1
|
Brunner E, Pausch L, Carnio EG, Dufour G, Rodríguez A, Buchleitner A. Many-Body Interference at the Onset of Chaos. PHYSICAL REVIEW LETTERS 2023; 130:080401. [PMID: 36898099 DOI: 10.1103/physrevlett.130.080401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We unveil the signature of many-body interference across dynamical regimes of the Bose-Hubbard model. Increasing the particles' indistinguishability enhances the temporal fluctuations of few-body observables, with a dramatic amplification at the onset of quantum chaos. By resolving the exchange symmetries of partially distinguishable particles, we explain this amplification as the fingerprint of the initial state's coherences in the eigenbasis.
Collapse
Affiliation(s)
- Eric Brunner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Lukas Pausch
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Gabriel Dufour
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Alberto Rodríguez
- Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| |
Collapse
|
2
|
Pausch L, Carnio EG, Rodríguez A, Buchleitner A. Chaos and Ergodicity across the Energy Spectrum of Interacting Bosons. PHYSICAL REVIEW LETTERS 2021; 126:150601. [PMID: 33929228 DOI: 10.1103/physrevlett.126.150601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/20/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
We identify the chaotic phase of the Bose-Hubbard Hamiltonian by the energy-resolved correlation between spectral features and structural changes of the associated eigenstates as exposed by their generalized fractal dimensions. The eigenvectors are shown to become ergodic in the thermodynamic limit, in the configuration space Fock basis, in which random matrix theory offers a remarkable description of their typical structure. The distributions of the generalized fractal dimensions, however, are ever more distinguishable from random matrix theory as the Hilbert space dimension grows.
Collapse
Affiliation(s)
- Lukas Pausch
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| | - Alberto Rodríguez
- Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
| |
Collapse
|
3
|
Sharma L, Roy A, Panja S, De S. An easy to construct sub-micron resolution imaging system. Sci Rep 2020; 10:21796. [PMID: 33311632 PMCID: PMC7732857 DOI: 10.1038/s41598-020-78509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/20/2020] [Indexed: 11/09/2022] Open
Abstract
We report an easy to construct imaging system that can resolve particles separated by [Formula: see text] 0.68 [Formula: see text]m with minimum aberrations. Its first photon collecting lens is placed at a distance of 31.6 mm giving wide optical access. The microscope has a Numerical Aperture (NA) of 0.33, which is able to collect signal over 0.36 sr. The diffraction limited objective and magnifier recollects 77% photons into the central disc of the image with a transverse spherical aberration of 0.05 mm and magnification upto 238. The system has a depth of field of 142 [Formula: see text]m and a field of view of 56 [Formula: see text]m which images a large ensemble of atoms. The imaging system gives a diffraction limited performance over visible to near-infrared wavelengths on optimization of the working distance and the distance between the objective and magnifier.
Collapse
Affiliation(s)
- Lakhi Sharma
- CSIR - National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - A Roy
- CSIR - National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,Max Planck Institute for the Science of Light, Staudtstrasse 2, Erlangen, 91058, Germany
| | - S Panja
- CSIR - National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - S De
- Inter-University Centre for Astronomy and Astrophysics (IUCAA), Post Bag 4, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
4
|
Abstract
Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom-based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions.
Collapse
Affiliation(s)
- Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany. .,Germany Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 Munich, Germany
| |
Collapse
|
5
|
Ott H. Single atom detection in ultracold quantum gases: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:054401. [PMID: 27093632 DOI: 10.1088/0034-4885/79/5/054401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.
Collapse
Affiliation(s)
- Herwig Ott
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Ashida Y, Ueda M. Diffraction-Unlimited Position Measurement of Ultracold Atoms in an Optical Lattice. PHYSICAL REVIEW LETTERS 2015; 115:095301. [PMID: 26371661 DOI: 10.1103/physrevlett.115.095301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 06/05/2023]
Abstract
We consider a method of high-fidelity, spatially resolved position measurement of ultracold atoms in an optical lattice. We show that the atom-number distribution can be nondestructively determined at a spatial resolution beyond the diffraction limit by tracking the progressive evolution of the many-body wave function collapse into a Fock state. We predict that the Pauli exclusion principle accelerates the rate of wave function collapse of fermions in comparison with bosons. A possible application of our principle of surpassing the diffraction limit to other imaging systems is discussed.
Collapse
Affiliation(s)
- Yuto Ashida
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masahito Ueda
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Hennessy T, Busch T. Detecting atoms trapped in an optical lattice using a tapered optical nanofiber. OPTICS EXPRESS 2014; 22:32509-32519. [PMID: 25607213 DOI: 10.1364/oe.22.032509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Optical detection of structures with dimensions smaller than an optical wavelength requires devices that work on scales beyond the diffraction limit. Here we present the possibility of using a tapered optical nanofiber as a detector to resolve individual atoms trapped in an optical lattice in the Mott insulator phase. We show that the small size of the fiber combined with an enhanced photon collection rate can allow for the attainment of large and reliable measurement signals.
Collapse
|
8
|
Cedzich C, Rybár T, Werner AH, Alberti A, Genske M, Werner RF. Propagation of quantum walks in electric fields. PHYSICAL REVIEW LETTERS 2013; 111:160601. [PMID: 24182244 DOI: 10.1103/physrevlett.111.160601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Indexed: 06/02/2023]
Abstract
We study one-dimensional quantum walks in a homogenous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion, and Anderson localization, depend very sensitively on the value of the electric field, Φ, e.g., on whether Φ/(2π) is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales.
Collapse
Affiliation(s)
- C Cedzich
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Karpa L, Bylinskii A, Gangloff D, Cetina M, Vuletić V. Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. PHYSICAL REVIEW LETTERS 2013; 111:163002. [PMID: 24182262 DOI: 10.1103/physrevlett.111.163002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 06/02/2023]
Abstract
We report the localization of an ion by a one-dimensional optical lattice in the presence of an applied external force. The ion is confined radially by a radio frequency trap and axially by a combined electrostatic and optical-lattice potential. Using a resolved Raman sideband technique, one or several ions are cooled to a mean vibrational number <n>=(0.1±0.1) along the optical lattice. We measure the average position of a periodically driven ion with a resolution down to λ/40, and demonstrate localization to a single lattice site for up to 10 ms. This opens new possibilities for studying many-body systems with long-range interactions in periodic potentials, as well as fundamental models of friction.
Collapse
Affiliation(s)
- Leon Karpa
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
10
|
Robust site-resolvable quantum gates in an optical lattice via inhomogeneous control. Nat Commun 2013; 4:2027. [DOI: 10.1038/ncomms3027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 05/21/2013] [Indexed: 11/09/2022] Open
|
11
|
Liu XJ, Liu ZX, Cheng M. Manipulating topological edge spins in a one-dimensional optical lattice. PHYSICAL REVIEW LETTERS 2013; 110:076401. [PMID: 25166386 DOI: 10.1103/physrevlett.110.076401] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Indexed: 05/22/2023]
Abstract
We propose to observe and manipulate topological edge spins in a one-dimensional optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In the free-fermion case the SPT phase is classified by a Z invariant which reduces to Z(4) with interactions. The zero edge modes of the SPT phase are spin polarized, with left and right edge spins polarized to opposite directions and forming a topological spin qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in an optical lattice. The manipulation of TSQs has potential applications to quantum computation.
Collapse
Affiliation(s)
- Xiong-Jun Liu
- Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742, USA and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA and Department of Physics, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Zheng-Xin Liu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, People's Republic of China and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Meng Cheng
- Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
12
|
Spethmann N, Kindermann F, John S, Weber C, Meschede D, Widera A. Dynamics of single neutral impurity atoms immersed in an ultracold gas. PHYSICAL REVIEW LETTERS 2012; 109:235301. [PMID: 23368215 DOI: 10.1103/physrevlett.109.235301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/14/2012] [Indexed: 06/01/2023]
Abstract
We report on controlled doping of an ultracold Rb gas with single neutral Cs impurity atoms. Elastic two-body collisions lead to a rapid thermalization of the impurity inside the Rb gas, representing the first realization of an ultracold gas doped with a precisely known number of impurity atoms interacting via s-wave collisions. Inelastic interactions are restricted to a single three-body recombination channel in a highly controlled and pure setting, which allows us to determine the Rb-Rb-Cs three-body loss rate with unprecedented precision. Our results pave the way for a coherently interacting hybrid system of individually controllable impurities in a quantum many-body system.
Collapse
Affiliation(s)
- Nicolas Spethmann
- Institut für Angewandte Physik, Universität Bonn, Wegelerstrasse 8, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Digital atom interferometer with single particle control on a discretized space-time geometry. Proc Natl Acad Sci U S A 2012; 109:9770-4. [PMID: 22665771 DOI: 10.1073/pnas.1204285109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.
Collapse
|
14
|
Ku TP, Huang CY, Shiau BW, Han DJ. Phase shifting interferometry of cold atoms. OPTICS EXPRESS 2011; 19:3730-3741. [PMID: 21369198 DOI: 10.1364/oe.19.003730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We propose a scheme to engage phase shifting interferometry on cold atomic samples and present the simulation results under several experimentally achievable conditions nowadays. This method allows far-detuning, low power probing, and is intrinsically nondestructive. This novel detection means yields image quality superior to the conventional phase contrast imaging at certain conditions and could be experimentally realized. Furthermore, the longitudinal resolution of imaging by this manner is mainly set by optical interference and can be better than the diffraction limit. This scheme also provides special advantages to diagnose the surface-trapped clouds, with which phase imaging on the fabricated wires and atoms altogether is possible as well.
Collapse
Affiliation(s)
- Tzu-Ping Ku
- Department of Physics, National Chung Cheng University, Chia-Yi 621, Taiwan
| | | | | | | |
Collapse
|
15
|
|
16
|
Henkel F, Krug M, Hofmann J, Rosenfeld W, Weber M, Weinfurter H. Highly efficient state-selective submicrosecond photoionization detection of single atoms. PHYSICAL REVIEW LETTERS 2010; 105:253001. [PMID: 21231585 DOI: 10.1103/physrevlett.105.253001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/29/2010] [Indexed: 05/30/2023]
Abstract
We experimentally demonstrate a detection scheme suitable for state analysis of single optically trapped atoms in less than 1 μs with an overall detection efficiency η exceeding 98%. The method is based on hyperfine-state-selective photoionization and subsequent registration of the correlated photoion-electron pairs by coincidence counting via two opposing channel electron multipliers. The scheme enables the calibration of absolute detection efficiencies and might be a key ingredient for future quantum information applications or precision spectroscopy of ultracold atoms.
Collapse
Affiliation(s)
- F Henkel
- Fakultät für Physik, Ludwig-Maximilians-Universität München, D-80799 München, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Sherson JF, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 2010; 467:68-72. [DOI: 10.1038/nature09378] [Citation(s) in RCA: 978] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/27/2010] [Indexed: 11/09/2022]
|
18
|
Itah A, Veksler H, Lahav O, Blumkin A, Moreno C, Gordon C, Steinhauer J. Direct observation of a sub-Poissonian number distribution of atoms in an optical lattice. PHYSICAL REVIEW LETTERS 2010; 104:113001. [PMID: 20366471 DOI: 10.1103/physrevlett.104.113001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Indexed: 05/29/2023]
Abstract
We report single-site resolution in a lattice with tunneling between sites, allowing for an in situ study of stochastic losses. The ratio of the loss rate to the tunneling rate is seen to determine the number fluctuations, and the overall profile of the lattice. Sub-Poissonian number fluctuations are observed. Deriving the lattice beams from a microlens array results in perfect relative stability between beams.
Collapse
Affiliation(s)
- Amir Itah
- Department of Physics, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 2009; 462:74-7. [DOI: 10.1038/nature08482] [Citation(s) in RCA: 1028] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/03/2009] [Indexed: 11/09/2022]
|
20
|
Würtz P, Langen T, Gericke T, Koglbauer A, Ott H. Experimental demonstration of single-site addressability in a two-dimensional optical lattice. PHYSICAL REVIEW LETTERS 2009; 103:080404. [PMID: 19792698 DOI: 10.1103/physrevlett.103.080404] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Indexed: 05/28/2023]
Abstract
We demonstrate single-site addressability in a two-dimensional optical lattice with 600 nm lattice spacing. After loading a Bose-Einstein condensate in the lattice potential, we use a focused electron beam to remove atoms from selected sites. The patterned structure is subsequently imaged by means of scanning electron microscopy. This technique allows one to create arbitrary patterns of mesoscopic atomic ensembles. We find that the patterns are remarkably stable against tunneling diffusion. Such microengineered quantum gases are a versatile resource for applications in quantum simulation, quantum optics, and quantum information processing with neutral atoms.
Collapse
Affiliation(s)
- Peter Würtz
- Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
21
|
Karski M, Förster L, Choi JM, Steffen A, Alt W, Meschede D, Widera A. Quantum walk in position space with single optically trapped atoms. Science 2009; 325:174-7. [PMID: 19589996 DOI: 10.1126/science.1174436] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The quantum walk is the quantum analog of the well-known random walk, which forms the basis for models and applications in many realms of science. Its properties are markedly different from the classical counterpart and might lead to extensive applications in quantum information science. In our experiment, we implemented a quantum walk on the line with single neutral atoms by deterministically delocalizing them over the sites of a one-dimensional spin-dependent optical lattice. With the use of site-resolved fluorescence imaging, the final wave function is characterized by local quantum state tomography, and its spatial coherence is demonstrated. Our system allows the observation of the quantum-to-classical transition and paves the way for applications, such as quantum cellular automata.
Collapse
Affiliation(s)
- Michal Karski
- Institut für Angewandte Physik der Universität Bonn Wegelerstrasse 8, 53115 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|