1
|
Nies L, Canete L, Dao DD, Giraud S, Kankainen A, Lunney D, Nowacki F, Bastin B, Stryjczyk M, Ascher P, Blaum K, Cakirli RB, Eronen T, Fischer P, Flayol M, Girard Alcindor V, Herlert A, Jokinen A, Khanam A, Köster U, Lange D, Moore ID, Müller M, Mougeot M, Nesterenko DA, Penttilä H, Petrone C, Pohjalainen I, de Roubin A, Rubchenya V, Schweiger C, Schweikhard L, Vilen M, Äystö J. Further Evidence for Shape Coexistence in ^{79}Zn^{m} near Doubly Magic ^{78}Ni. PHYSICAL REVIEW LETTERS 2023; 131:222503. [PMID: 38101393 DOI: 10.1103/physrevlett.131.222503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023]
Abstract
Isomers close to doubly magic _{28}^{78}Ni_{50} provide essential information on the shell evolution and shape coexistence near the Z=28 and N=50 double shell closure. We report the excitation energy measurement of the 1/2^{+} isomer in _{30}^{79}Zn_{49} through independent high-precision mass measurements with the JYFLTRAP double Penning trap and with the ISOLTRAP multi-reflection time-of-flight mass spectrometer. We unambiguously place the 1/2^{+} isomer at 942(10) keV, slightly below the 5/2^{+} state at 983(3) keV. With the use of state-of-the-art shell-model diagonalizations, complemented with discrete nonorthogonal shell-model calculations which are used here for the first time to interpret shape coexistence, we find low-lying deformed intruder states, similar to other N=49 isotones. The 1/2^{+} isomer is interpreted as the bandhead of a low-lying deformed structure akin to a predicted low-lying deformed band in ^{80}Zn, and points to shape coexistence in ^{79,80}Zn similar to the one observed in ^{78}Ni. The results make a strong case for confirming the claim of shape coexistence in this key region of the nuclear chart.
Collapse
Affiliation(s)
- L Nies
- European Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland
- Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
| | - L Canete
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
- Department of Physics, University of Surrey, Guildford GU2 7X5, United Kingdom
| | - D D Dao
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - S Giraud
- GANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
| | - A Kankainen
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - D Lunney
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
| | - F Nowacki
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
| | - B Bastin
- GANIL, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 5, France
| | - M Stryjczyk
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - P Ascher
- Université de Bordeaux, CNRS/IN2P3-Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - K Blaum
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - R B Cakirli
- Department of Physics, Istanbul University, Istanbul 34134, Turkey
| | - T Eronen
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - P Fischer
- Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
| | - M Flayol
- Université de Bordeaux, CNRS/IN2P3-Université, CNRS/IN2P3, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | | | - A Herlert
- FAIR GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A Jokinen
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - A Khanam
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
- Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki, Finland
| | - U Köster
- European Organization for Nuclear Research (CERN), Meyrin, 1211 Geneva, Switzerland
- Institut Laue-Langevin, 38000 Grenoble, France
| | - D Lange
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - I D Moore
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - M Müller
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - M Mougeot
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - D A Nesterenko
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - H Penttilä
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - C Petrone
- IFIN-HH, P.O. Box MG-6, 077125 Bucharest-Magurele, Romania
| | - I Pohjalainen
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - A de Roubin
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - V Rubchenya
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - Ch Schweiger
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - L Schweikhard
- Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
| | - M Vilen
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| | - J Äystö
- University of Jyvaskyla, Department of Physics, Accelerator laboratory, P.O. Box 35(YFL), FI-40014, University of Jyvaskyla, Finland
| |
Collapse
|
2
|
78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 2019; 569:53-58. [PMID: 31043730 DOI: 10.1038/s41586-019-1155-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.
Collapse
|
3
|
Hagen G, Jansen GR, Papenbrock T. Structure of ^{78}Ni from First-Principles Computations. PHYSICAL REVIEW LETTERS 2016; 117:172501. [PMID: 27824459 DOI: 10.1103/physrevlett.117.172501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic ^{78}Ni and its neighbors are challenging because of the extreme neutron-to-proton ratio and the proximity of the continuum. We predict the J^{π}=2_{1}^{+} state in ^{78}Ni from a correlation with the J^{π}=2_{1}^{+} state in ^{48}Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that ^{78}Ni is doubly magic, and the predicted low-lying states of ^{79,80}Ni open the way for shell-model studies of many more rare isotopes.
Collapse
Affiliation(s)
- G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T Papenbrock
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
4
|
Gottardo A, Verney D, Delafosse C, Ibrahim F, Roussière B, Sotty C, Roccia S, Andreoiu C, Costache C, Delattre MC, Deloncle I, Etilé A, Franchoo S, Gaulard C, Guillot J, Lebois M, MacCormick M, Marginean N, Marginean R, Matea I, Mihai C, Mitu I, Olivier L, Portail C, Qi L, Stan L, Testov D, Wilson J, Yordanov DT. First Evidence of Shape Coexistence in the ^{78}Ni Region: Intruder 0_{2}^{+} State in ^{80}Ge. PHYSICAL REVIEW LETTERS 2016; 116:182501. [PMID: 27203316 DOI: 10.1103/physrevlett.116.182501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 06/05/2023]
Abstract
The N=48 ^{80}Ge nucleus is studied by means of β-delayed electron-conversion spectroscopy at ALTO. The radioactive ^{80}Ga beam is produced through the isotope separation on line photofission technique and collected on a movable tape for the measurement of γ and e^{-} emission following β decay. An electric monopole E0 transition, which points to a 639(1) keV intruder 0_{2}^{+} state, is observed for the first time. This new state is lower than the 2_{1}^{+} level in ^{80}Ge, and provides evidence of shape coexistence close to one of the most neutron-rich doubly magic nuclei discovered so far, ^{78}Ni. This result is compared with theoretical estimates, helping to explain the role of monopole and quadrupole forces in the weakening of the N=50 gap at Z=32. The evolution of intruder 0_{2}^{+} states towards ^{78}Ni is discussed.
Collapse
Affiliation(s)
- A Gottardo
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - D Verney
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Delafosse
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - F Ibrahim
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - B Roussière
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Sotty
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - S Roccia
- CSNSM, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Andreoiu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A S16, Canada
| | - C Costache
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - M-C Delattre
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - I Deloncle
- CSNSM, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - A Etilé
- University of Helsinki, Helsinki, Finland
| | - S Franchoo
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Gaulard
- CSNSM, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - J Guillot
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - M Lebois
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - M MacCormick
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - N Marginean
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - R Marginean
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - I Matea
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Mihai
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - I Mitu
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - L Olivier
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - C Portail
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - L Qi
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - L Stan
- Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
| | - D Testov
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, 35020 Legnaro, Italy
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia
| | - J Wilson
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| | - D T Yordanov
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
| |
Collapse
|
5
|
Xu ZY, Nishimura S, Lorusso G, Browne F, Doornenbal P, Gey G, Jung HS, Li Z, Niikura M, Söderström PA, Sumikama T, Taprogge J, Vajta Z, Watanabe H, Wu J, Yagi A, Yoshinaga K, Baba H, Franchoo S, Isobe T, John PR, Kojouharov I, Kubono S, Kurz N, Matea I, Matsui K, Mengoni D, Morfouace P, Napoli DR, Naqvi F, Nishibata H, Odahara A, Sahin E, Sakurai H, Schaffner H, Stefan IG, Suzuki D, Taniuchi R, Werner V. β-Decay half-lives of 76,77Co, 79,80Ni, and 81Cu: experimental indication of a doubly magic 78Ni. PHYSICAL REVIEW LETTERS 2014; 113:032505. [PMID: 25083639 DOI: 10.1103/physrevlett.113.032505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 06/03/2023]
Abstract
The half-lives of 20 neutron-rich nuclei with Z=27-30 have been measured at the RIBF, including five new half-lives of (76)Co(21.7(-4.9)(+6.5) ms), (77)Co(13.0(-4.3)(+7.2) ms), (79)Ni(43.0(-7.5)(+8.6) ms), (80)Ni(23.9(-17.2)(+26.0) ms), and (81)Cu(73.2 ± 6.8 ms). In addition, the half-lives of (73-75)Co, (74-78)Ni, (78-80)Cu, and (80-82)Zn were determined with higher precision than previous works. Based on these new results, a systematic study of the β-decay half-lives has been carried out, which suggests a sizable magicity for both the proton number Z = 28 and the neutron number N=50 in (78)Ni.
Collapse
Affiliation(s)
- Z Y Xu
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan and RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Nishimura
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - G Lorusso
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - F Browne
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | - P Doornenbal
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - G Gey
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble Cedex, France and ILL, 38042 Grenoble Cedex, France
| | - H-S Jung
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Z Li
- Department of Physics, Peking University, Beijing 100871, China
| | - M Niikura
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - P-A Söderström
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - T Sumikama
- Department of Physics, Tohoku University, 6-3 Aramaki-Aoba, Aoba, Sendai, Miyagi 980-8578, Japan
| | - J Taprogge
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain and Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| | - Zs Vajta
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Institute for Nuclear Research, Hungarian Academy of Sciences, P.O. Box 51, Debrecen H-4001, Hungary
| | - H Watanabe
- IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
| | - J Wu
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan and Department of Physics, Peking University, Beijing 100871, China
| | - A Yagi
- Department of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - K Yoshinaga
- Department of Physics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - H Baba
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Franchoo
- Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS, F-91406 Orsay, France
| | - T Isobe
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - P R John
- Dipartimento di Fisica e Astronomia, Universitá di Padova and INFN Sezione di Padova, I-35131 Padova, Italy
| | - I Kojouharov
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - S Kubono
- RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - N Kurz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - I Matea
- Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS, F-91406 Orsay, France
| | - K Matsui
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - D Mengoni
- Dipartimento di Fisica e Astronomia, Universitá di Padova and INFN Sezione di Padova, I-35131 Padova, Italy
| | - P Morfouace
- Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS, F-91406 Orsay, France
| | - D R Napoli
- Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
| | - F Naqvi
- Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06511, USA
| | - H Nishibata
- Department of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - A Odahara
- Department of Physics, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
| | - E Sahin
- Department of Physics, University of Oslo, Oslo NO-0316, Norway
| | - H Sakurai
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan and RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Schaffner
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - I G Stefan
- Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS, F-91406 Orsay, France
| | - D Suzuki
- Institut de Physique Nucléaire d'Orsay, IN2P3-CNRS, F-91406 Orsay, France
| | - R Taniuchi
- Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - V Werner
- Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
6
|
Wolf RN, Beck D, Blaum K, Böhm C, Borgmann C, Breitenfeldt M, Chamel N, Goriely S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Naimi S, Neidherr D, Rosenbusch M, Schweikhard L, Stanja J, Wienholtz F, Zuber K. Plumbing neutron stars to new depths with the binding energy of the exotic nuclide 82Zn. PHYSICAL REVIEW LETTERS 2013; 110:041101. [PMID: 25166148 DOI: 10.1103/physrevlett.110.041101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Indexed: 06/03/2023]
Abstract
Modeling the composition of neutron-star crusts depends strongly on binding energies of neutron-rich nuclides near the N = 50 and N = 82 shell closures. Using a recent development of time-of-flight mass spectrometry for on-line purification of radioactive ion beams to access more exotic species, we have determined for the first time the mass of (82)Zn with the ISOLTRAP setup at the ISOLDE-CERN facility. With a robust neutron-star model based on nuclear energy-density-functional theory, we solve the general relativistic Tolman-Oppenheimer-Volkoff equations and calculate the neutron-star crust composition based on the new experimental mass. The composition profile is not only altered but now constrained by experimental data deeper into the crust than before.
Collapse
Affiliation(s)
- R N Wolf
- Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - D Beck
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ch Böhm
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ch Borgmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Breitenfeldt
- Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200d, B-3001 Heverlee, Belgium
| | - N Chamel
- Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - S Goriely
- Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - F Herfurth
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | | | - S Kreim
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany and CERN, 1211 Geneva 23, Switzerland
| | - D Lunney
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
| | - V Manea
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
| | - E Minaya Ramirez
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany and Helmholtz-Institut Mainz, 55099 Mainz, Germany
| | - S Naimi
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France and RIKEN Nishina Center for Accelerator-based Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - D Neidherr
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany and Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Rosenbusch
- Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - L Schweikhard
- Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - J Stanja
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
| | - F Wienholtz
- Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
7
|
Madurga M, Surman R, Borzov IN, Grzywacz R, Rykaczewski KP, Gross CJ, Miller D, Stracener DW, Batchelder JC, Brewer NT, Cartegni L, Hamilton JH, Hwang JK, Liu SH, Ilyushkin SV, Jost C, Karny M, Korgul A, Królas W, Kuźniak A, Mazzocchi C, Mendez AJ, Miernik K, Padgett SW, Paulauskas SV, Ramayya AV, Winger JA, Wolińska-Cichocka M, Zganjar EF. New half-lives of r-process Zn and Ga isotopes measured with electromagnetic separation. PHYSICAL REVIEW LETTERS 2012; 109:112501. [PMID: 23005622 DOI: 10.1103/physrevlett.109.112501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/10/2012] [Indexed: 06/01/2023]
Abstract
The β decays of neutron-rich nuclei near the doubly magic (78)Ni were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of (82)Zn (228±10 ms), (83)Zn (117±20 ms), and (85)Ga (93±7 ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the (78)Ni region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A>140 nuclei.
Collapse
Affiliation(s)
- M Madurga
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rahaman S, Elomaa VV, Eronen T, Hakala J, Jokinen A, Kankainen A, Rissanen J, Suhonen J, Weber C, Aystö J. Accurate Q value for the 112Sn double-beta decay and its implication for the search of the neutrino mass. PHYSICAL REVIEW LETTERS 2009; 103:042501. [PMID: 19659344 DOI: 10.1103/physrevlett.103.042501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Indexed: 05/28/2023]
Abstract
The Q value of the ;{112}Sn double-beta decay was determined by using a Penning trap mass spectrometer. The new atomic-mass difference between ;{112}Sn and ;{112}Cd of 1919.82(16) keV is 25 times more precise than the previous value of 1919(4) keV. This result removes the possibility of enhanced resonance capture of the neutrinoless double-EC decay to the excited 0;{+} state at 1871.00(19) keV in ;{112}Cd.
Collapse
Affiliation(s)
- S Rahaman
- Department of Physics, FIN-40014 University of Jyväskylä, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Winger JA, Ilyushkin SV, Rykaczewski KP, Gross CJ, Batchelder JC, Goodin C, Grzywacz R, Hamilton JH, Korgul A, Królas W, Liddick SN, Mazzocchi C, Padgett S, Piechaczek A, Rajabali MM, Shapira D, Zganjar EF, Borzov IN. Large beta-delayed neutron emission probabilities in the 78Ni region. PHYSICAL REVIEW LETTERS 2009; 102:142502. [PMID: 19392431 DOI: 10.1103/physrevlett.102.142502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Indexed: 05/27/2023]
Abstract
The beta-delayed neutron branching ratios (P{betan}) for nuclei near doubly magic 78Ni have been directly measured using a new method combining high-resolution mass separation, reacceleration, and digital beta-gamma spectroscopy of 238U fission products. The P{betan} values for the very neutron-rich isotopes ;{76-78}Cu and 83Ga were found to be much higher than previously reported and predicted. Revised calculations of the betan process, accounting for new mass measurements and an inversion of the pi2p{3/2} and pi1f{5/2} orbitals, are in better agreement with these new experimental results.
Collapse
Affiliation(s)
- J A Winger
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Baruah S, Audi G, Blaum K, Dworschak M, George S, Guénaut C, Hager U, Herfurth F, Herlert A, Kellerbauer A, Kluge HJ, Lunney D, Schatz H, Schweikhard L, Yazidjian C. Mass measurements beyond the major r-process waiting point 80Zn. PHYSICAL REVIEW LETTERS 2008; 101:262501. [PMID: 19437636 DOI: 10.1103/physrevlett.101.262501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-precision mass measurements on neutron-rich zinc isotopes (71m,72-81)Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time, the mass of 81Zn has been experimentally determined. This makes 80Zn the first of the few major waiting points along the path of the astrophysical rapid neutron-capture process where neutron-separation energy and neutron-capture Q-value are determined experimentally. The astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N=50 shell closure for Z=30.
Collapse
Affiliation(s)
- S Baruah
- Institut für Physik, Ernst-Moritz-Arndt-Universität, 17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|