1
|
Fung T, Pande J, Shnerb NM, O'Dwyer JP, Chisholm RA. Processes governing species richness in communities exposed to temporal environmental stochasticity: A review and synthesis of modelling approaches. Math Biosci 2024; 369:109131. [PMID: 38113973 DOI: 10.1016/j.mbs.2023.109131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Research into the processes governing species richness has often assumed that the environment is fixed, whereas realistic environments are often characterised by random fluctuations over time. This temporal environmental stochasticity (TES) changes the demographic rates of species populations, with cascading effects on community dynamics and species richness. Theoretical and applied studies have used process-based mathematical models to determine how TES affects species richness, but under a variety of frameworks. Here, we critically review such studies to synthesise their findings and draw general conclusions. We first provide a broad mathematical framework encompassing the different ways in which TES has been modelled. We then review studies that have analysed models with TES under the assumption of negligible interspecific interactions, such that a community is conceptualised as the sum of independent species populations. These analyses have highlighted how TES can reduce species richness by increasing the frequency at which a species becomes rare and therefore prone to extinction. Next, we review studies that have relaxed the assumption of negligible interspecific interactions. To simplify the corresponding models and make them analytically tractable, such studies have used mean-field theory to derive fixed parameters representing the typical strength of interspecific interactions under TES. The resulting analyses have highlighted community-level effects that determine how TES affects species richness, for species that compete for a common limiting resource. With short temporal correlations of environmental conditions, a non-linear averaging effect of interspecific competition strength over time gives an increase in species richness. In contrast, with long temporal correlations of environmental conditions, strong selection favouring the fittest species between changes in environmental conditions results in a decrease in species richness. We compare such results with those from invasion analysis, which examines invasion growth rates (IGRs) instead of species richness directly. Qualitative differences sometimes arise because the IGR is the expected growth rate of a species when it is rare, which does not capture the variation around this mean or the probability of the species becoming rare. Our review elucidates key processes that have been found to mediate the negative and positive effects of TES on species richness, and by doing so highlights key areas for future research.
Collapse
Affiliation(s)
- Tak Fung
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| | - Jayant Pande
- Department of Physical and Natural Sciences, FLAME University, Pune, Maharashtra 412115, India
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - James P O'Dwyer
- Department of Plant Biology, School of Integrative Biology, University of Illinois, 505, South Goodwin Avenue, Urbana, IL 61801, United States
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
2
|
Kessler DA, Shnerb NM. Extinction time distributions of populations and genotypes. Phys Rev E 2023; 108:044406. [PMID: 37978632 DOI: 10.1103/physreve.108.044406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/29/2023] [Indexed: 11/19/2023]
Abstract
Ultimately, the eventual extinction of any biological population is an inevitable outcome. While extensive research has focused on the average time it takes for a population to go extinct under various circumstances, there has been limited exploration of the distributions of extinction times and the likelihood of significant fluctuations. Recently, Hathcock and Strogatz [D. Hathcock and S. H. Strogatz, Phys. Rev. Lett. 128, 218301 (2022)0031-900710.1103/PhysRevLett.128.218301] identified Gumbel statistics as a universal asymptotic distribution for extinction-prone dynamics in a stable environment. In this study we aim to provide a comprehensive survey of this problem by examining a range of plausible scenarios, including extinction-prone, marginal (neutral), and stable dynamics. We consider the influence of demographic stochasticity, which arises from the inherent randomness of the birth-death process, as well as cases where stochasticity originates from the more pronounced effect of random environmental variations. Our work proposes several generic criteria that can be used for the classification of experimental and empirical systems, thereby enhancing our ability to discern the mechanisms governing extinction dynamics. Employing these criteria can help clarify the underlying mechanisms driving extinction processes.
Collapse
Affiliation(s)
- David A Kessler
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
3
|
Burkart T, Willeke J, Frey E. Periodic temporal environmental variations induce coexistence in resource competition models. Phys Rev E 2023; 108:034404. [PMID: 37849086 DOI: 10.1103/physreve.108.034404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 10/19/2023]
Abstract
Natural ecosystems, in particular on the microbial scale, are inhabited by a large number of species. The population size of each species is affected by interactions of individuals with each other and by spatial and temporal changes in environmental conditions, such as resource abundance. Here, we use a generic population dynamics model to study how, and under what conditions, a periodic temporal environmental variation can alter an ecosystem's composition and biodiversity. We demonstrate that using timescale separation allows one to qualitatively predict the long-term population dynamics of interacting species in varying environments. We show that the notion of Tilman's R* rule, a well-known principle that applies for constant environments, can be extended to periodically varying environments if the timescale of environmental changes (e.g., seasonal variations) is much faster than the timescale of population growth (doubling time in bacteria). When these timescales are similar, our analysis shows that a varying environment deters the system from reaching a steady state, and stable coexistence between multiple species becomes possible. Our results posit that biodiversity can in part be attributed to natural environmental variations.
Collapse
Affiliation(s)
- Tom Burkart
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Jan Willeke
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 München, Germany
| |
Collapse
|
4
|
Heteroclinic cycling and extinction in May-Leonard models with demographic stochasticity. J Math Biol 2023; 86:30. [PMID: 36637504 PMCID: PMC9839821 DOI: 10.1007/s00285-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023]
Abstract
May and Leonard (SIAM J Appl Math 29:243-253, 1975) introduced a three-species Lotka-Volterra type population model that exhibits heteroclinic cycling. Rather than producing a periodic limit cycle, the trajectory takes longer and longer to complete each "cycle", passing closer and closer to unstable fixed points in which one population dominates and the others approach zero. Aperiodic heteroclinic dynamics have subsequently been studied in ecological systems (side-blotched lizards; colicinogenic Escherichia coli), in the immune system, in neural information processing models ("winnerless competition"), and in models of neural central pattern generators. Yet as May and Leonard observed "Biologically, the behavior (produced by the model) is nonsense. Once it is conceded that the variables represent animals, and therefore cannot fall below unity, it is clear that the system will, after a few cycles, converge on some single population, extinguishing the other two." Here, we explore different ways of introducing discrete stochastic dynamics based on May and Leonard's ODE model, with application to ecological population dynamics, and to a neuromotor central pattern generator system. We study examples of several quantitatively distinct asymptotic behaviors, including total extinction of all species, extinction to a single species, and persistent cyclic dominance with finite mean cycle length.
Collapse
|
5
|
Hathcock D, Strogatz SH. Asymptotic Absorption-Time Distributions in Extinction-Prone Markov Processes. PHYSICAL REVIEW LETTERS 2022; 128:218301. [PMID: 35687454 DOI: 10.1103/physrevlett.128.218301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
We characterize absorption-time distributions for birth-death Markov chains with an absorbing boundary. For "extinction-prone" chains (which drift on average toward the absorbing state) the asymptotic distribution is Gaussian, Gumbel, or belongs to a family of skewed distributions. The latter two cases arise when the dynamics slow down dramatically near the boundary. Several models of evolution, epidemics, and chemical reactions fall into these classes; in each case we establish new results for the absorption-time distribution. Applications to African sleeping sickness are discussed.
Collapse
Affiliation(s)
- David Hathcock
- Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Steven H Strogatz
- Department of Mathematics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
6
|
West R, Shnerb NM. Quantitative Characteristics of Stabilizing and Equalizing Mechanisms. Am Nat 2022; 200:E160-E173. [DOI: 10.1086/720665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Fung T, O'Dwyer JP, Chisholm RA. Effects of temporal environmental stochasticity on species richness: a mechanistic unification spanning weak to strong temporal correlations. OIKOS 2021. [DOI: 10.1111/oik.08667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tak Fung
- National Univ. of Singapore, Dept of Biological Sciences Singapore Singapore
| | - James P. O'Dwyer
- Dept of Plant Biology, School of Integrative Biology, Univ. of Illinois Urbana IL USA
| | - Ryan A. Chisholm
- National Univ. of Singapore, Dept of Biological Sciences Singapore Singapore
| |
Collapse
|
8
|
Pande J, Shnerb NM. Taming the diffusion approximation through a controlling-factor WKB method. Phys Rev E 2020; 102:062410. [PMID: 33466058 DOI: 10.1103/physreve.102.062410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/17/2020] [Indexed: 11/07/2022]
Abstract
The diffusion approximation (DA) is widely used in the analysis of stochastic population dynamics, from population genetics to ecology and evolution. The DA is an uncontrolled approximation that assumes the smoothness of the calculated quantity over the relevant state space and fails when this property is not satisfied. This failure becomes severe in situations where the direction of selection switches sign. Here we employ the WKB (Wentzel-Kramers-Brillouin) large-deviations method, which requires only the logarithm of a given quantity to be smooth over its state space. Combining the WKB scheme with asymptotic matching techniques, we show how to derive the diffusion approximation in a controlled manner and how to produce better approximations, applicable for much wider regimes of parameters. We also introduce a scalable (independent of population size) WKB-based numerical technique. The method is applied to a central problem in population genetics and evolution, finding the chance of ultimate fixation in a zero-sum, two-types competition.
Collapse
Affiliation(s)
- Jayant Pande
- Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat-Gan IL52900, Israel
| |
Collapse
|
9
|
Steinmetz B, Kalyuzhny M, Shnerb NM. Intraspecific variability in fluctuating environments: mechanisms of impact on species diversity. Ecology 2020; 101:e03174. [PMID: 32860217 DOI: 10.1002/ecy.3174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Recent studies have found considerable trait variations within species. The effect of such intraspecific trait variability (ITV) on the stability, coexistence, and diversity of ecological communities received considerable attention and in many models it was shown to impede coexistence and decrease species diversity. Here we present a numerical study of the effect of genetically inherited ITV on species persistence and diversity in a temporally fluctuating environment. Two mechanisms are identified. First, ITV buffers populations against varying environmental conditions (portfolio effect) and reduces variation in abundances. Second, the interplay between ITV and environmental variations tends to increase the mean fitness of diverse populations. The first mechanism promotes persistence and tends to increase species richness, while the second reduces the chance of a rare species population (which is usually homogeneous) to invade, thus decreasing species richness. We show that for large communities the portfolio effect is dominant, leading to ITV promoting species persistence and richness.
Collapse
Affiliation(s)
- Bnaya Steinmetz
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - Michael Kalyuzhny
- Department of Ecology, Evolution, and Behavior, Institute of Life Sciences, Hebrew University of Jerusalem, Givat-Ram, Jerusalem, 91904, Israel
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
10
|
Pande J, Fung T, Chisholm R, Shnerb NM. Invasion growth rate and its relevance to persistence: a response to Technical Comment by Ellner et al. Ecol Lett 2020; 23:1725-1726. [PMID: 32851799 DOI: 10.1111/ele.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Ellner et al. (2020) state that identifying the mechanisms producing positive invasion growth rates (IGR) is useful in characterising species persistence. We agree about the importance of the sign of IGR as a binary indicator of persistence, but question whether its magnitude provides much information once the sign is given.
Collapse
Affiliation(s)
- Jayant Pande
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Tak Fung
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Ryan Chisholm
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Nadav M Shnerb
- Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
11
|
Ellner SP, Snyder RE, Adler PB, Hooker G, Schreiber SJ. Technical Comment on Pande et al. (2020): Why invasion analysis is important for understanding coexistence. Ecol Lett 2020; 23:1721-1724. [PMID: 32851766 DOI: 10.1111/ele.13580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 01/23/2023]
Abstract
Pande et al. (2020) point out that persistence time can decrease even as invader growth rates (IGRs) increase, which potentially undermines modern coexistence theory. However, because persistence time increases rapidly with system size only when IGR > 0, to understand how any real community persists, we should first identify the mechanisms producing positive IGR.
Collapse
Affiliation(s)
- Stephen P Ellner
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Robin E Snyder
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | - Giles Hooker
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and the Center of Population Biology, University of California, Davis, CA, USA
| |
Collapse
|
12
|
Dean AM, Shnerb NM. Stochasticity‐induced stabilization in ecology and evolution: a new synthesis. Ecology 2020; 101:e03098. [DOI: 10.1002/ecy.3098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Antony M. Dean
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota55108USA
- BioTechnology Institute University of Minnesota St. Paul Minnesota55108USA
| | - Nadav M. Shnerb
- Department of Physics Bar‐Ilan University Ramat Gan52900Israel
| |
Collapse
|