1
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
2
|
Cheikh MI, Tchoufag J, Osterfield M, Dean K, Bhaduri S, Zhang C, Mandadapu KK, Doubrovinski K. A comprehensive model of Drosophila epithelium reveals the role of embryo geometry and cell topology in mechanical responses. eLife 2023; 12:e85569. [PMID: 37782009 PMCID: PMC10584372 DOI: 10.7554/elife.85569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 09/29/2023] [Indexed: 10/03/2023] Open
Abstract
In order to understand morphogenesis, it is necessary to know the material properties or forces shaping the living tissue. In spite of this need, very few in vivo measurements are currently available. Here, using the early Drosophila embryo as a model, we describe a novel cantilever-based technique which allows for the simultaneous quantification of applied force and tissue displacement in a living embryo. By analyzing data from a series of experiments in which embryonic epithelium is subjected to developmentally relevant perturbations, we conclude that the response to applied force is adiabatic and is dominated by elastic forces and geometric constraints, or system size effects. Crucially, computational modeling of the experimental data indicated that the apical surface of the epithelium must be softer than the basal surface, a result which we confirmed experimentally. Further, we used the combination of experimental data and comprehensive computational model to estimate the elastic modulus of the apical surface and set a lower bound on the elastic modulus of the basal surface. More generally, our investigations revealed important general features that we believe should be more widely addressed when quantitatively modeling tissue mechanics in any system. Specifically, different compartments of the same cell can have very different mechanical properties; when they do, they can contribute differently to different mechanical stimuli and cannot be merely averaged together. Additionally, tissue geometry can play a substantial role in mechanical response, and cannot be neglected.
Collapse
Affiliation(s)
- Mohamad Ibrahim Cheikh
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Joel Tchoufag
- Department of Chemical and Biomolecular Engineering, University of California, BerkeleyBerkeleyUnited States
- Chemical Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Miriam Osterfield
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Kevin Dean
- Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Swayamdipta Bhaduri
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Chuzhong Zhang
- Department of Material Science and Engineering, University of Texas at ArlingtonArlingtonUnited States
| | - Kranthi Kiran Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, BerkeleyBerkeleyUnited States
- Chemical Sciences Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Konstantin Doubrovinski
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
3
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. A New Elementary Method for Determining the Tip Radius and Young's Modulus in AFM Spherical Indentations. MICROMACHINES 2023; 14:1716. [PMID: 37763878 PMCID: PMC10536531 DOI: 10.3390/mi14091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Atomic force microscopy (AFM) is a powerful tool for characterizing biological materials at the nanoscale utilizing the AFM nanoindentation method. When testing biological materials, spherical indenters are typically employed to reduce the possibility of damaging the sample. The accuracy of determining Young's modulus depends, among other factors, on the calibration of the indenter, i.e., the determination of the tip radius. This paper demonstrates that the tip radius can be approximately calculated using a single force-indentation curve on an unknown, soft sample without performing any additional experimental calibration process. The proposed method is based on plotting a tangent line on the force indentation curve at the maximum indentation depth. Subsequently, using equations that relate the applied force, maximum indentation depth, and the tip radius, the calculation of the tip radius becomes trivial. It is significant to note that the method requires only a single force-indentation curve and does not necessitate knowledge of the sample's Young's modulus. Consequently, the determination of both the sample's Young's modulus and the tip radius can be performed simultaneously. Thus, the experimental effort is significantly reduced. The method was tested on 80 force-indentation curves obtained on an agarose gel, and the results were accurate.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece;
- BioNanoTec Ltd., Nicosia 2043, Cyprus
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus;
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece;
| | - Anna Malamou
- Independent Power Transmission Operator S.A. (IPTO), 10443 Athens, Greece;
| |
Collapse
|
4
|
Mary G, Mazuel F, Nier V, Fage F, Nagle I, Devaud L, Bacri JC, Asnacios S, Asnacios A, Gay C, Marcq P, Wilhelm C, Reffay M. All-in-one rheometry and nonlinear rheology of multicellular aggregates. Phys Rev E 2022; 105:054407. [PMID: 35706238 DOI: 10.1103/physreve.105.054407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Tissues are generally subjected to external stresses, a potential stimulus for their differentiation or remodeling. While single-cell rheology has been extensively studied leading to controversial results about nonlinear response, mechanical tissue behavior under external stress is still poorly understood, in particular, the way individual cell properties translate at the tissue level. Herein, using magnetic cells we were able to form perfectly monitored cellular aggregates (magnetic molding) and to deform them under controlled applied stresses over a wide range of timescales and amplitudes (magnetic rheometer). We explore the rheology of these minimal tissue models using both standard assays (creep and oscillatory response) as well as an innovative broad spectrum solicitation coupled with inference analysis thus being able to determine in a single experiment the best rheological model. We find that multicellular aggregates exhibit a power-law response with nonlinearities leading to tissue stiffening at high stress. Moreover, we reveal the contribution of intracellular (actin network) and intercellular components (cell-cell adhesions) in this aggregate rheology.
Collapse
Affiliation(s)
- Gaëtan Mary
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - François Mazuel
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Vincent Nier
- Laboratoire Physico Chimie Curie, UMR 168, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France
| | - Florian Fage
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Irène Nagle
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Louisiane Devaud
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Jean-Claude Bacri
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Sophie Asnacios
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| | - Philippe Marcq
- Laboratoire Physico Chimie Curie, UMR 168, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris France
- Laboratoire Physique et Mécanique des Matériaux Hétérogènes, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris Cité, 75005 Paris, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
- Laboratoire Physico Chimie Curie, UMR 168, CNRS, Institut Curie, PSL University, Sorbonne Université, 75005 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris Cité, 75205 Paris cedex 13, France
| |
Collapse
|
5
|
Jung W, Li J, Chaudhuri O, Kim T. Nonlinear Elastic and Inelastic Properties of Cells. J Biomech Eng 2020; 142:100806. [PMID: 32253428 PMCID: PMC7477719 DOI: 10.1115/1.4046863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Mechanical forces play an important role in various physiological processes, such as morphogenesis, cytokinesis, and migration. Thus, in order to illuminate mechanisms underlying these physiological processes, it is crucial to understand how cells deform and respond to external mechanical stimuli. During recent decades, the mechanical properties of cells have been studied extensively using diverse measurement techniques. A number of experimental studies have shown that cells are far from linear elastic materials. Cells exhibit a wide variety of nonlinear elastic and inelastic properties. Such complicated properties of cells are known to emerge from unique mechanical characteristics of cellular components. In this review, we introduce major cellular components that largely govern cell mechanical properties and provide brief explanations of several experimental techniques used for rheological measurements of cell mechanics. Then, we discuss the representative nonlinear elastic and inelastic properties of cells. Finally, continuum and discrete computational models of cell mechanics, which model both nonlinear elastic and inelastic properties of cells, will be described.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
6
|
Gandikota MC, Pogoda K, van Oosten A, Engstrom TA, Patteson AE, Janmey PA, Schwarz JM. Loops versus lines and the compression stiffening of cells. SOFT MATTER 2020; 16:4389-4406. [PMID: 32249282 PMCID: PMC7225031 DOI: 10.1039/c9sm01627a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well with the experimental cell compression stiffening finding until approximately 35% compressive strain after which bulk fiber network effects may contribute. We also find for the fiber network with area-conserving loops model that the stress-strain curves are sensitive to the packing fraction and size distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced with beads as well as discuss implications for single cell compression stiffening at the tissue scale.
Collapse
Affiliation(s)
- M C Gandikota
- Physics Department, Syracuse University, Syracuse, NY 13244, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Araújo GRDS, Viana NB, Gómez F, Pontes B, Frases S. The mechanical properties of microbial surfaces and biofilms. ACTA ACUST UNITED AC 2019; 5:100028. [PMID: 32743144 PMCID: PMC7389442 DOI: 10.1016/j.tcsw.2019.100028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Microbes can modify their surface structure as an adaptive mechanism for survival and dissemination in the environment or inside the host. Altering their ability to respond to mechanical stimuli is part of this adaptive process. Since the 1990s, powerful micromanipulation tools have been developed that allow mechanical studies of microbial cell surfaces, exploring little known aspects of their dynamic behavior. This review concentrates on the study of mechanical and rheological properties of bacteria and fungi, focusing on their cell surface dynamics and biofilm formation.
Collapse
Affiliation(s)
- Glauber R de S Araújo
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nathan B Viana
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fran Gómez
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Pontes
- Laboratório de Pinças Óticas (LPO-COPEA), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Gnesotto FS, Mura F, Gladrow J, Broedersz CP. Broken detailed balance and non-equilibrium dynamics in living systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:066601. [PMID: 29504517 DOI: 10.1088/1361-6633/aab3ed] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Collapse
Affiliation(s)
- F S Gnesotto
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | | | | | | |
Collapse
|
9
|
Vos BE, Liebrand LC, Vahabi M, Biebricher A, Wuite GJL, Peterman EJG, Kurniawan NA, MacKintosh FC, Koenderink GH. Programming the mechanics of cohesive fiber networks by compression. SOFT MATTER 2017; 13:8886-8893. [PMID: 29057402 DOI: 10.1039/c7sm01393k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to uniaxial compression. This rigidification can be precisely controlled by the level of applied compressive strain, providing a means to program the network rigidity without having to change its composition. To identify the underlying mechanism we measure single fiber-fiber interactions using optical tweezers. We further develop a minimal computational model of cohesive fiber networks that shows that stiffening arises due to the formation of new bonds in the compressed state, which develop tensile stress when the network is re-expanded. The model predicts that the network stiffness after a compression cycle obeys a power-law dependence on tensile stress, which we confirm experimentally. This finding provides new insights into how biological tissues can adapt themselves independently of any cellular processes, offering new perspectives to inspire the design of reprogrammable materials.
Collapse
Affiliation(s)
- Bart E Vos
- Biological Soft Matter Group, AMOLF, 1098XG Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sander M, Dobicki H, Ott A. Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States. Biophys J 2017; 113:1561-1573. [PMID: 28978448 PMCID: PMC5627183 DOI: 10.1016/j.bpj.2017.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations.
Collapse
Affiliation(s)
- Mathias Sander
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Heike Dobicki
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany
| | - Albrecht Ott
- Biological Experimental Physics, Department of Physics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
11
|
Kurniawan NA, Vos BE, Biebricher A, Wuite GJL, Peterman EJG, Koenderink GH. Fibrin Networks Support Recurring Mechanical Loads by Adapting their Structure across Multiple Scales. Biophys J 2017; 111:1026-34. [PMID: 27602730 DOI: 10.1016/j.bpj.2016.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022] Open
Abstract
Tissues and cells sustain recurring mechanical loads that span a wide range of loading amplitudes and timescales as a consequence of exposure to blood flow, muscle activity, and external impact. Both tissues and cells derive their mechanical strength from fibrous protein scaffolds, which typically have a complex hierarchical structure. In this study, we focus on a prototypical hierarchical biomaterial, fibrin, which is one of the most resilient naturally occurring biopolymers and forms the structural scaffold of blood clots. We show how fibrous networks composed of fibrin utilize irreversible changes in their hierarchical structure at different scales to maintain reversible stress stiffening up to large strains. To trace the origin of this paradoxical resilience, we systematically tuned the microstructural parameters of fibrin and used a combination of optical tweezers and fluorescence microscopy to measure the interactions of single fibrin fibers for the first time, to our knowledge. We demonstrate that fibrin networks adapt to moderate strains by remodeling at the network scale through the spontaneous formation of new bonds between fibers, whereas they adapt to high strains by plastic remodeling of the fibers themselves. This multiscale adaptation mechanism endows fibrin gels with the remarkable ability to sustain recurring loads due to shear flows and wound stretching. Our findings therefore reveal a microscopic mechanism by which tissues and cells can balance elastic nonlinearity and plasticity, and thus can provide microstructural insights into cell-driven remodeling of tissues.
Collapse
Affiliation(s)
- Nicholas A Kurniawan
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bart E Vos
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Andreas Biebricher
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gijsje H Koenderink
- Department of Systems Biophysics, FOM Institute AMOLF, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Sander M, Flesch J, Ott A. Using cell monolayer rheology to probe average single cell mechanical properties. Biorheology 2016; 52:269-78. [PMID: 26639359 DOI: 10.3233/bir-15070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cell monolayer rheology technique consists of a commercial rotational rheometer that probes the mechanical properties of a monolayer of isolated cells. So far we have described properties of an entire monolayer. In this short communication, we show that we can deduce average single cell properties. Results are in very good agreement with earlier work on single cell mechanics. Our approach provides a mean of 105-106 adherent cells within a single experiment. This makes the results very reproducible. We extend our work on cell adhesion strength and deduce cell adhesion forces of fibroblast cells on fibronectin coated glass substrates.
Collapse
Affiliation(s)
- Mathias Sander
- Biological Experimental Physics, Department of Physics FR 7.2, Saarland University, Germany
| | - Julia Flesch
- Biological Experimental Physics, Department of Physics FR 7.2, Saarland University, Germany
| | - Albrecht Ott
- Biological Experimental Physics, Department of Physics FR 7.2, Saarland University, Germany
| |
Collapse
|
13
|
Bonakdar N, Gerum R, Kuhn M, Spörrer M, Lippert A, Schneider W, Aifantis KE, Fabry B. Mechanical plasticity of cells. NATURE MATERIALS 2016; 15:1090-4. [PMID: 27376682 DOI: 10.1038/nmat4689] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2016] [Indexed: 05/06/2023]
Abstract
Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.
Collapse
Affiliation(s)
- Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Max-Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Richard Gerum
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Michael Kuhn
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marina Spörrer
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anna Lippert
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Werner Schneider
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Katerina E Aifantis
- Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
14
|
Kuo PL, Charng CC, Wu PC, Li PC. Shear-wave elasticity measurements of three-dimensional cell cultures for mechanobiology. J Cell Sci 2016; 130:292-302. [PMID: 27505887 PMCID: PMC5394775 DOI: 10.1242/jcs.186320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022] Open
Abstract
Studying mechanobiology in three-dimensional (3D) cell cultures better recapitulates cell behaviors in response to various types of mechanical stimuli in vivo. Stiffening of the extracellular matrix resulting from cell remodeling potentiates many pathological conditions, including advanced cancers. However, an effective tool for measuring the spatiotemporal changes in elastic properties of such 3D cell cultures without directly contacting the samples has not been reported previously. We describe an ultrasonic shear-wave-based platform for quantitatively evaluating the spatiotemporal dynamics of the elasticity of a matrix remodeled by cells cultured in 3D environments. We used this approach to measure the elasticity changes of 3D matrices grown with highly invasive lung cancer cells and cardiac myoblasts, and to delineate the principal mechanism underlying the stiffening of matrices remodeled by these cells. The described approach can be a useful tool in fields investigating and manipulating the mechanotransduction of cells in 3D contexts, and also has potential as a drug-screening platform. Summary: Use of a non-direct-contact platform for measurement of the spatiotemporal dynamics of matrix elasticity when remodeled by cells cultured in three-dimensional contexts.
Collapse
Affiliation(s)
- Po-Ling Kuo
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.,Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.,Department of Rehabilitation, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Ching-Che Charng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Chen Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Pai-Chi Li
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan .,Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Feric M, Broedersz CP, Brangwynne CP. Soft viscoelastic properties of nuclear actin age oocytes due to gravitational creep. Sci Rep 2015; 5:16607. [PMID: 26577186 PMCID: PMC4649616 DOI: 10.1038/srep16607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022] Open
Abstract
The actin cytoskeleton helps maintain structural organization within living cells. In large X. laevis oocytes, gravity becomes a dominant force and is countered by a nuclear actin network that prevents liquid-like nuclear bodies from immediate sedimentation and coalescence. However, nuclear actin's mechanical properties, and how they facilitate the stabilization of nuclear bodies, remain unknown. Using active microrheology, we find that nuclear actin forms a weak viscoelastic network, with a modulus of roughly 0.1 Pa. Embedded probe particles subjected to a constant force exhibit continuous displacement, due to viscoelastic creep. Gravitational forces also cause creep displacement of nuclear bodies, resulting in their asymmetric nuclear distribution. Thus, nuclear actin does not indefinitely support the emulsion of nuclear bodies, but only kinetically stabilizes them by slowing down gravitational creep to ~2 months. This is similar to the viability time of large oocytes, suggesting gravitational creep ages oocytes, with fatal consequences on long timescales.
Collapse
Affiliation(s)
- Marina Feric
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Chase P. Broedersz
- Lewis-Sigler Institute for Integrative Genomics and Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
16
|
Gralka M, Kroy K. Inelastic mechanics: A unifying principle in biomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3025-37. [PMID: 26151340 DOI: 10.1016/j.bbamcr.2015.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 01/16/2023]
Abstract
Many soft materials are classified as viscoelastic. They behave mechanically neither quite fluid-like nor quite solid-like - rather a bit of both. Biomaterials are often said to fall into this class. Here, we argue that this misses a crucial aspect, and that biomechanics is essentially damage mechanics, at heart. When deforming an animal cell or tissue, one can hardly avoid inducing the unfolding of protein domains, the unbinding of cytoskeletal crosslinkers, the breaking of weak sacrificial bonds, and the disruption of transient adhesions. We classify these activated structural changes as inelastic. They are often to a large degree reversible and are therefore not plastic in the proper sense, but they dissipate substantial amounts of elastic energy by structural damping. We review recent experiments involving biological materials on all scales, from single biopolymers over cells to model tissues, to illustrate the unifying power of this paradigm. A deliberately minimalistic yet phenomenologically very rich mathematical modeling framework for inelastic biomechanics is proposed. It transcends the conventional viscoelastic paradigm and suggests itself as a promising candidate for a unified description and interpretation of a wide range of experimental data. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Matti Gralka
- Institute for Theoretical Physics, University of Leipzig, Bruederstr. 16, 04103 Leipzig, Germany.
| | - Klaus Kroy
- Institute for Theoretical Physics, University of Leipzig, Bruederstr. 16, 04103 Leipzig, Germany.
| |
Collapse
|
17
|
Maloney JM, Van Vliet KJ. Chemoenvironmental modulators of fluidity in the suspended biological cell. SOFT MATTER 2014; 10:8031-8042. [PMID: 25160132 DOI: 10.1039/c4sm00743c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biological cells can be characterized as "soft matter" with mechanical characteristics potentially modulated by external cues such as pharmaceutical dosage or fever temperature. Further, quantifying the effects of chemical and physical stimuli on a cell's mechanical response informs models of living cells as complex materials. Here, we investigate the mechanical behavior of single biological cells in terms of fluidity, or mechanical hysteresivity normalized to the extremes of an elastic solid or a viscous liquid. This parameter, which complements stiffness when describing whole-cell viscoelastic response, can be determined for a suspended cell within subsecond times. Questions remain, however, about the origin of fluidity as a conserved parameter across timescales, the physical interpretation of its magnitude, and its potential use for high-throughput sorting and separation of interesting cells by mechanical means. Therefore, we exposed suspended CH27 lymphoma cells to various chemoenvironmental conditions--temperature, pharmacological agents, pH, and osmolarity--and measured cell fluidity with a non-contact technique to extend familiarity with suspended-cell mechanics in the context of both soft-matter physics and mechanical flow cytometry development. The actin-cytoskeleton-disassembling drug latrunculin exacted a large effect on mechanical behavior, amenable to dose-dependence analysis of coupled changes in fluidity and stiffness. Fluidity was minimally affected by pH changes from 6.5 to 8.5, but strongly modulated by osmotic challenge to the cell, where the range spanned halfway from solid to liquid behavior. Together, these results support the interpretation of fluidity as a reciprocal friction within the actin cytoskeleton, with implications both for cytoskeletal models and for expectations when separating interesting cell subpopulations by mechanical means in the suspended state.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
18
|
Fischer-Friedrich E, Hyman AA, Jülicher F, Müller DJ, Helenius J. Quantification of surface tension and internal pressure generated by single mitotic cells. Sci Rep 2014; 4:6213. [PMID: 25169063 PMCID: PMC4148660 DOI: 10.1038/srep06213] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/05/2014] [Indexed: 01/11/2023] Open
Abstract
During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ≈ 40 Pa and 0.2 mNm(-1) during interphase to ≈ 400 Pa and 1.6 mNm(-1) during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.
Collapse
Affiliation(s)
- Elisabeth Fischer-Friedrich
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| | - Jonne Helenius
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Mattenstr. 26, 4058 Basel, Switzerland
| |
Collapse
|
19
|
Maloney JM, Lehnhardt E, Long AF, Van Vliet KJ. Mechanical fluidity of fully suspended biological cells. Biophys J 2014; 105:1767-77. [PMID: 24138852 DOI: 10.1016/j.bpj.2013.08.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity-hysteresivity normalized to the extremes of an elastic solid or a viscous liquid-can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature-now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.
Collapse
Affiliation(s)
- John M Maloney
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
20
|
Gyger M, Stange R, Kießling TR, Fritsch A, Kostelnik KB, Beck-Sickinger AG, Zink M, Käs JA. Active contractions in single suspended epithelial cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 43:11-23. [PMID: 24196420 DOI: 10.1007/s00249-013-0935-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 12/12/2022]
Abstract
Investigations of active contractions in tissue cells to date have been focused on cells that exert forces via adhesion sites to substrates or to other cells. In this study we show that also suspended epithelial cells exhibit contractility, revealing that contractions can occur independently of focal adhesions. We employ the Optical Stretcher to measure adhesion-independent mechanical properties of an epithelial cell line transfected with a heat-sensitive cation channel. During stretching the heat transferred to the ion channel causes a pronounced Ca(2+) influx through the plasma membrane that can be blocked by adequate drugs. This way the contractile forces in suspended cells are shown to be partially triggered by Ca(2+) signaling. A phenomenological mathematical model is presented, incorporating a term accounting for the active stress exerted by the cell, which is both necessary and sufficient to describe the observed increase in strain when the Ca(2+) influx is blocked. The median and the shape of the strain distributions depend on the activity of the cells. Hence, it is unlikely that they can be described by a simple Gaussian or log normal distribution, but depend on specific cellular properties such as active contractions. Our results underline the importance of considering activity when measuring cellular mechanical properties even in the absence of measurable contractions. Thus, the presented method to quantify active contractions of suspended cells offers new perspectives for a better understanding of cellular force generation with possible implications for medical diagnosis and therapy.
Collapse
Affiliation(s)
- Markus Gyger
- Abteilung für Physik der weichen Materie, Institut für Experimentelle Physik I, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mukundan V, Nelson WJ, Pruitt BL. Microactuator device for integrated measurement of epithelium mechanics. Biomed Microdevices 2013; 15:117-23. [PMID: 22927158 DOI: 10.1007/s10544-012-9693-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Mechanical forces are among important factors that drive cellular function and organization. We present a microfabricated device with on-chip actuation for mechanical testing of single cells. An integrated immersible electrostatic actuator system is demonstrated that applies calibrated forces to cells. We conduct stretching experiments by directly applying forces to epithelial cells adhered to device surfaces functionalized with collagen. We measure mechanical properties including stiffness, hysteresis and visco-elasticity of adherent cells.
Collapse
Affiliation(s)
- Vikram Mukundan
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
22
|
Zheng X, Young Koh G, Jackson T. A continuous model of angiogenesis: Initiation, extension, and maturation of new blood vessels modulated by vascular endothelial growth factor, angiopoietins, platelet-derived growth factor-B, and pericytes. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.1109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: A review. Med Eng Phys 2012; 34:1375-86. [DOI: 10.1016/j.medengphy.2012.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 07/31/2012] [Accepted: 08/09/2012] [Indexed: 11/24/2022]
|
24
|
A viscoelastic model of blood capillary extension and regression: derivation, analysis, and simulation. J Math Biol 2012; 68:57-80. [DOI: 10.1007/s00285-012-0624-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 11/01/2012] [Indexed: 12/30/2022]
|
25
|
Wolff L, Kroy K. Minimal model for the inelastic mechanics of biopolymer networks and cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:040901. [PMID: 23214521 DOI: 10.1103/physreve.86.040901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/05/2012] [Indexed: 06/01/2023]
Abstract
We explore the mechanism behind the ambiguous nonlinear mechanical response of biopolymer networks and cells. Our theoretical analysis is based on the inelastic glassy wormlike chain model (iGWLC), which accounts for simultaneous softening and stiffening in terms of two antagonistic mechanisms: viscoelastic stress stiffening caused by polymer stretching, and inelastic fluidization caused by bond breaking. On this basis, we derive a set of simple schematic constitutive equations that faithfully reproduce the rich inelastic phenomenology of biopolymer networks and cells.
Collapse
Affiliation(s)
- Lars Wolff
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany
| | | |
Collapse
|
26
|
Zhao S, Aye YN, Shee CY, Ang WT. Development of a Compact 1-D Micromanipulator with Flexure Manufactured Using Rapid Prototyping. ACTA ACUST UNITED AC 2012. [DOI: 10.4018/ijimr.2012040104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Presented is the design and initial experimental results of a compact 1-D micromanipulator. The presented manipulator is a piezoelectric actuator based complaint mechanism with a compact translational flexure manufactured using rapid prototyping. Rapid prototyping allows complicated designs with low manufacturing costs. Analytical and Finite Element (FE) models for designing the flexure are presented. The simulation results are compared with experiments conducted on a prototype. Nonlinear stiffness is measured and evaluated. The importance of pre-loading force is investigated. Trajectory tracking tests at different frequencies are performed on the manipulator. The maximum and root mean square errors are analyzed.
Collapse
Affiliation(s)
- Su Zhao
- Nanyang Technological University, Singapore
| | | | | | | |
Collapse
|
27
|
Mizrahi N, Zhou EH, Lenormand G, Krishnan R, Weihs D, Butler JP, Weitz DA, Fredberg JJ, Kimmel E. Low intensity ultrasound perturbs cytoskeleton dynamics. SOFT MATTER 2012; 8:2438-2443. [PMID: 23646063 PMCID: PMC3641826 DOI: 10.1039/c2sm07246g] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Therapeutic ultrasound is widely employed in clinical applications but its mechanism of action remains unclear. Here we report prompt fluidization of a cell and dramatic acceleration of its remodeling dynamics when exposed to low intensity ultrasound. These physical changes are caused by very small strains (10-5) at ultrasonic frequencies (106 Hz), but are closely analogous to those caused by relatively large strains (10-1) at physiological frequencies (100 Hz). Moreover, these changes are reminiscent of rejuvenation and aging phenomena that are well-established in certain soft inert materials. As such, we suggest cytoskeletal fluidization together with resulting acceleration of cytoskeletal remodeling events as a mechanism contributing to the salutary effects of low intensity therapeutic ultrasound.
Collapse
Affiliation(s)
- Natalya Mizrahi
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Enhua H. Zhou
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Guillaume Lenormand
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - James P. Butler
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
| | - David A. Weitz
- Department of Physics and D.E.A.S., Harvard University, Cambridge, Massachusetts, USA
| | - Jeffrey J. Fredberg
- Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Eitan Kimmel
- Faculty of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Blundell JR, Terentjev EM. The influence of disorder on deformations in semiflexible networks. Proc Math Phys Eng Sci 2011. [DOI: 10.1098/rspa.2010.0600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a model that assesses the different elastic responses of a semiflexible network, which either (i) is constrained to deform in an affine way or (ii) is permitted to thermally fluctuate and deviate from affine response. The thermal, non-affine response of the network is achieved using a Metropolis Monte Carlo algorithm with dynamic step size. We find that non-affine deformations soften the network dramatically at low strains and make the eventual nonlinear strain stiffening far more pronounced. We show that the effect of these non-affine deformations are very sensitive to the degree variation in the lengths of filaments connecting cross-links. Where there is high variation, non-affine deformations allow internal stresses to relax, giving rise to a smaller range of tensile forces in filaments and a dramatic reduction of network stiffness. This highlights that non-affine deformations are crucial in small strain response of stiff polymer networks.
Collapse
|
29
|
Fernández P, Pullarkat PA. The role of the cytoskeleton in volume regulation and beading transitions in PC12 neurites. Biophys J 2011; 99:3571-9. [PMID: 21112281 DOI: 10.1016/j.bpj.2010.10.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022] Open
Abstract
We present investigations on volume regulation and beading shape transitions in PC12 neurites, conducted using a flow-chamber technique. By disrupting the cell cytoskeleton with specific drugs, we investigate the role of its individual components in the volume regulation response. We find that microtubule disruption increases both swelling rate and maximum volume attained, but does not affect the ability of the neurite to recover its initial volume. In addition, investigation of axonal beading-also known as pearling instability-provides additional clues on the mechanical state of the neurite. We conclude that volume recovery is driven by passive diffusion of osmolites, and propose that the initial swelling phase is mechanically slowed down by microtubules. Our experiments provide a framework to investigate the role of cytoskeletal mechanics in volume homeostasis.
Collapse
Affiliation(s)
- Pablo Fernández
- E27 Lehrstuhl für Zellbiophysik, Technische Universität München, Garching, Germany.
| | | |
Collapse
|
30
|
Oliver M, Kováts T, Mijailovich SM, Butler JP, Fredberg JJ, Lenormand G. Remodeling of integrated contractile tissues and its dependence on strain-rate amplitude. PHYSICAL REVIEW LETTERS 2010; 105:158102. [PMID: 21230941 PMCID: PMC3940190 DOI: 10.1103/physrevlett.105.158102] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Indexed: 05/30/2023]
Abstract
Here we investigate the origin of relaxation times governing the mechanical response of an integrated contractile tissue to imposed cyclic changes of length. When strain-rate amplitude is held constant as frequency is varied, fast events are accounted for by actomyosin cross-bridge cycling, but slow events reveal relaxation processes associated with ongoing cytoskeletal length adaptation. Although both relaxation regimes are innately nonlinear, these regimes are unified and their positions along the frequency axis are set by the imposed strain-rate amplitude.
Collapse
|
31
|
Hart FX. Cytoskeletal forces produced by extremely low-frequency electric fields acting on extracellular glycoproteins. Bioelectromagnetics 2010; 31:77-84. [PMID: 19593781 DOI: 10.1002/bem.20525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The physical mechanism by which cells transduce an applied electric field is not well understood. This article establishes for the first time a direct, quantitative model that links the field to cytoskeletal forces. In a previous article, applied electric fields of physiological strength were shown to produce significant mechanical torques at the cellular level. In this article, the corresponding forces exerted on the cytoskeleton are computed and found to be comparable in magnitude to mechanical forces known to produce physiological effects. In addition to the electrical force, the viscous drag force exerted by the surrounding medium and the restoring force exerted by the neighboring structures are considered in the analysis. For an applied electric field of 10 V/m, the force transmitted to the CD44 receptor of a hyaluronan chain in cartilage is about 1 pN at 10 Hz and 7 pN at 1 Hz. For an applied electric field of 100 V/m, the force transmitted to the cytoskeleton at one focus of the glycocalyx is about 0.5 pN at 10 Hz and 1.3 pN at 1 Hz. Mechanical forces of similar magnitude have been observed to produce physiological effects. Hence, this electromechanical transduction process is a plausible mechanism for the production of physiological effects by such electric fields.
Collapse
Affiliation(s)
- Francis X Hart
- Department of Physics, The University of the South, Sewanee, Tennessee 37383, USA.
| |
Collapse
|
32
|
Affiliation(s)
- Shang-You Tee
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
33
|
Hoffman BD, Crocker JC. Cell mechanics: dissecting the physical responses of cells to force. Annu Rev Biomed Eng 2009; 11:259-88. [PMID: 19400709 DOI: 10.1146/annurev.bioeng.10.061807.160511] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is now widely appreciated that normal tissue morphology and function rely upon cells' ability to sense and generate forces appropriate to their correct tissue context. Although the effects of forces on cells have been studied for decades, our understanding of how those forces propagate through and act on different cell substructures remains at an early stage. The past decade has seen a resurgence of interest, with a variety of different micromechanical methods in current use that probe cells' dynamic deformation in response to a time-varying force. The ability of researchers to carefully measure the mechanical properties of cells subjected to a variety of pharmacological and genetic interventions, however, currently outstrips our ability to quantitatively interpret the data in many cases. Despite these challenges, the stage is now set for the development of detailed models for cell deformability, motility, and mechanosensing that are rooted at the molecular level.
Collapse
Affiliation(s)
- Brenton D Hoffman
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22901, USA.
| | | |
Collapse
|
34
|
Fernandez P, Bausch AR. The compaction of gels by cells: a case of collective mechanical activity. Integr Biol (Camb) 2009; 1:252-9. [PMID: 20023736 DOI: 10.1039/b822897c] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand mechanotransduction, purely mechanical phenomena resulting from the crosstalk between contractile cells and their elastic surroundings must be distinguished from adaptive responses to mechanical cues. Here, we revisit the compaction of freely suspended collagen gels by embedded cells, where a small volume fraction of cells (osteoblasts and fibroblasts) compacts the surrounding matrix by two orders of magnitude. Combining micropatterning with time-lapse strain mapping, we find gel compaction to be crucially determined by mechanical aspects of the surrounding matrix. First, it is a boundary effect: the compaction propagates from the edges of the matrix into the bulk. Second, the stress imposed by the cells irreversibly compacts the matrix and renders it anisotropic as a consequence of its nonlinear mechanics and the boundary conditions. Third, cell polarization and alignment follow in time and seem to be a consequence of gel compaction, at odds with current mechanosensing conceptions. Finally, our observation of a threshold cell density shows gel compaction to be a cooperative effect, revealing a mechanical interaction between cells through the matrix. The intricate interplay between cell contractility and surrounding matrix mechanics provides an important organizing principle with implications for many physiological processes such as tissue development.
Collapse
Affiliation(s)
- Pablo Fernandez
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Strasse 1, D-85748, Garching, Germany.
| | | |
Collapse
|