1
|
Tyree TJ, Murphy P, Rappel WJ. Annihilation dynamics during spiral defect chaos revealed by particle models. CHAOS (WOODBURY, N.Y.) 2024; 34:053131. [PMID: 38787314 PMCID: PMC11141445 DOI: 10.1063/5.0203319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here, we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction. The parameters for diffusion and attraction are obtained by comparing particle motion to the trajectories of spiral wave tips in cardiac models during spiral defect chaos. The particle model reproduces the annihilation rates of the cardiac models and can determine the statistics of spiral wave dynamics, including its mean termination time. We show that increasing the attraction coefficient sharply decreases the mean termination time, making it a possible target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Timothy J. Tyree
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| | - Patrick Murphy
- Department of Mathematics and Statistics, San Jose State University, San Jose, California 95192, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California San Diego, San Diego, California 92093, USA
| |
Collapse
|
2
|
Rappel WJ, Baykaner T, Zaman J, Ganesan P, Rogers AJ, Narayan SM. Spatially Conserved Spiral Wave Activity During Human Atrial Fibrillation. Circ Arrhythm Electrophysiol 2024; 17:e012041. [PMID: 38348685 PMCID: PMC10950516 DOI: 10.1161/circep.123.012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Atrial fibrillation is the most common cardiac arrhythmia in the world and increases the risk for stroke and morbidity. During atrial fibrillation, the electric activation fronts are no longer coherently propagating through the tissue and, instead, show rotational activity, consistent with spiral wave activation, focal activity, collision, or partial versions of these spatial patterns. An unexplained phenomenon is that although simulations of cardiac models abundantly demonstrate spiral waves, clinical recordings often show only intermittent spiral wave activity. METHODS In silico data were generated using simulations in which spiral waves were continuously created and annihilated and in simulations in which a spiral wave was intermittently trapped at a heterogeneity. Clinically, spatio-temporal activation maps were constructed using 60 s recordings from a 64 electrode catheter within the atrium of N=34 patients (n=24 persistent atrial fibrillation). The location of clockwise and counterclockwise rotating spiral waves was quantified and all intervals during which these spiral waves were present were determined. For each interval, the angle of rotation as a function of time was computed and used to determine whether the spiral wave returned in step or changed phase at the start of each interval. RESULTS In both simulations, spiral waves did not come back in phase and were out of step." In contrast, spiral waves returned in step in the majority (68%; P=0.05) of patients. Thus, the intermittently observed rotational activity in these patients is due to a temporally and spatially conserved spiral wave and not due to ones that are newly created at the onset of each interval. CONCLUSIONS Intermittency of spiral wave activity represents conserved spiral wave activity of long, but interrupted duration or transient spiral activity, in the majority of patients. This finding could have important ramifications for identifying clinically important forms of atrial fibrillation and in guiding treatment.
Collapse
Affiliation(s)
| | - Tina Baykaner
- Department of Medicine, Stanford University, Palo Alto
| | - Junaid Zaman
- Department of Cardiovascular Medicine, University of Southern California, Los Angeles, CA
| | | | | | | |
Collapse
|
3
|
Tyree TJ, Murphy P, Rappel WJ. Annihilation dynamics during spiral defect chaos revealed by particle models. ARXIV 2024:arXiv:2402.10308v1. [PMID: 38410644 PMCID: PMC10896354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction. The parameters for diffusion and attraction are obtained by comparing particle motion to the trajectories of spiral wave tips in cardiac models during spiral defect chaos. The particle model reproduces the annihilation rates of the cardiac models and can determine the statistics of spiral wave dynamics, including its mean termination time. We show that increasing the attraction coefficient sharply decreases the mean termination time, making it a possible target for pharmaceutical intervention. Many physical systems exhibit annihilation events during which pairs of objects collide and are removed from the system. These events occur in a number of soft-matter and active-matter systems that exhibit spatiotemporal patterning. For example, topological defects in nematic liquid crystals can develop motile topological defects that annihilate when they meet 1,2. Pair-wise annihilation of defects or singularities also plays a role in a number of biological systems. In bacterial biofilms, for instance, imperfect cell alignment results in point-like defects that carry half-integer topological charge and can annihilate in pairs. These topological defects explain the formation of layers and have been proposed as a model for the buckling of biofilms in colonies of nematically ordered cells3,4.
Collapse
Affiliation(s)
- Timothy J Tyree
- Department of Physics, University of California, San Diego, CA
| | - Patrick Murphy
- Department of Mathematics and Statistics, San Jose State University, San Jose, CA
| | | |
Collapse
|
4
|
Abstract
The global burden caused by cardiovascular disease is substantial, with heart disease representing the most common cause of death around the world. There remains a need to develop better mechanistic models of cardiac function in order to combat this health concern. Heart rhythm disorders, or arrhythmias, are one particular type of disease which has been amenable to quantitative investigation. Here we review the application of quantitative methodologies to explore dynamical questions pertaining to arrhythmias. We begin by describing single-cell models of cardiac myocytes, from which two and three dimensional models can be constructed. Special focus is placed on results relating to pattern formation across these spatially-distributed systems, especially the formation of spiral waves of activation. Next, we discuss mechanisms which can lead to the initiation of arrhythmias, focusing on the dynamical state of spatially discordant alternans, and outline proposed mechanisms perpetuating arrhythmias such as fibrillation. We then review experimental and clinical results related to the spatio-temporal mapping of heart rhythm disorders. Finally, we describe treatment options for heart rhythm disorders and demonstrate how statistical physics tools can provide insights into the dynamics of heart rhythm disorders.
Collapse
Affiliation(s)
- Wouter-Jan Rappel
- Department of Physics, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
5
|
Quah JX, Jenkins E, Dharmaprani D, Tiver K, Smith C, Hecker T, Joseph MX, Selvanayagam JB, Tung M, Stanton T, Ahmad W, Stoyanov N, Lahiri A, Chahadi F, Singleton C, Ganesan A. Role of interatrial conduction in atrial fibrillation. Mechanistic insights from renewal theory-based fibrillatory dynamic analysis. Heart Rhythm O2 2022; 3:335-343. [PMID: 36097465 PMCID: PMC9463713 DOI: 10.1016/j.hroo.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background Interatrial conduction has been postulated to play an important role in atrial fibrillation (AF). The pathways involved in interatrial conduction during AF remain incompletely defined. Objective We recently showed physiological assessment of fibrillatory dynamics could be performed using renewal theory, which determines rates of phase singularity formation (λf) and destruction (λd). Using the renewal approach, we aimed to understand the role of the interatrial septum and other electrically coupled regions during AF. Method RENEWAL-AF is a prospective multicenter observational study recruiting AF ablation patients (ACTRN 12619001172190). We studied unipolar electrograms obtained from 16 biatrial locations prior to ablation using a 16-electrode Advisor HD Grid catheter. Renewal rate constants λf and λd were calculated, and the relationships between these rate constants in regions of interatrial connectivity were examined. Results Forty-one AF patients (28.5% female) were recruited. A positive linear correlation was observed between λf and λd (1) across the interatrial septum (λf r2 = 0.5, P < .001, λd r2 = 0.45, P < .001), (2) in regions connected by the Bachmann bundle (right atrial appendage–left atrial appendage λf r2 = 0.29, P = .001; λd r2 = 0.2, P = .008), and (3) across the inferior interatrial routes (cavotricuspid isthmus–left atrial septum λf r2 = 0.67, P < .001; λd r2 = 0.55, P < .001). Persistent AF status and left atrial volume were found to be important effect modifiers of the degree of interatrial renewal rate statistical correlation. Conclusion Our findings support the role of interseptal statistically determined electrical disrelation in sustaining AF. Additionally, renewal theory identified preferential conduction through specific interatrial pathways during fibrillation. These findings may be of importance in identifying clinically significant targets for ablation in AF patients.
Collapse
Affiliation(s)
- Jing Xian Quah
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, Australia
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Evan Jenkins
- College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, Australia
- College of Science and Engineering, Flinders University of South Australia, Adelaide, Australia
| | - Kathryn Tiver
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Corey Smith
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
| | - Teresa Hecker
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Majo X. Joseph
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | | | - Matthew Tung
- Department of Cardiovascular Medicine, Sunshine Coast University Hospital, Birtinya, Australia
| | - Tony Stanton
- Department of Cardiovascular Medicine, Sunshine Coast University Hospital, Birtinya, Australia
- School of Medicine and Dentistry, Griffith University, Sunshine Coast University Hospital, Birtinya, Australia
| | - Waheed Ahmad
- Department of Cardiovascular Medicine, Princess Alexandra Hospital, Brisbane, Australia
| | - Nik Stoyanov
- Department of Cardiology, Fiona Stanley Hospital, Perth, Australia
| | - Anandaroop Lahiri
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Fahd Chahadi
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Cameron Singleton
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
| | - Anand Ganesan
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, Australia
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, Australia
- Address reprint requests and correspondence: Dr Anand Ganesan, College of Medicine and Public Health, Flinders University, Flinders Dr, Bedford Park SA 5042, Australia.
| |
Collapse
|
6
|
Jenkins EV, Dharmaprani D, Schopp M, Quah JX, Tiver K, Mitchell L, Pope K, Ganesan AN. Understanding the origins of the basic equations of statistical fibrillatory dynamics. CHAOS (WOODBURY, N.Y.) 2022; 32:032101. [PMID: 35364849 DOI: 10.1063/5.0062095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
The mechanisms governing cardiac fibrillation remain unclear; however, it most likely represents a form of spatiotemporal chaos with conservative system dynamics. Renewal theory has recently been suggested as a statistical formulation with governing equations to quantify the formation and destruction of wavelets and rotors in fibrillatory dynamics. In this perspective Review, we aim to explain the origin of the renewal theory paradigm in spatiotemporal chaos. The ergodic nature of pattern formation in spatiotemporal chaos is demonstrated through the use of three chaotic systems: two classical systems and a simulation of cardiac fibrillation. The logistic map and the baker's transformation are used to demonstrate how the apparently random appearance of patterns in classical chaotic systems has macroscopic parameters that are predictable in a statistical sense. We demonstrate that the renewal theory approach developed for cardiac fibrillation statistically predicts pattern formation in these classical chaotic systems. Renewal theory provides governing equations to describe the apparently random formation and destruction of wavelets and rotors in atrial fibrillation (AF) and ventricular fibrillation (VF). This statistical framework for fibrillatory dynamics provides a holistic understanding of observed rotor and wavelet dynamics and is of conceptual significance in informing the clinical and mechanistic research of the rotor and multiple-wavelet mechanisms of AF and VF.
Collapse
Affiliation(s)
- Evan V Jenkins
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Madeline Schopp
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Jing Xian Quah
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Kathryn Tiver
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide 5042, Australia
| | - Lewis Mitchell
- School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia
| | - Kenneth Pope
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
7
|
Rappel WJ, Krummen DE, Baykaner T, Zaman J, Donsky A, Swarup V, Miller JM, Narayan SM. Stochastic termination of spiral wave dynamics in cardiac tissue. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:809532. [PMID: 36187938 PMCID: PMC9524168 DOI: 10.3389/fnetp.2022.809532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rotating spiral waves are self-organized features in spatially extended excitable media and may play an important role in cardiac arrhythmias including atrial fibrillation (AF). In homogeneous media, spiral wave dynamics are perpetuated through spiral wave breakup, leading to the continuous birth and death of spiral waves, but have a finite probability of termination. In non-homogeneous media, however, heterogeneities can act as anchoring sources that result in sustained spiral wave activity. It is thus unclear how and if AF may terminate following the removal of putative spiral wave sources in patients. Here, we address this question using computer simulations in which a stable spiral wave is trapped by an heterogeneity and is surrounded by spiral wave breakup. We show that, following ablation of spatial heterogeneity to render that region of the medium unexcitable, termination of spiral wave dynamics is stochastic and Poisson-distributed. Furthermore, we show that the dynamics can be accurately described by a master equation using birth and death rates. To validate these predictions in vivo, we mapped spiral wave activity in patients with AF and targeted the locations of spiral wave sources using radiofrequency ablation. Targeted ablation was indeed able to terminate AF, but only after a variable delay of up to several minutes. Furthermore, and consistent with numerical simulations, termination was not accompanied by gradual temporal or spatial organization. Our results suggest that spiral wave sources and tissue heterogeneities play a critical role in the maintenance of AF and that the removal of sources results in spiral wave dynamics with a finite termination time, which could have important clinical implications.
Collapse
Affiliation(s)
| | | | - Tina Baykaner
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| | - Junaid Zaman
- Department of Medicine, Division of Cardiology, University of Southern California, Los Angeles, California
| | | | - Vijay Swarup
- Arizona Heart Rhythm Institute, Phoenix, Arizona
| | - John M Miller
- Krannert Institute, Indiana University, Indianapolis, Indiana
| | - Sanjiv M Narayan
- Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California
| |
Collapse
|
8
|
Rappel WJ. Intermittent trapping of spiral waves in a cardiac model. Phys Rev E 2022; 105:014404. [PMID: 35193211 PMCID: PMC9020409 DOI: 10.1103/physreve.105.014404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/21/2021] [Indexed: 01/21/2023]
Abstract
Spiral waves are found in many excitable systems and are thought to play a role in the incoherent electrical activation that underlies cardiac arrhythmias. It is well-known that spiral waves can be permanently trapped by local heterogeneities. In this paper, we demonstrate that spiral waves can also be intermittently trapped by such heterogeneities. Using simulations of a cardiac model in two dimensions, we show that a tissue heterogeneity of sufficient strength or size can result in a spiral wave that is trapped for a few rotations, after which it dislodges and meanders away from the heterogeneity. We also show that these results can be captured by a particle model in which the particle represents the spiral wave tip. For both models, we construct a phase diagram which quantifies which parameter combinations of heterogeneity size and strength result in permanent, intermittent, or no trapping. Our results are consistent with clinical observations in patients with atrial fibrillation that showed that spiral wave reentry can be intermittent.
Collapse
|
9
|
Jenkins EV, Dharmaprani D, Schopp M, Quah JX, Tiver K, Mitchell L, Xiong F, Aguilar M, Pope K, Akar FG, Roney CH, Niederer SA, Nattel S, Nash MP, Clayton RH, Ganesan AN. The inspection paradox: An important consideration in the evaluation of rotor lifetimes in cardiac fibrillation. Front Physiol 2022; 13:920788. [PMID: 36148313 PMCID: PMC9486478 DOI: 10.3389/fphys.2022.920788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background and Objective: Renewal theory is a statistical approach to model the formation and destruction of phase singularities (PS), which occur at the pivots of spiral waves. A common issue arising during observation of renewal processes is an inspection paradox, due to oversampling of longer events. The objective of this study was to characterise the effect of a potential inspection paradox on the perception of PS lifetimes in cardiac fibrillation. Methods: A multisystem, multi-modality study was performed, examining computational simulations (Aliev-Panfilov (APV) model, Courtmanche-Nattel model), experimentally acquired optical mapping Atrial and Ventricular Fibrillation (AF/VF) data, and clinically acquired human AF and VF. Distributions of all PS lifetimes across full epochs of AF, VF, or computational simulations, were compared with distributions formed from lifetimes of PS existing at 10,000 simulated commencement timepoints. Results: In all systems, an inspection paradox led towards oversampling of PS with longer lifetimes. In APV computational simulations there was a mean PS lifetime shift of +84.9% (95% CI, ± 0.3%) (p < 0.001 for observed vs overall), in Courtmanche-Nattel simulations of AF +692.9% (95% CI, ±57.7%) (p < 0.001), in optically mapped rat AF +374.6% (95% CI, ± 88.5%) (p = 0.052), in human AF mapped with basket catheters +129.2% (95% CI, ±4.1%) (p < 0.05), human AF-HD grid catheters 150.8% (95% CI, ± 9.0%) (p < 0.001), in optically mapped rat VF +171.3% (95% CI, ±15.6%) (p < 0.001), in human epicardial VF 153.5% (95% CI, ±15.7%) (p < 0.001). Conclusion: Visual inspection of phase movies has the potential to systematically oversample longer lasting PS, due to an inspection paradox. An inspection paradox is minimised by consideration of the overall distribution of PS lifetimes.
Collapse
Affiliation(s)
- Evan V Jenkins
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Madeline Schopp
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jing Xian Quah
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Kathryn Tiver
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lewis Mitchell
- School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Feng Xiong
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Martin Aguilar
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Kenneth Pope
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Fadi G Akar
- School of Medicine, Yale University, New Haven, CT, United States
| | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, United Kingdom
| | - Stanley Nattel
- Montréal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard H Clayton
- Insigneo Institute for in Silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
10
|
Quah JX, Dharmaprani D, Lahiri A, Tiver K, Ganesan AN. Reconceptualising Atrial Fibrillation Using Renewal Theory: A Novel Approach to the Assessment of Atrial Fibrillation Dynamics. Arrhythm Electrophysiol Rev 2021; 10:77-84. [PMID: 34401179 PMCID: PMC8335853 DOI: 10.15420/aer.2020.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Despite a century of research, the mechanisms of AF remain unresolved. A universal motif within AF research has been unstable re-entry, but this remains poorly characterised, with competing key conceptual paradigms of multiple wavelets and more driving rotors. Understanding the mechanisms of AF is clinically relevant, especially with regard to treatment and ablation of the more persistent forms of AF. Here, the authors outline the surprising but reproducible finding that unstable re-entrant circuits are born and destroyed at quasi-stationary rates, a finding based on a branch of mathematics known as renewal theory. Renewal theory may be a way to potentially unify the multiple wavelet and rotor theories. The renewal rate constants are potentially attractive because they are temporally stable parameters of a defined probability distribution (the exponential distribution) and can be estimated with precision and accuracy due to the principles of renewal theory. In this perspective review, this new representational architecture for AF is explained and placed into context, and the clinical and mechanistic implications are discussed.
Collapse
Affiliation(s)
- Jing Xian Quah
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Dhani Dharmaprani
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,College of Science and Engineering, Flinders University of South Australia, Adelaide, SA, Australia
| | - Anandaroop Lahiri
- Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Kathryn Tiver
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| | - Anand N Ganesan
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, SA, Australia.,Department of Cardiovascular Medicine, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
11
|
Kowalewski C. Mapping atrial fibrillation : An overview of potential mechanisms underlying atrial fibrillation. Herz 2021; 46:305-311. [PMID: 34104977 DOI: 10.1007/s00059-021-05045-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 11/24/2022]
Abstract
Mechanisms sustaining atrial fibrillation are yet to be clarified. This article focuses on milestones in the theory of atrial fibrillation and addresses the different leading hypotheses concerning atrial fibrillation mechanisms. We start off with electric potential originating from the pulmonary vein, which triggers atrial fibrillation, discuss classic activation mapping and phase mapping as well as computer models, which have contributed to the our understanding of atrial fibrillation, and end with new mapping methods and studies highlighting the advantages and disadvantages of current mechanistic hypotheses. The technical evolution of mapping atrial fibrillation has led to new insights into the potential mechanisms underlying atrial fibrillation. A comparison between methods is essential for understanding the advantages and disadvantages of each method when mapping atrial fibrillation. Ultimately, the combination of several methods might shed light on the underlying mechanisms of atrial fibrillation and lead to a better understanding of atrial fibrillation and subsequently improve treatment of this condition.
Collapse
|
12
|
Abad R, Collart O, Ganesan P, Rogers AJ, Alhusseini MI, Rodrigo M, Narayan SM, Rappel WJ. Three dimensional reconstruction to visualize atrial fibrillation activation patterns on curved atrial geometry. PLoS One 2021; 16:e0249873. [PMID: 33836026 PMCID: PMC8034734 DOI: 10.1371/journal.pone.0249873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 03/26/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The rotational activation created by spiral waves may be a mechanism for atrial fibrillation (AF), yet it is unclear how activation patterns obtained from endocardial baskets are influenced by the 3D geometric curvature of the atrium or 'unfolding' into 2D maps. We develop algorithms that can visualize spiral waves and their tip locations on curved atrial geometries. We use these algorithms to quantify differences in AF maps and spiral tip locations between 3D basket reconstructions, projection onto 3D anatomical shells and unfolded 2D surfaces. METHODS We tested our algorithms in N = 20 patients in whom AF was recorded from 64-pole baskets (Abbott, CA). Phase maps were generated by non-proprietary software to identify the tips of spiral waves, indicated by phase singularities. The number and density of spiral tips were compared in patient-specific 3D shells constructed from the basket, as well as 3D maps from clinical electroanatomic mapping systems and 2D maps. RESULTS Patients (59.4±12.7 yrs, 60% M) showed 1.7±0.8 phase singularities/patient, in whom ablation terminated AF in 11/20 patients (55%). There was no difference in the location of phase singularities, between 3D curved surfaces and 2D unfolded surfaces, with a median correlation coefficient between phase singularity density maps of 0.985 (0.978-0.990). No significant impact was noted by phase singularities location in more curved regions or relative to the basket location (p>0.1). CONCLUSIONS AF maps and phase singularities mapped by endocardial baskets are qualitatively and quantitatively similar whether calculated by 3D phase maps on patient-specific curved atrial geometries or in 2D. Phase maps on patient-specific geometries may be easier to interpret relative to critical structures for ablation planning.
Collapse
Affiliation(s)
- Ricardo Abad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Orvil Collart
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Prasanth Ganesan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. J. Rogers
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mahmood I. Alhusseini
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Miguel Rodrigo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Universitat Politècnica de València, Valencia, Spain
| | - Sanjiv M. Narayan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (SMN); (WJR)
| | - Wouter-Jan Rappel
- Department of Physics, UC San Diego, La Jolla, California, United States of America
- * E-mail: (SMN); (WJR)
| |
Collapse
|