1
|
Paraguassú PV, Aquino R, de Castro P. Effects of kinetic energy on heat fluctuations of passive and active overdamped driven particles. Phys Rev E 2025; 111:034111. [PMID: 40247478 DOI: 10.1103/physreve.111.034111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/19/2025] [Indexed: 04/19/2025]
Abstract
To describe the spatial trajectory of an overdamped Brownian particle, inertial effects can be neglected. Yet, at the energetic level of stochastic thermodynamics, changes in kinetic energy must be considered to accurately predict the heat exchanged with the thermal bath. On the other hand, in the presence of external driving forces, one would expect the effects of kinetic energy fluctuations to be reduced, as thermal noise becomes comparatively less relevant. Here, we investigate the competition between the kinetic energy and the external work contributions to the heat statistics of passive and active overdamped Brownian particles subject to external driving forces. We find that kinetic energy effects cause fluctuations in the exchanged heat to become non-Gaussian. To evaluate the relevance of these effects, we compute the excess kurtosis and the Pearson correlation. For fixed parameter values adapted from previous experiments with silica beads in passive and active baths, we identify a crossover transition from a regime in which the stochastic heat of overdamped particles is dominated by external work, where kinetic energy changes can be safely ignored, to a regime dominated by kinetic energy effects. Our results also provide a quantitative analytical way to assess how deep into a particular regime the system is.
Collapse
Affiliation(s)
- Pedro V Paraguassú
- Pontifícia Universidade Católica, Departamento de Física, 22452-970 Rio de Janeiro, Brazil
| | - Rui Aquino
- ICTP-South American Institute for Fundamental Research-Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, Brazil
| | - Pablo de Castro
- ICTP-South American Institute for Fundamental Research-Instituto de Física Teórica da UNESP, Rua Dr. Bento Teobaldo Ferraz 271, 01140-070 São Paulo, Brazil
| |
Collapse
|
2
|
Miranda JP, Levis D, Valeriani C. Collective motion of energy depot active disks. SOFT MATTER 2025; 21:1045-1053. [PMID: 39600192 DOI: 10.1039/d4sm00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In the present work we have studied collectives of active disks with an energy depot, moving in the two-dimensional plane and interacting via an excluded volume. The energy depot accounts for the extraction of energy taking place at the level of each particle in order to perform self-propulsion, included in an underdamped Langevin dynamics. We show that this model undergoes a flocking transition, exhibiting some of the key features of the Vicsek model, namely, band formation and giant number fluctuations. These bands, either single or multiple, are dense and very strongly polarised propagating structures. Large density bands disappear as the activity is further increased, eventually reaching a homogeneous polar state. We unravel an effective alignment interaction at the level of two-particle collisions that can be controlled by activity and gives rise to flocking at large scales.
Collapse
Affiliation(s)
- Juan Pablo Miranda
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| | - Demian Levis
- Computing and Understanding Collective Action (CUCA) Lab, Condensed Matter Physics Department, Universitat de Barcelona, Marti i Franquès 1, Barcelona 08028, Spain.
- University of Barcelona Institute of Complex Systems (UBICS), Martí i Franquès 1, Barcelona E08028, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid 28040, Spain.
- GISC - Grupo Interdisciplinar de Sistemas Complejos, Madrid 28040, Spain
| |
Collapse
|
3
|
Kwon E, Park JM, Lee JS, Baek Y. Unified hierarchical relationship between thermodynamic tradeoff relations. Phys Rev E 2024; 110:044131. [PMID: 39562917 DOI: 10.1103/physreve.110.044131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 09/23/2024] [Indexed: 11/21/2024]
Abstract
Recent years have witnessed a surge of discoveries in the studies of thermodynamic inequalities: the thermodynamic uncertainty relation (TUR) and the entropic bound (EB) provide a lower bound on the entropy production (EP) in terms of nonequilibrium currents; the classical speed limit (CSL) expresses the lower bound on the EP using the geometry of probability distributions; the power-efficiency (PE) tradeoff dictates the maximum power achievable for a heat engine given the level of its thermal efficiency. In this study, we show that there exists a unified hierarchical structure encompassing all of these bounds, with the fundamental inequality given by an extension of the TUR (XTUR) that incorporates the most general range of currentlike and state-dependent observables. By selecting more specific observables, the TUR and the EB follow from the XTUR, and the CSL and the PE tradeoff follow from the EB. Our derivations cover both Langevin and Markov jump systems, with the first proof of the EB for the Markov jump systems and a more generalized form of the CSL. We also present concrete examples of the EB for the Markov jump systems and the generalized CSL.
Collapse
|
4
|
Chen S, Valenton E, Rotskoff GM, Ferguson AL, Rice SA, Scherer NF. Power dissipation and entropy production rate of high-dimensional optical matter systems. Phys Rev E 2024; 110:044109. [PMID: 39562965 DOI: 10.1103/physreve.110.044109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/16/2024] [Indexed: 11/21/2024]
Abstract
Entropy production is an essential aspect of creating and maintaining nonequilibrium systems. Despite their ubiquity, calculation of entropy production rates is challenging for high-dimensional systems, so it has only been reported for simple (i.e., l-particle) systems. Moreover, there is a dearth of nontrivial experimental systems where precise measurements of entropy production rate and characterization of the nonequilibrium steady state (NESS) are simultaneously possible. We report an approach to calculate the entropy production rate of overdamped, nonconservative, N-body systems and demonstrate this on a six-particle triangle optical matter (OM) system as a nontrivial example. OM systems consist of (nano-)particles organized into ordered arrays that are bound by electrodynamic interactions associated with the scattering and interference of light, and the associated induced-polarizations in and among the particles in coherent optical beams. The flux of laser light in OM systems in a solution environment necessitates that they dissipate energy, produce entropy, and relax to a NESS. The NESS may have several ordered particle configurations (i.e., isomers) that can interchange by barrier crossing processes. Understanding the power dissipation and entropy production rate of a NESS in an OM system along different (collective) modes of motion can advance understanding of the relative stability of the NESSs as well as inform design and control of OM structures. Therefore, we compute the components of the entropy production rate and power dissipation along the collective coordinates of the 6 Ag nanoparticle triangle OM system from OM NESS trajectory data and verify the Seifert relation [U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)10.1088/0034-4885/75/12/126001] for these complex systems with a nuanced interpretation.
Collapse
|
5
|
Frydel D. Statistical mechanics of passive Brownian particles in a fluctuating harmonic trap. Phys Rev E 2024; 110:024613. [PMID: 39294941 DOI: 10.1103/physreve.110.024613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024]
Abstract
We consider passive Brownian particles trapped in an "imperfect" harmonic trap. The trap is imperfect because it is randomly turned off and on, and as a result particles fail to equilibrate. Another way to think about this is to say that a harmonic trap is time dependent on account of its strength evolving stochastically in time. Particles in such a system are passive and activity arises through external control of a trapping potential, thus, no internal energy is used to power particle motion. A stationary Fokker-Planck equation of this system can be represented as a third-order differential equation, and its solution, a stationary distribution, can be represented as a superposition of Gaussian distributions for different strengths of a harmonic trap. This permits us to interpret a stationary system as a system in equilibrium with quenched disorder.
Collapse
|
6
|
Cocconi L, Chen L. Efficiency of an autonomous, dynamic information engine operating on a single active particle. Phys Rev E 2024; 110:014602. [PMID: 39161009 DOI: 10.1103/physreve.110.014602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/10/2024] [Indexed: 08/21/2024]
Abstract
The Szilard engine stands as a compelling illustration of the intricate interplay between information and thermodynamics. While at thermodynamic equilibrium, the apparent breach of the second law of thermodynamics was reconciled by Landauer and Bennett's insights into memory writing and erasure, recent extensions of these concepts into regimes featuring active fluctuations have unveiled the prospect of exceeding Landauer's bound, capitalizing on information to divert free energy from dissipation towards useful work. To explore this question further, we investigate an autonomous dynamic information engine, addressing the thermodynamic consistency of work extraction and measurement costs by extending the phase space to incorporate an auxiliary system, which plays the role of an explicit measurement device. The nonreciprocal coupling between active particle and measurement device introduces a feedback control loop, and the cost of measurement is quantified through a suitably defined auxiliary entropy production. The study considers different measurement scenarios, highlighting the role of measurement precision in determining engine efficiency.
Collapse
|
7
|
Boffi NM, Vanden-Eijnden E. Deep learning probability flows and entropy production rates in active matter. Proc Natl Acad Sci U S A 2024; 121:e2318106121. [PMID: 38861599 PMCID: PMC11194503 DOI: 10.1073/pnas.2318106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/01/2024] [Indexed: 06/13/2024] Open
Abstract
Active matter systems, from self-propelled colloids to motile bacteria, are characterized by the conversion of free energy into useful work at the microscopic scale. They involve physics beyond the reach of equilibrium statistical mechanics, and a persistent challenge has been to understand the nature of their nonequilibrium states. The entropy production rate and the probability current provide quantitative ways to do so by measuring the breakdown of time-reversal symmetry. Yet, their efficient computation has remained elusive, as they depend on the system's unknown and high-dimensional probability density. Here, building upon recent advances in generative modeling, we develop a deep learning framework to estimate the score of this density. We show that the score, together with the microscopic equations of motion, gives access to the entropy production rate, the probability current, and their decomposition into local contributions from individual particles. To represent the score, we introduce a spatially local transformer network architecture that learns high-order interactions between particles while respecting their underlying permutation symmetry. We demonstrate the broad utility and scalability of the method by applying it to several high-dimensional systems of active particles undergoing motility-induced phase separation (MIPS). We show that a single network trained on a system of 4,096 particles at one packing fraction can generalize to other regions of the phase diagram, including to systems with as many as 32,768 particles. We use this observation to quantify the spatial structure of the departure from equilibrium in MIPS as a function of the number of particles and the packing fraction.
Collapse
Affiliation(s)
- Nicholas M. Boffi
- Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Eric Vanden-Eijnden
- Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
8
|
Shea J, Jung G, Schmid F. Force renormalization for probes immersed in an active bath. SOFT MATTER 2024; 20:1767-1785. [PMID: 38305056 DOI: 10.1039/d3sm01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Langevin equations or generalized Langevin equations (GLEs) are popular models for describing the motion of a particle in a fluid medium in an effective manner. Here we examine particles immersed in an inherently nonequilibrium fluid, i.e., an active bath, which are subject to an external force. Specifically, we consider two types of forces that are highly relevant for microrheological studies: A harmonic, trapping force and a constant, "drag" force. We study such systems by molecular simulations and use the simulation data to extract an effective GLE description. We find that within this description, in an active bath, the external force in the GLE is not equal to the physical external force, but rather a renormalized external force, which can be significantly smaller. The effect cannot be attributed to the mere temperature renormalization, which is also observed.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
9
|
Suchanek T, Kroy K, Loos SAM. Irreversible Mesoscale Fluctuations Herald the Emergence of Dynamical Phases. PHYSICAL REVIEW LETTERS 2023; 131:258302. [PMID: 38181332 DOI: 10.1103/physrevlett.131.258302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024]
Abstract
We study fluctuating field models with spontaneously emerging dynamical phases. We consider two typical transition scenarios associated with parity-time symmetry breaking: oscillatory instabilities and critical exceptional points. An analytical investigation of the low-noise regime reveals a drastic increase of the mesoscopic entropy production toward the transitions. For an illustrative model of two nonreciprocally coupled Cahn-Hilliard fields, we find physical interpretations in terms of actively propelled interfaces and a coupling of eigenmodes of the linearized dynamics near the critical exceptional point.
Collapse
Affiliation(s)
- Thomas Suchanek
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Klaus Kroy
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
| | - Sarah A M Loos
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
10
|
Caprini L, Marini Bettolo Marconi U, Löwen H. Entropy production and collective excitations of crystals out of equilibrium: The concept of entropons. Phys Rev E 2023; 108:044603. [PMID: 37978682 DOI: 10.1103/physreve.108.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
We study the collective vibrational excitations of crystals under out-of-equilibrium steady conditions that give rise to entropy production. Their excitation spectrum comprises equilibriumlike phonons of thermal origin and additional collective excitations called entropons because each of them represents a mode of spectral entropy production. Entropons coexist with phonons and dominate them when the system is far from equilibrium while they are negligible in near-equilibrium regimes. The concept of entropons has been recently introduced and verified in a special case of crystals formed by self-propelled particles. Here we show that entropons exist in a broader class of active crystals that are intrinsically out of equilibrium and characterized by the lack of detailed balance. After a general derivation, several explicit examples are discussed, including crystals consisting of particles with alignment interactions and frictional contact forces.
Collapse
Affiliation(s)
- L Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| | - U Marini Bettolo Marconi
- Physics Department, Scuola di Scienze e Tecnologie, Università di Camerino - via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, 06123 Perugia, Italy
| | - H Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, Universitätsstrasse, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Daddi-Moussa-Ider A, Golestanian R, Vilfan A. Minimum entropy production by microswimmers with internal dissipation. Nat Commun 2023; 14:6060. [PMID: 37770449 PMCID: PMC10539332 DOI: 10.1038/s41467-023-41280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The energy dissipation and entropy production by self-propelled microswimmers differ profoundly from passive particles pulled by external forces. The difference extends both to the shape of the flow around the swimmer, as well as to the internal dissipation of the propulsion mechanism. Here we derive a general theorem that provides an exact lower bound on the total, external and internal, dissipation by a microswimmer. The problems that can be solved include an active surface-propelled droplet, swimmers with an extended propulsive layer and swimmers with an effective internal dissipation. We apply the theorem to determine the swimmer shapes that minimize the total dissipation while keeping the volume constant. Our results show that the entropy production by active microswimmers is subject to different fundamental limits than the entropy production by externally driven particles.
Collapse
Affiliation(s)
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Andrej Vilfan
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077, Göttingen, Germany.
- Jožef Stefan Institute, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Oh Y, Baek Y. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Phys Rev E 2023; 108:024602. [PMID: 37723679 DOI: 10.1103/physreve.108.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/21/2023] [Indexed: 09/20/2023]
Abstract
We propose a thermodynamically consistent, analytically tractable model of steady-state active heat engines driven by both temperature difference and a constant chemical driving. While the engine follows the dynamics of the active Ornstein-Uhlenbeck particle, its self-propulsion stems from the mechanochemical coupling with the fuel consumption dynamics, allowing for both even- and odd-parity self-propulsion forces. Using the standard methods of stochastic thermodynamics, we show that the entropy production of the engine satisfies the conventional Clausius relation, based on which we define the efficiency of the model that is bounded from above by the second law of thermodynamics. Using this framework, we obtain exact expressions for the efficiency at maximum power. The results show that the engine performance has a nonmonotonic dependence on the magnitude of the chemical driving and that the even-parity (odd-parity) engines perform better when the size of the engine is smaller (larger) than the persistence length of the active particle. We also discuss the existence of a tighter upper bound on the efficiency of the odd-parity engines stemming from the detailed structure of the entropy production.
Collapse
Affiliation(s)
- Yongjae Oh
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongjoo Baek
- Department of Physics and Astronomy & Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Caprini L, Marini Bettolo Marconi U, Puglisi A, Löwen H. Entropons as collective excitations in active solids. J Chem Phys 2023; 159:041102. [PMID: 37486049 DOI: 10.1063/5.0156312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular, stochastic thermodynamics. We call them "entropons" because they are the modes of spectral entropy production (at a given frequency and wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular active matter, as well as in living systems, such as dense cell monolayers.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| | - Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Andrea Puglisi
- Istituto dei Sistemi Complessi-CNR and Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
- INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Sorkin B, Be'er A, Diamant H, Ariel G. Detecting and characterizing phase transitions in active matter using entropy. SOFT MATTER 2023; 19:5118-5126. [PMID: 37382372 DOI: 10.1039/d3sm00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A major challenge in the study of active matter lies in quantitative characterization of phases and transitions between them. We show how the entropy of a collection of active objects can be used to classify regimes and spatial patterns in their collective behavior. Specifically, we estimate the contributions to the total entropy from correlations between the degrees of freedom of position and orientation. This analysis pin-points the flocking transition in the Vicsek model while clarifying the physical mechanism behind the transition. When applied to experiments on swarming Bacillus subtilis with different cell aspect ratios and overall bacterial area fractions, the entropy analysis reveals a rich phase diagram with transitions between qualitatively different swarm statistics. We discuss physical and biological implications of these findings.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel.
| |
Collapse
|
15
|
Szamel G. Single active particle in a harmonic potential: Question about the existence of the Jarzynski relation. Phys Rev E 2023; 107:054602. [PMID: 37329101 DOI: 10.1103/physreve.107.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
The interest in active matter stimulates the need to generalize thermodynamic description and relations to active matter systems, which are intrinsically out of equilibrium. One important example is the Jarzynski relation, which links the exponential average of work done in an arbitrary process connecting two equilibrium states with the difference of the free energies of these states. Using a simple model system, a single thermal active Ornstein-Uhlenbeck particle in a harmonic potential, we show that if the standard stochastic thermodynamics definition of work is used, the Jarzynski relation is not generally valid for processes connecting stationary states of active matter systems.
Collapse
Affiliation(s)
- Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
16
|
Dutta S. Most probable paths for active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:054130. [PMID: 37329007 DOI: 10.1103/physreve.107.054130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Fluctuations play an important role in the dynamics of stochastic systems. In particular, for small systems, the most probable thermodynamic quantities differ from their averages because of the fluctuations. Using the Onsager Machlup variational formalism we analyze the most probable paths for nonequilibrium systems, in particular, active Ornstein-Uhlenbeck particles, and investigate how the entropy production along these paths differs from the average entropy production. We investigate how much information about their nonequilibrium nature can be obtained from their extremum paths and how these paths depend on the persistence time and their swim velocities. We also look at how the entropy production along the most probable paths varies with the active noise and how it differs from the average entropy production. This study would be useful to design artificial active systems with certain target trajectories.
Collapse
Affiliation(s)
- Sandipan Dutta
- Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
17
|
Montana F, Camporeale C, Porporato A, Rondoni L. Inertial and geometrical effects of self-propelled elliptical Brownian particles. Phys Rev E 2023; 107:054607. [PMID: 37328983 DOI: 10.1103/physreve.107.054607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Active particles that self-propel by transforming energy into mechanical motion represent a growing area of research in mathematics, physics, and chemistry. Here we investigate the dynamics of nonspherical inertial active particles moving in a harmonic potential, introducing geometric parameters which take into account the role of eccentricity for nonspherical particles. A comparison between the overdamped and underdamped models for elliptical particles is performed. The model of overdamped active Brownian motion has been used to describe most of the basic aspects of micrometer-sized particles moving in a liquid ("microswimmers"). We consider active particles by extending the active Brownian motion model to incorporate translation and rotation inertia and account for the role of eccentricity. We show how the overdamped and the underdamped models behave in the same way for small values of activity (Brownian case) if eccentricity is equal to zero, but increasing eccentricity leads the two dynamics to substantially depart from each other-in particular, the action of a torque induced by external forces, induced a marked difference close to the walls of the domain if eccentricity is high. Effects induced by inertia include an inertial delay time of the self-propulsion direction from the particle velocity, and the differences between the overdamped and underdamped systems are particularly evident in the first and second moments of the particle velocities. Comparison with the experimental results of vibrated granular particles shows good agreement and corroborates the notion that self-propelling massive particles moving in gaseous media are dominated by inertial effects.
Collapse
Affiliation(s)
- Federica Montana
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy and INFN, Sezione di Torino, Turin, Italy
| | - Carlo Camporeale
- Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Turin, Italy
| | - Amilcare Porporato
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, USA and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| | - Lamberto Rondoni
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy and INFN, Sezione di Torino, Turin, Italy
| |
Collapse
|
18
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Crisanti A, Paoluzzi M. Most probable path of active Ornstein-Uhlenbeck particles. Phys Rev E 2023; 107:034110. [PMID: 37072947 DOI: 10.1103/physreve.107.034110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 04/20/2023]
Abstract
Using the path integral representation of the nonequilibrium dynamics, we compute the most probable path between arbitrary starting and final points that is followed by an active particle driven by persistent noise. We focus our attention on the case of active particles immersed in harmonic potentials, where the trajectory can be computed analytically. Once we consider the extended Markovian dynamics where the self-propulsive drive evolves according to an Ornstein-Uhlenbeck process, we can compute the trajectory analytically with arbitrary conditions on position and self-propulsion velocity. We test the analytical predictions against numerical simulations and we compare the analytical results with those obtained within approximated equilibriumlike dynamics.
Collapse
Affiliation(s)
- Andrea Crisanti
- Dipartimento di Fisica, Sapienza Università di Roma Piazzale A. Moro 2, I-00185 Rome, Italy
| | - Matteo Paoluzzi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Omar AK, Klymko K, GrandPre T, Geissler PL, Brady JF. Tuning nonequilibrium phase transitions with inertia. J Chem Phys 2023; 158:074904. [PMID: 36813709 DOI: 10.1063/5.0138256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation-dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.
Collapse
Affiliation(s)
- Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
21
|
Bao R, Hou Z. Improving estimation of entropy production rate for run-and-tumble particle systems by high-order thermodynamic uncertainty relation. Phys Rev E 2023; 107:024112. [PMID: 36932577 DOI: 10.1103/physreve.107.024112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Entropy production plays an important role in the regulation and stability of active matter systems, and its rate quantifies the nonequilibrium nature of these systems. However, entropy production is hard to experimentally estimate even in some simple active systems like molecular motors or bacteria, which may be modeled by the run-and-tumble particle (RTP), a representative model in the study of active matters. Here we resolve this problem for an asymmetric RTP in one dimension, first constructing a finite-time thermodynamic uncertainty relation (TUR) for a RTP, which works well in the short observation time regime for entropy production estimation. Nevertheless, when the activity dominates, i.e., the RTP is far from equilibrium, the lower bound for entropy production from TUR turns out to be trivial. We address this issue by introducing a recently proposed high-order thermodynamic uncertainty relation (HTUR), in which the cumulant generating function of current serves as a key ingredient. To exploit the HTUR, we adopt a method to analytically obtain the cumulant generating function of the current we study, with no need to explicitly know the time-dependent probability distribution. The HTUR is demonstrated to be able to estimate the steady state energy dissipation rate accurately because the cumulant generating function covers higher-order statistics of the current, including rare and large fluctuations besides its variance. Compared to the conventional TUR, the HTUR could give significantly improved estimation of energy dissipation, which can work well even in the far from equilibrium regime. We also provide a strategy based on the improved bound to estimate the entropy production from a moderate amount of trajectory data for experimental feasibility.
Collapse
Affiliation(s)
- Ruicheng Bao
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
22
|
Frydel D. Entropy production of active particles formulated for underdamped dynamics. Phys Rev E 2023; 107:014604. [PMID: 36797961 DOI: 10.1103/physreve.107.014604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The present work investigates the effect of inertia on the entropy production rate Π for all canonical models of active particles for different dimensions and the type of confinement. To calculate Π, the link between the entropy production and dissipation of heat rate is explored, resulting in a simple and intuitive expression. By analyzing the Kramers equation, alternative formulations of Π are obtained and the virial theorem for active particles is derived. Exact results are obtained for particles in an unconfined environment and in a harmonic trap. In both cases, Π is independent of temperature. For the case of a harmonic trap, Π attains a maximal value for τ=ω^{-1}, where τ is the persistence time and ω is the natural frequency of an oscillator. For active particles in one-dimensional box, or other nonharmonic potentials, thermal fluctuations are found to reduce Π.
Collapse
Affiliation(s)
- Derek Frydel
- Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, 7820275 Santiago, Chile
| |
Collapse
|
23
|
Padmanabha P, Busiello DM, Maritan A, Gupta D. Fluctuations of entropy production of a run-and-tumble particle. Phys Rev E 2023; 107:014129. [PMID: 36797901 DOI: 10.1103/physreve.107.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Out-of-equilibrium systems continuously generate entropy, with its rate of production being a fingerprint of nonequilibrium conditions. In small-scale dissipative systems subject to thermal noise, fluctuations of entropy production are significant. Hitherto, mean and variance have been abundantly studied, even if higher moments might be important to fully characterize the system of interest. Here, we introduce a graphical method to compute any moment of entropy production for a generic discrete-state system. Then, we focus on a paradigmatic model of active particles, i.e., run-and-tumble dynamics, which resembles the motion observed in several micro-organisms. Employing our framework, we compute the first three cumulants of the entropy production for a discrete version of this model. We also compare our analytical results with numerical simulations. We find that as the number of states increases, the distribution of entropy production deviates from a Gaussian. Finally, we extend our framework to a continuous state-space run-and-tumble model, using an appropriate scaling of the transition rates. The approach presented here might help uncover the features of nonequilibrium fluctuations of any current in biological systems operating out-of-equilibrium.
Collapse
Affiliation(s)
- Prajwal Padmanabha
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova 35131, Italy
| | | | - Amos Maritan
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova 35131, Italy
| | - Deepak Gupta
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
24
|
Ro S, Guo B, Shih A, Phan TV, Austin RH, Levine D, Chaikin PM, Martiniani S. Model-Free Measurement of Local Entropy Production and Extractable Work in Active Matter. PHYSICAL REVIEW LETTERS 2022; 129:220601. [PMID: 36493452 DOI: 10.1103/physrevlett.129.220601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility-induced phase separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.
Collapse
Affiliation(s)
- Sunghan Ro
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Buming Guo
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Aaron Shih
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Trung V Phan
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Robert H Austin
- Department of Physics, Princeton University, Princeton 08544, New Jersey, USA
| | - Dov Levine
- Department of Physics, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Paul M Chaikin
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
| | - Stefano Martiniani
- Center for Soft Matter Research, Department of Physics, New York University, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York 10003, USA
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Simons Center for Computational Physical Chemistry, Department of Chemistry, New York University, New York 10003, USA
| |
Collapse
|
25
|
Hecht L, Mandal S, Löwen H, Liebchen B. Active Refrigerators Powered by Inertia. PHYSICAL REVIEW LETTERS 2022; 129:178001. [PMID: 36332249 DOI: 10.1103/physrevlett.129.178001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We present the operational principle for a refrigerator that uses inertial effects in active Brownian particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only. Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using them to systematically absorb and trap, e.g., toxic substances from the environment.
Collapse
Affiliation(s)
- Lukas Hecht
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Suvendu Mandal
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
26
|
Shea J, Jung G, Schmid F. Passive probe particle in an active bath: can we tell it is out of equilibrium? SOFT MATTER 2022; 18:6965-6973. [PMID: 36069290 DOI: 10.1039/d2sm00905f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study a passive probe immersed in a fluid of active particles. Despite the system's non-equilibrium nature, the trajectory of the probe does not exhibit non-equilibrium signatures: its velocity distribution remains Gaussian, the second fluctuation dissipation theorem is not fundamentally violated, and the motion does not indicate breaking of time reversal symmetry. To tell that the probe is out of equilibrium requires examination of its behavior in tandem with that of the active fluid: the kinetic temperature of the probe does not equilibrate to that of the surrounding active particles. As a strategy to diagnose non-equilibrium from probe trajectories alone, we propose to examine their response to a small perturbation which reveals a non-equilibrium signature through a violation of the first fluctuation dissipation theorem.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
27
|
Ferretti F, Grosse-Holz S, Holmes C, Shivers JL, Giardina I, Mora T, Walczak AM. Signatures of irreversibility in microscopic models of flocking. Phys Rev E 2022; 106:034608. [PMID: 36266796 DOI: 10.1103/physreve.106.034608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Flocking in d=2 is a genuine nonequilibrium phenomenon for which irreversibility is an essential ingredient. We study a class of minimal flocking models whose only source of irreversibility is self-propulsion and use the entropy production rate (EPR) to quantify the departure from equilibrium across their phase diagrams. The EPR is maximal in the vicinity of the order-disorder transition, where reshuffling of the interaction network is fast. We show that signatures of irreversibility come in the form of asymmetries in the steady-state distribution of the flock's microstates. These asymmetries occur as consequences of the time-reversal symmetry breaking in the considered self-propelled systems, independently of the interaction details. In the case of metric pairwise forces, they reduce to local asymmetries in the distribution of pairs of particles. This study suggests a possible use of pair asymmetries both to quantify the departure from equilibrium and to learn relevant information about aligning interaction potentials from data.
Collapse
Affiliation(s)
- Federica Ferretti
- Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy
- Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy
| | - Simon Grosse-Holz
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institut Curie, Paris 75005, France
| | - Caroline Holmes
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Irene Giardina
- Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy
- Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy
- INFN, Unità di Roma 1, 00185 Rome, Italy
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| |
Collapse
|
28
|
Kim Y, Joo S, Kim WK, Jeon JH. Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yeongjin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Sungmin Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Won Kyu Kim
- School of Computational Sciences, Korea Institute for Advanced Study (KIAS), Seoul02455, Republic of Korea
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- Asia Pacific Center for Theoretical Physics (APCTP), Pohang37673, Republic of Korea
| |
Collapse
|
29
|
Goswami K. Inertial particle under active fluctuations: Diffusion and work distributions. Phys Rev E 2022; 105:044123. [PMID: 35590542 DOI: 10.1103/physreve.105.044123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
We study the underdamped motion of a passive particle in an active environment. Using the phase space path integral method we find the probability distribution function of position and velocity for a free and a harmonically bound particle. The environment is characterized by an active noise which is described as the Ornstein-Uhlenbeck process (OUP). Taking two similar, yet slightly different OUP models, it is shown how inertia along with other relevant parameters affect the dynamics of the particle. Further we investigate the work fluctuations of a harmonically trapped particle by considering the trap center being pulled at a constant speed. Finally, the fluctuation theorem of work is validated with an effective temperature in the steady-state limit.
Collapse
Affiliation(s)
- Koushik Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India and Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
30
|
Cheng K, Liu P, Yang M, Hou M. Experimental investigation of active noise on a rotor in an active granular bath. SOFT MATTER 2022; 18:2541-2548. [PMID: 35166750 DOI: 10.1039/d1sm01798e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In an active bath, besides thermal noise, immersed passive objects also persistently experience collisions from active particles, which are often coarse-grained into a colored active noise with an assumed exponential time correlation. The exponentially correlated active noise extremely simplifies the theoretical description of immersed passive objects but so far lacks direct experimental verification. Here, we experimentally investigate the active noise subjected by a passive rotor confined in an active granular bath. On the basis of Langevin dynamics, we extract the characteristic of the active noise by analyzing the power spectrum of the rotor trajectory. Our experimental results find that the active noise experienced by the granular rotor does show an exponential time correlation to a good extent, even though due to the small experimental system and low collision frequency, the profile of the active noise in our system is non-Gaussian. Our findings give direct experimental evidence, which supports the widely-used active Ornstein-Uhlenbeck particle model in our dry active system.
Collapse
Affiliation(s)
- Ke Cheng
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Meiying Hou
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Frydel D. Intuitive view of entropy production of ideal run-and-tumble particles. Phys Rev E 2022; 105:034113. [PMID: 35428123 DOI: 10.1103/physreve.105.034113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This work investigates the entropy production rate, Π, of the run-and-tumble model with a focus on scaling of Π as a function of the persistence time τ. It is determined that (i) Π vanishes in the limit τ→∞, marking it as an equilibrium. Stationary distributions in this limit are represented by a superposition of Boltzmann functions in analogy to a system with quenched disorder. (ii) Optimal Π is attained in the limit τ→0, marking it as a system maximally removed from equilibrium. Paradoxically, the stationary distributions in this limit have the Boltzmann form. The value of Π in this limit is that of an unconfined run-and-tumble particle and is related to the dissipation energy of a sedimenting particle. In addition to these general conclusions, this work derives an exact expression of Π for the run-and-tumble particles in a harmonic trap.
Collapse
Affiliation(s)
- Derek Frydel
- Department of Chemistry, Universidad Técnica Federico Santa María, Campus San Joaquin, Santiago 7820275, Chile
| |
Collapse
|
32
|
Speck T. Efficiency of isothermal active matter engines: Strong driving beats weak driving. Phys Rev E 2022; 105:L012601. [PMID: 35193264 DOI: 10.1103/physreve.105.l012601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
We study microscopic engines that use a single active particle as their "working medium." Part of the energy required to drive the directed motion of the particle can be recovered as work, even at a constant temperature. A wide class of synthetic active particles can be captured by schematically accounting for the chemical degrees of freedom that power the directed motion without having to resolve the exact microscopic mechanism. We derive analytical results for the quasistatic thermodynamic efficiency, i.e., the fraction of available chemical energy that can be recovered as mechanical work. While this efficiency is vanishingly small for colloidal particles, it increases as the dissipation is increased beyond the linear-response regime and goes through a maximum at large propulsion speeds. Our results demonstrate that driving beyond the linear-response regime has nontrivial consequences for the efficiency of active engines.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
33
|
Cao Z, Jiang H, Hou Z. Designing circle swimmers: Principles and strategies. J Chem Phys 2021; 155:234901. [PMID: 34937364 DOI: 10.1063/5.0065529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Various microswimmers move along circles rather than straight lines due to their swimming mechanisms, body shapes, or hydrodynamic effects. In this paper, we adopt the concepts of stochastic thermodynamics to analyze circle swimmers confined to a two-dimensional plane and study the trade-off relations between various physical quantities, such as precision, energy cost, and rotational speed. Based on these findings, we predict principles and strategies for designing microswimmers of special optimized functions under limited energy resource conditions, which will bring new experimental inspiration for designing smart motors.
Collapse
Affiliation(s)
- Zhiyu Cao
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
35
|
Physical bioenergetics: Energy fluxes, budgets, and constraints in cells. Proc Natl Acad Sci U S A 2021; 118:2026786118. [PMID: 34140336 DOI: 10.1073/pnas.2026786118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cells are the basic units of all living matter which harness the flow of energy to drive the processes of life. While the biochemical networks involved in energy transduction are well-characterized, the energetic costs and constraints for specific cellular processes remain largely unknown. In particular, what are the energy budgets of cells? What are the constraints and limits energy flows impose on cellular processes? Do cells operate near these limits, and if so how do energetic constraints impact cellular functions? Physics has provided many tools to study nonequilibrium systems and to define physical limits, but applying these tools to cell biology remains a challenge. Physical bioenergetics, which resides at the interface of nonequilibrium physics, energy metabolism, and cell biology, seeks to understand how much energy cells are using, how they partition this energy between different cellular processes, and the associated energetic constraints. Here we review recent advances and discuss open questions and challenges in physical bioenergetics.
Collapse
|
36
|
Martin D, O'Byrne J, Cates ME, Fodor É, Nardini C, Tailleur J, van Wijland F. Statistical mechanics of active Ornstein-Uhlenbeck particles. Phys Rev E 2021; 103:032607. [PMID: 33862678 DOI: 10.1103/physreve.103.032607] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models, the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress. We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics of their collective modes.
Collapse
Affiliation(s)
- David Martin
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Jérémy O'Byrne
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Étienne Fodor
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Cesare Nardini
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS,F-75205 Paris, France
| |
Collapse
|
37
|
Li B, Wang YL, Shi G, Gao Y, Shi X, Woodward CE, Forsman J. Phase Transitions of Oppositely Charged Colloidal Particles Driven by Alternating Current Electric Field. ACS NANO 2021; 15:2363-2373. [PMID: 33576616 PMCID: PMC8023798 DOI: 10.1021/acsnano.0c04095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We study systems containing oppositely charged colloidal particles under applied alternating current electric fields (AC fields) using overdamped Langevin dynamics simulations in three dimensions. We obtain jammed bands perpendicular to the field direction under intermediate frequencies and lanes parallel with the field under low frequencies. These structures also depend upon the particle charges. The pathway for generating jammed bands follows a stepwise mechanism, and intermediate bands are observed during lane formation in some systems. We investigate the component of the pressure tensors in the direction parallel to the field and observe that the jammed to lane transition occurs at a critical value for this pressure. We also find that the stable steady states appear to satisfy the principle of maximum entropy production. Our results may help to improve the understand of the underlying mechanisms for these types of dynamic phase transitions and the subsequent cooperative assemblies of colloidal particles under such non-equilibrium conditions.
Collapse
Affiliation(s)
- Bin Li
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guang Shi
- Department
of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yangyang Gao
- Key
Laboratory of Beijing City on Preparation and Processing of Novel
Polymer Materials, Beijing University of
Chemical Technology, Beijing 10029, China
- State Key
Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 10029, China
| | - Xinghua Shi
- Laboratory
of Theoretical and Computational Nanoscience, CAS Key Laboratory for
Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in
Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Clifford E. Woodward
- School
of Physical, Environmental and Mathematical Sciences, University College,
ADFA, University of New South Wales, Canberra, ACT 2600, Australia
| | - Jan Forsman
- Theoretical
Chemistry, Chemical Center, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| |
Collapse
|
38
|
GrandPre T, Klymko K, Mandadapu KK, Limmer DT. Entropy production fluctuations encode collective behavior in active matter. Phys Rev E 2021; 103:012613. [PMID: 33601608 DOI: 10.1103/physreve.103.012613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/07/2022]
Abstract
We derive a general lower bound on distributions of entropy production in interacting active matter systems. The bound is tight in the limit that interparticle correlations are small and short-ranged, which we explore in four canonical active matter models. In all models studied, the bound is weak where collective fluctuations result in long-ranged correlations, which subsequently links the locations of phase transitions to enhanced entropy production fluctuations. We develop a theory for the onset of enhanced fluctuations and relate it to specific phase transitions in active Brownian particles. We also derive optimal control forces that realize the dynamics necessary to tune dissipation and manipulate the system between phases. In so doing, we uncover a general relationship between entropy production and pattern formation in active matter, as well as ways of controlling it.
Collapse
Affiliation(s)
- Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94609, USA
| | - Katherine Klymko
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94609, USA.,Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA
| | - David T Limmer
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Department of Chemistry, University of California, Berkeley, California 94609, USA.,Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94609, USA.,Kavli Energy NanoScience Institute, Berkeley, California 94609, USA
| |
Collapse
|
39
|
Keta YE, Fodor É, van Wijland F, Cates ME, Jack RL. Collective motion in large deviations of active particles. Phys Rev E 2021; 103:022603. [PMID: 33736055 DOI: 10.1103/physreve.103.022603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
We analyze collective motion that occurs during rare (large deviation) events in systems of active particles, both numerically and analytically. We discuss the associated dynamical phase transition to collective motion, which occurs when the active work is biased towards larger values, and is associated with alignment of particles' orientations. A finite biasing field is needed to induce spontaneous symmetry breaking, even in large systems. Particle alignment is computed exactly for a system of two particles. For many-particle systems, we analyze the symmetry breaking by an optimal-control representation of the biased dynamics, and we propose a fluctuating hydrodynamic theory that captures the emergence of polar order in the biased state.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Département de Physique, École normale supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Étienne Fodor
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Frédéric van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Michael E Cates
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
40
|
Mitterwallner BG, Schreiber C, Daldrop JO, Rädler JO, Netz RR. Non-Markovian data-driven modeling of single-cell motility. Phys Rev E 2021; 101:032408. [PMID: 32289977 DOI: 10.1103/physreve.101.032408] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
Abstract
Trajectories of human breast cancer cells moving on one-dimensional circular tracks are modeled by the non-Markovian version of the Langevin equation that includes an arbitrary memory function. When averaged over cells, the velocity distribution exhibits spurious non-Gaussian behavior, while single cells are characterized by Gaussian velocity distributions. Accordingly, the data are described by a linear memory model which includes different random walk models that were previously used to account for various aspects of cell motility such as migratory persistence, non-Markovian effects, colored noise, and anomalous diffusion. The memory function is extracted from the trajectory data without restrictions or assumptions, thus making our approach truly data driven, and is used for unbiased single-cell comparison. The cell memory displays time-delayed single-exponential negative friction, which clearly distinguishes cell motion from the simple persistent random walk model and suggests a regulatory feedback mechanism that controls cell migration. Based on the extracted memory function we formulate a generalized exactly solvable cell migration model which indicates that negative friction generates cell persistence over long timescales. The nonequilibrium character of cell motion is investigated by mapping the non-Markovian Langevin equation with memory onto a Markovian model that involves a hidden degree of freedom and is equivalent to the underdamped active Ornstein-Uhlenbeck process.
Collapse
Affiliation(s)
- Bernhard G Mitterwallner
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany
| | - Christoph Schreiber
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany
| | - Jan O Daldrop
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany
| | - Joachim O Rädler
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany and Physik Fakultät, Ludwig Maximilians Universität, 80539 München, Germany
| |
Collapse
|
41
|
Caprini L, Marini Bettolo Marconi U. Inertial self-propelled particles. J Chem Phys 2021; 154:024902. [DOI: 10.1063/5.0030940] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lorenzo Caprini
- Scuola di Scienze e Tecnologie, Università di Camerino, Via Madonna delle Carceri, I-62032 Camerino, Italy
| | | |
Collapse
|
42
|
Zanovello L, Caraglio M, Franosch T, Faccioli P. Target Search of Active Agents Crossing High Energy Barriers. PHYSICAL REVIEW LETTERS 2021; 126:018001. [PMID: 33480788 DOI: 10.1103/physrevlett.126.018001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Target search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this nonequilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchmarked for a paradigmatic two-dimensional potential with a high barrier. We find that even in such a simple landscape the structure and kinetics of the ensemble of transition paths changes drastically in the presence of activity. Indeed, active Brownian particles reach the target more frequently than passive Brownian particles, following longer and counterintuitive search patterns.
Collapse
Affiliation(s)
- Luigi Zanovello
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
- Dipartimento di Fisica, Università degli studi di Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Pietro Faccioli
- Dipartimento di Fisica, Università degli studi di Trento, Via Sommarive 14, 38123 Trento, Italy
- Istituto Nazionale di Fisica Nucleare - Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, 38123 Trento, Italy
| |
Collapse
|
43
|
Vishen AS. Optimizing energetic cost of uncertainty in a driven system with and without feedback. Phys Rev E 2020; 102:052405. [PMID: 33327083 DOI: 10.1103/physreve.102.052405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 10/12/2020] [Indexed: 11/07/2022]
Abstract
Many biological functions require dynamics to be necessarily driven out of equilibrium. In contrast, in various contexts, a nonequilibrium dynamics at fast timescales can be described by an effective equilibrium dynamics at a slower timescale. In this work, we study two different aspects: (i) the energy-efficiency tradeoff for a specific nonequilibrium linear dynamics of two variables with feedback and (ii) the cost of effective parameters in a coarse-grained theory as given by the "hidden" dissipation and entropy production rate in the effective equilibrium limit of the dynamics. To meaningfully discuss the tradeoff between energy consumption and the efficiency of the desired function, a one-to-one mapping between function(s) and energy input is required. The function considered in this work is the variance of one of the variables. We get a one-to-one mapping by considering the minimum variance obtained for a fixed entropy production rate and vice versa. We find that this minimum achievable variance is a monotonically decreasing function of the given entropy production rate. When there is a timescale separation, in the effective equilibrium limit, the cost of the effective potential and temperature is the associated "hidden" entropy production rate.
Collapse
Affiliation(s)
- Amit Singh Vishen
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| |
Collapse
|
44
|
Flenner E, Szamel G. Active matter: Quantifying the departure from equilibrium. Phys Rev E 2020; 102:022607. [PMID: 32942354 DOI: 10.1103/physreve.102.022607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/28/2020] [Indexed: 11/07/2022]
Abstract
Active matter systems are driven out of equilibrium at the level of individual constituents. One widely studied class are systems of athermal particles that move under the combined influence of interparticle interactions and self-propulsions, with the latter evolving according to the Ornstein-Uhlenbeck stochastic process. Intuitively, these so-called active Ornstein-Uhlenbeck particle (AOUP) systems are farther from equilibrium for longer self-propulsion persistence times. Quantitatively, this is confirmed by the increasing equal-time velocity correlations (which are trivial in equilibrium) and by the increasing violation of the Einstein relation between the self-diffusion and mobility coefficients. In contrast, the entropy production rate, calculated from the ratio of the probabilities of the position space trajectory and its time-reversed counterpart, has a nonmonotonic dependence on the persistence time. Thus, it does not properly quantify the departure of AOUP systems from equilibrium.
Collapse
Affiliation(s)
- Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
45
|
Razin N. Entropy production of an active particle in a box. Phys Rev E 2020; 102:030103. [PMID: 33075964 DOI: 10.1103/physreve.102.030103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
A run-and-tumble particle in a one-dimensional box (infinite potential well) is studied. The steady state is analytically solved and analyzed, revealing the emergent length scale of the boundary layer where particles accumulate near the walls. The mesoscopic steady state entropy production rate of the system is derived from coupled Fokker-Planck equations with a linear reaction term, resulting in an exact analytic expression. The entropy production density is shown to peak at the walls. Additionally, the derivative of the entropy production rate peaks at a system size proportional to the length scale of the accumulation boundary layer, suggesting that the behavior of the entropy production rate and its derivatives as a function of the control parameter may signify a qualitative behavior change in the physics of active systems, such as phase transitions.
Collapse
Affiliation(s)
- Nitzan Razin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
46
|
Eldeen S, Muoio R, Blaisdell-Pijuan P, La N, Gomez M, Vidal A, Ahmed W. Quantifying the non-equilibrium activity of an active colloid. SOFT MATTER 2020; 16:7202-7209. [PMID: 32350487 DOI: 10.1039/d0sm00398k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active matter systems exhibit rich emergent behavior due to constant injection and dissipation of energy at the level of individual agents. Since these systems are far from equilibrium, their dynamics and energetics cannot be understood using the framework of equilibrium statistical mechanics. Recent developments in stochastic thermodynamics extend classical concepts of work, heat, and energy dissipation to fluctuating non-equilibrium systems. We use recent advances in experiment and theory to study the non-thermal dissipation of individual light-activated self-propelled colloidal particles. We focus on characterizing the transition from thermal to non-thermal fluctuations and show that energy dissipation rates on the order of ∼kBT s-1 are measurable from finite time series data.
Collapse
Affiliation(s)
- Sarah Eldeen
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Ryan Muoio
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Paris Blaisdell-Pijuan
- Department of Physics, California State University, Fullerton, CA, USA. and Department of Electrical Engineering, Princeton University, NJ, USA
| | - Ngoc La
- Department of Physics, California State University, Fullerton, CA, USA. and Department of Physics, Massachusetts Institute of Technology, Cambridge, USA
| | - Mauricio Gomez
- Department of Physics, California State University, Fullerton, CA, USA.
| | - Alex Vidal
- Department of Computer Science, California State University, Fullerton, CA, USA
| | - Wylie Ahmed
- Department of Physics, California State University, Fullerton, CA, USA.
| |
Collapse
|
47
|
Ye S, Liu P, Ye F, Chen K, Yang M. Active noise experienced by a passive particle trapped in an active bath. SOFT MATTER 2020; 16:4655-4660. [PMID: 32373861 DOI: 10.1039/d0sm00006j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the properties of active noise experienced by a passive particle harmonically trapped in an active bath. The active bath is either explicitly simulated by an ensemble of active Brownian particles or abstractly represented by an active colored noise in theory. Assuming the equivalence of the two descriptions of the active bath, the active noise in the simulation system, which is directly extracted by fitting theoretical predictions to simulation measurements, is shown to depend on the constraint suffered by the passive tracer. This scenario is in significant contrast to the case of thermal noise that is independent of external trap potentials. The constraint dependence of active noise arises from the fact that the persistent force on the passive particle from the active bath can be influenced by the particle relaxation dynamics. Moreover, due to the interplay between the active collisions and particle relaxation dynamics, the effective temperature of the passive tracer quantified as the ratio of fluctuation to dissipation increases as the constraint strengthens, while the average potential and kinetic energies of the passive particle both decrease.
Collapse
Affiliation(s)
- Simin Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China and Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Affiliation(s)
- Daniel Geiß
- Max Planck Institute for Mathematics in the Sciences 04103 Leipzig Germany
| | - Klaus Kroy
- Institute for Theoretical PhysicsUniversity of Leipzig Germany
| |
Collapse
|
49
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|
50
|
Netz RR. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths. Phys Rev E 2020; 101:022120. [PMID: 32168558 DOI: 10.1103/physreve.101.022120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
A Hamiltonian-based model of many harmonically interacting massive particles that are subject to linear friction and coupled to heat baths at different temperatures is used to study the dynamic approach to equilibrium and nonequilibrium stationary states. An equilibrium system is here defined as a system whose stationary distribution equals the Boltzmann distribution, the relation of this definition to the conditions of detailed balance and vanishing probability current is discussed both for underdamped as well as for overdamped systems. Based on the exactly calculated dynamic approach to the stationary distribution, the functional that governs this approach, which is called the free entropy S_{free}(t), is constructed. For the stationary distribution S_{free}(t) becomes maximal and its time derivative, the free entropy production S[over ̇]_{free}(t), is minimal and vanishes. Thus, S_{free}(t) characterizes equilibrium as well as nonequilibrium stationary distributions by their extremal and stability properties. For an equilibrium system, i.e., if all heat baths have the same temperature, the free entropy equals the negative free energy divided by temperature and thus corresponds to the Massieu function which was previously introduced in an alternative formulation of statistical mechanics. Using a systematic perturbative scheme for calculating velocity and position correlations in the overdamped massless limit, explicit results for few particles are presented: For two particles localization in position and momentum space is demonstrated in the nonequilibrium stationary state, indicative of a tendency to phase separate. For three elastically interacting particles heat flows from a particle coupled to a cold reservoir to a particle coupled to a warm reservoir if the third reservoir is sufficiently hot. This does not constitute a violation of the second law of thermodynamics, but rather demonstrates that a particle in such a nonequilibrium system is not characterized by an effective temperature which equals the temperature of the heat bath it is coupled to. Active particle models can be described in the same general framework, which thereby allows us to characterize their entropy production not only in the stationary state but also in the approach to the stationary nonequilibrium state. Finally, the connection to nonequilibrium thermodynamics formulations that include the reservoir entropy production is discussed.
Collapse
Affiliation(s)
- Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|