diffusion rate.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
2
|
Putzke M, Stark H. Optimal navigation of a smart active particle: directional and distance sensing. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:48. [PMID: 37335344 PMCID: PMC10279590 DOI: 10.1140/epje/s10189-023-00309-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
We employ Q learning, a variant of reinforcement learning, so that an active particle learns by itself to navigate on the fastest path toward a target while experiencing external forces and flow fields. As state variables, we use the distance and direction toward the target, and as action variables the active particle can choose a new orientation along which it moves with constant velocity. We explicitly investigate optimal navigation in a potential barrier/well and a uniform/ Poiseuille/swirling flow field. We show that Q learning is able to identify the fastest path and discuss the results. We also demonstrate that Q learning and applying the learned policy works when the particle orientation experiences thermal noise. However, the successful outcome strongly depends on the specific problem and the strength of noise.
Collapse
Affiliation(s)
- Mischa Putzke
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
3
|
Shaebani MR, Rieger H, Sadjadi Z. Kinematics of persistent random walkers with two distinct modes of motion. Phys Rev E 2022; 106:034105. [PMID: 36266824 DOI: 10.1103/physreve.106.034105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
We study the stochastic motion of active particles that undergo spontaneous transitions between two distinct modes of motion. Each mode is characterized by a velocity distribution and an arbitrary (anti)persistence. We present an analytical formalism to provide a quantitative link between these two microscopic statistical properties of the trajectory and macroscopically observable transport quantities of interest. For exponentially distributed residence times in each state, we derive analytical expressions for the initial anomalous exponent, the characteristic crossover time to the asymptotic diffusive dynamics, and the long-term diffusion constant. We also obtain an exact expression for the time evolution of the mean square displacement over all timescales and provide a recipe to obtain higher displacement moments. Our approach enables us to disentangle the combined effects of velocity, persistence, and switching probabilities between the two states on the kinematics of particles in a wide range of stochastic active or passive processes and to optimize the transport quantities of interest with respect to any of the particle dynamics properties.
Collapse
Affiliation(s)
- M Reza Shaebani
- Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Zeinab Sadjadi
- Department of Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
4
|
Gerhard M, Jayaram A, Fischer A, Speck T. Hunting active Brownian particles: Learning optimal behavior. Phys Rev E 2021; 104:054614. [PMID: 34942812 DOI: 10.1103/physreve.104.054614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023]
Abstract
We numerically study active Brownian particles that can respond to environmental cues through a small set of actions (switching their motility and turning left or right with respect to some direction) which are motivated by recent experiments with colloidal self-propelled Janus particles. We employ reinforcement learning to find optimal mappings between the state of particles and these actions. Specifically, we first consider a predator-prey situation in which prey particles try to avoid a predator. Using as reward the squared distance from the predator, we discuss the merits of three state-action sets and show that turning away from the predator is the most successful strategy. We then remove the predator and employ as collective reward the local concentration of signaling molecules exuded by all particles and show that aligning with the concentration gradient leads to chemotactic collapse into a single cluster. Our results illustrate a promising route to obtain local interaction rules and design collective states in active matter.
Collapse
Affiliation(s)
- Marcel Gerhard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Ashreya Jayaram
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Andreas Fischer
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
5
|
Paoluzzi M, Leoni M, Marchetti MC. Information and motility exchange in collectives of active particles. SOFT MATTER 2020; 16:6317-6327. [PMID: 32578662 DOI: 10.1039/d0sm00204f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We examine the interplay of motility and information exchange in a model of run-and-tumble active particles where the particle's motility is encoded as a bit of information that can be exchanged upon contact according to the rules of AND and OR logic gates in a circuit. Motile AND particles become non-motile upon contact with a non-motile particle. Conversely, motile OR particles remain motile upon collision with their non-motile counterparts. AND particles that have become non-motile additionally "reawaken", i.e., recover their motility, at a fixed rate μ, as in the SIS (susceptible, infected, susceptible) model of epidemic spreading, where an infected agent can become healthy again, but keeps no memory of the recent infection, hence it is susceptible to a renewed infection. For μ = 0, both AND and OR particles relax irreversibly to absorbing states of all non-motile or all motile particles, respectively. The relaxation kinetics is, however, faster for OR particles that remain active throughout the process. At finite μ, the AND dynamics is controlled by the interplay between reawakening and collision rates. The system evolves to a state of all motile particles (an absorbing state in the language of absorbing phase transitions) for μ > μc and to a mixed state with coexisting motile and non-motile particles (an active state in the language of absorbing phase transitions) for μ < μc. The final state exhibits a rich structure controlled by motility-induced aggregation. Our work can be relevant to biochemical signaling in motile bacteria, the spreading of epidemics and of social consensus, as well as light-controlled organization of active colloids.
Collapse
Affiliation(s)
- Matteo Paoluzzi
- ISC-CNR, Institute for Complex Systems, Piazzale A. Moro 2, I-00185 Rome, Italy. and Dipartimento di Fisica, Sapienza University of Rome, Piazzale A. Moro 2, I-00185, Rome, Italy
| | - Marco Leoni
- Université Paris-Saclay, CNRS, IJCLab, 91405, Orsay, France.
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
6
|
Santra I, Basu U, Sabhapandit S. Run-and-tumble particles in two dimensions: Marginal position distributions. Phys Rev E 2020; 101:062120. [PMID: 32688530 DOI: 10.1103/physreve.101.062120] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
We study a set of run-and-tumble particle (RTP) dynamics in two spatial dimensions. In the first case of the orientation θ of the particle can assume a set of n possible discrete values, while in the second case θ is a continuous variable. We calculate exactly the marginal position distributions for n=3,4 and the continuous case and show that in all cases the RTP shows a crossover from a ballistic to diffusive regime. The ballistic regime is a typical signature of the active nature of the systems and is characterized by nontrivial position distributions which depend on the specific model. We also show that the signature of activity at long times can be found in the atypical fluctuations, which we also characterize by computing the large deviation functions explicitly.
Collapse
Affiliation(s)
- Ion Santra
- Raman Research Institute, Bengaluru 560080, India
| | - Urna Basu
- Raman Research Institute, Bengaluru 560080, India
| | | |
Collapse
|
7
|
Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. Chemotaxis strategies of bacteria with multiple run modes. SCIENCE ADVANCES 2020; 6:eaaz6153. [PMID: 32766440 PMCID: PMC7385427 DOI: 10.1126/sciadv.aaz6153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Bacterial chemotaxis-a fundamental example of directional navigation in the living world-is key to many biological processes, including the spreading of bacterial infections. Many bacterial species were recently reported to exhibit several distinct swimming modes-the flagella may, for example, push the cell body or wrap around it. How do the different run modes shape the chemotaxis strategy of a multimode swimmer? Here, we investigate chemotactic motion of the soil bacterium Pseudomonas putida as a model organism. By simultaneously tracking the position of the cell body and the configuration of its flagella, we demonstrate that individual run modes show different chemotactic responses in nutrition gradients and, thus, constitute distinct behavioral states. On the basis of an active particle model, we demonstrate that switching between multiple run states that differ in their speed and responsiveness provides the basis for robust and efficient chemotaxis in complex natural habitats.
Collapse
Affiliation(s)
| | - Robert Großmann
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Veronika Pfeifer
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | - Marius Hintsche
- Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany
| | | |
Collapse
|
8
|
Kromer JA, de la Cruz N, Friedrich BM. Chemokinetic Scattering, Trapping, and Avoidance of Active Brownian Particles. PHYSICAL REVIEW LETTERS 2020; 124:118101. [PMID: 32242704 DOI: 10.1103/physrevlett.124.118101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/03/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
We present a theory of chemokinetic search agents that regulate directional fluctuations according to distance from a target. A dynamic scattering effect reduces the probability to penetrate regions with high fluctuations and thus reduces search success for agents that respond instantaneously to positional cues. In contrast, agents with internal states that initially suppress chemokinesis can exploit scattering to increase their probability to find the target. Using matched asymptotics between the case of diffusive and ballistic search, we obtain analytic results beyond Fox colored noise approximation.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Palo Alto, California 94304, USA
| | - Noelia de la Cruz
- Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Benjamin M Friedrich
- cfaed, TU Dresden, 01069 Dresden, Germany
- Institute of Theoretical Physics, TU Dresden, 01069 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Codutti A, Bente K, Faivre D, Klumpp S. Chemotaxis in external fields: Simulations for active magnetic biological matter. PLoS Comput Biol 2019; 15:e1007548. [PMID: 31856155 PMCID: PMC6941824 DOI: 10.1371/journal.pcbi.1007548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 01/03/2020] [Accepted: 11/14/2019] [Indexed: 12/29/2022] Open
Abstract
The movement of microswimmers is often described by active Brownian particle models. Here we introduce a variant of these models with several internal states of the swimmer to describe stochastic strategies for directional swimming such as run and tumble or run and reverse that are used by microorganisms for chemotaxis. The model includes a mechanism to generate a directional bias for chemotaxis and interactions with external fields (e.g., gravity, magnetic field, fluid flow) that impose forces or torques on the swimmer. We show how this modified model can be applied to various scenarios: First, the run and tumble motion of E. coli is used to establish a paradigm for chemotaxis and investigate how it is affected by external forces. Then, we study magneto-aerotaxis in magnetotactic bacteria, which is biased not only by an oxygen gradient towards a preferred concentration, but also by magnetic fields, which exert a torque on an intracellular chain of magnets. We study the competition of magnetic alignment with active reorientation and show that the magnetic orientation can improve chemotaxis and thereby provide an advantage to the bacteria, even at rather large inclination angles of the magnetic field relative to the oxygen gradient, a case reminiscent of what is expected for the bacteria at or close to the equator. The highest gain in chemotactic velocity is obtained for run and tumble with a magnetic field parallel to the gradient, but in general a mechanism for reverse motion is necessary to swim against the magnetic field and a run and reverse strategy is more advantageous in the presence of a magnetic torque. This finding is consistent with observations that the dominant mode of directional changes in magnetotactic bacteria is reversal rather than tumbles. Moreover, it provides guidance for the design of future magnetic biohybrid swimmers. In this paper, we propose a modified Active Brownian particle model to describe bacterial swimming behavior under the influence of external forces and torques, in particular of a magnetic torque. This type of interaction is particularly important for magnetic biohybrids (i.e. motile bacteria coupled to a synthetic magnetic component) and for magnetotactic bacteria (i.e. bacteria with a natural intracellular magnetic chain), which perform chemotaxis to swim along chemical gradients, but are also directed by an external magnetic field. The model allows us to investigate the benefits and disadvantages of such coupling between two different directionality mechanisms. In particular we show that the magnetic torque can speed chemotaxis up in some conditions, while it can hinder it in other cases. In addition to an understanding of the swimming strategies of naturally magnetotactic organisms, the results may guide the design of future biomedical devices.
Collapse
Affiliation(s)
- Agnese Codutti
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- University of Potsdam, Institute of Physics and Astronomy, Potsdam, Germany
- * E-mail: (AC); (SK)
| | - Klaas Bente
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Damien Faivre
- Department Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Aix Marseille University, CNRS, CEA, BIAM, 13108 Saint Paul lez Durance, France
| | - Stefan Klumpp
- Department Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
- * E-mail: (AC); (SK)
| |
Collapse
|
10
|
|
11
|
|