1
|
Blanco-Rey M, Castrillo R, Ali K, Gargiani P, Ilyn M, Gastaldo M, Paradinas M, Valbuena MA, Mugarza A, Ortega JE, Schiller F, Fernández L. The Role of Rare-Earth Atoms in the Anisotropy and Antiferromagnetic Exchange Coupling at a Hybrid Metal-Organic Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402328. [PMID: 39150001 DOI: 10.1002/smll.202402328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Magnetic anisotropy and magnetic exchange interactions are crucial parameters that characterize the hybrid metal-organic interface, a key component of an organic spintronic device. It is shown that the incorporation of 4f RE atoms to hybrid metal-organic interfaces of CuPc/REAu2 type (RE = Gd, Ho) constitutes a feasible approach toward on-demand magnetic properties and functionalities. The GdAu2 and HoAu2 substrates differ in their magnetic anisotropy behavior. Remarkably, the HoAu2 surface promotes the inherent out-of-plane anisotropy of CuPc, owing to the match between the anisotropy axis of substrate and molecule. Furthermore, the presence of RE atoms leads to a spontaneous antiferromagnetic exchange coupling at the interface, induced by the 3d-4f superexchange interaction between the unpaired 3d electron of CuPc and the 4f electrons of the RE atoms. It is shown that 4f RE atoms with unquenched quantum orbital momentum ( L $L$ ), as it is the case of Ho, induce an anisotropic interfacial exchange coupling.
Collapse
Affiliation(s)
- María Blanco-Rey
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Rodrigo Castrillo
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - Khadiza Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Chalmers University of Technology, Göteborg, Göteborg, 412 96, Sweden
| | | | - Maxim Ilyn
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Michele Gastaldo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Prague, 18223, Czech Republic
| | - Markos Paradinas
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, 08193, Spain
| | - Miguel A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Madrid, 28049, Spain
| | - Aitor Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, 08193, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - J Enrique Ortega
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
- Departamento de Física Aplicada I, Universidad del País Vasco UPV/EHU, San Sebastián, 20018, Spain
| | - Frederik Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
| | - Laura Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, San Sebastián, 20018, Spain
- CIC nanoGUNE-BRTA, San Sebastián, 20018, Spain
| |
Collapse
|
2
|
Tian Q, Bagheri Tagani M, Izadi Vishkayi S, Zhang C, Li B, Zhang L, Yin LJ, Tian Y, Zhang L, Qin Z. Twist-Angle Tuning of Electronic Structure in Two-Dimensional Dirac Nodal Line Semimetal Au 2Ge on Au(111). ACS NANO 2024; 18:9011-9018. [PMID: 38470156 DOI: 10.1021/acsnano.3c12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Topological semimetals have emerged as quantum materials including Dirac, Weyl, and nodal line semimetals, and so on. Dirac nodal line (DNL) semimetals possess topologically nontrivial bands crossing along a line or a loop and are considered precursor states for other types of semimetals. Here, we combine scanning tunneling microscopy/spectroscopy (STM/S) measurements and density functional theory (DFT) calculations to investigate a twist angle tuning of electronic structure in two-dimensional DNL semimetal Au2Ge. Theoretical calculations show that two bands of Au2Ge touch each other in Γ-M and Γ-K paths, forming a DNL. A significant transition of electronic structure occurs by tuning the twist angle from 30° to 24° between monolayer Au2Ge and Au(111), as confirmed by STS measurements and DFT calculations. The disappearing of DNL state is a direct consequence of symmetry breaking.
Collapse
Affiliation(s)
- Qiwei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Meysam Bagheri Tagani
- Department of Physics, University of Guilan, P.O. Box 41335-1914, 32504550, Rasht, Iran
| | - Sahar Izadi Vishkayi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Chen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bo Li
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Nakamura T, Sugihara H, Chen Y, Yukawa R, Ohtsubo Y, Tanaka K, Kitamura M, Kumigashira H, Kimura SI. Two-dimensional heavy fermion in a monoatomic-layer Kondo lattice YbCu 2. Nat Commun 2023; 14:7850. [PMID: 38040781 PMCID: PMC10692116 DOI: 10.1038/s41467-023-43662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality. However, the realization of the perfect two-dimensional (2D) HF materials is still a challenging topic. Here, we report the surface electronic structure of the monoatomic-layer Kondo lattice YbCu2 on a Cu(111) surface observed by synchrotron-based angle-resolved photoemission spectroscopy. The 2D conducting band and the Yb 4f state, located very close to the Fermi level, are observed. These bands are hybridized at low-temperature, forming the 2D HF state, with an evaluated coherence temperature of about 30 K. The effective mass of the 2D state is enhanced by a factor of 100 by the development of the HF state. Furthermore, clear evidence of the hybridization gap formation in the temperature dependence of the Kondo-resonance peak has been observed below the coherence temperature. Our study provides a new candidate as an ideal 2D HF material for understanding the Kondo effect at low dimensions.
Collapse
Affiliation(s)
- Takuto Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
| | - Hiroki Sugihara
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yitong Chen
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Ryu Yukawa
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshiyuki Ohtsubo
- National Institutes for Quantum Science and Technology, Sendai, 980-8579, Japan
| | | | - Miho Kitamura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, Japan
| | - Hiroshi Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ichi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
4
|
Brede J, Merino-Díez N, Berdonces-Layunta A, Sanz S, Domínguez-Celorrio A, Lobo-Checa J, Vilas-Varela M, Peña D, Frederiksen T, Pascual JI, de Oteyza DG, Serrate D. Detecting the spin-polarization of edge states in graphene nanoribbons. Nat Commun 2023; 14:6677. [PMID: 37865684 PMCID: PMC10590394 DOI: 10.1038/s41467-023-42436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Low dimensional carbon-based materials can show intrinsic magnetism associated to p-electrons in open-shell π-conjugated systems. Chemical design provides atomically precise control of the π-electron cloud, which makes them promising for nanoscale magnetic devices. However, direct verification of their spatially resolved spin-moment remains elusive. Here, we report the spin-polarization of chiral graphene nanoribbons (one-dimensional strips of graphene with alternating zig-zag and arm-chair boundaries), obtained by means of spin-polarized scanning tunnelling microscopy. We extract the energy-dependent spin-moment distribution of spatially extended edge states with π-orbital character, thus beyond localized magnetic moments at radical or defective carbon sites. Guided by mean-field Hubbard calculations, we demonstrate that electron correlations are responsible for the spin-splitting of the electronic structure. Our versatile platform utilizes a ferromagnetic substrate that stabilizes the organic magnetic moments against thermal and quantum fluctuations, while being fully compatible with on-surface synthesis of the rapidly growing class of nanographenes.
Collapse
Grants
- E13-20R Gobierno de Aragón
- E12-20R Gobierno de Aragón
- ED431G2019/03 Xunta de Galicia
- 863098 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Future and Emerging Technologies (H2020 Excellent Science - Future and Emerging Technologies)
- PRE-2021-2-0190 Eusko Jaurlaritza (Basque Government)
- PIBA-2020-1-0014 Eusko Jaurlaritza (Basque Government)
- 863098 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Future and Emerging Technologies (H2020 Excellent Science - Future and Emerging Technologies)
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2019-107338RB-C64 Eureopean Comission | European Regional Developement Funds | Interreg, Grant no EFA194/16 TNSI
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2019-107338RB-C64
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2019-107338RB-C62
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2020–115406GB-I00
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2019-107338RB-C61 Maria de Maeztu Excellence Program, Grant no CEX2020-001038-M Diputación Foral de Guipuzkoa | Guipuzkoa Next, grant no 2021-CIEN-000069-01
- Ministerio de Ciencia, Innovación y Universidades | Agencia Estatal de Investigación, Grant no PID2019-107338RB-C63
Collapse
Affiliation(s)
- Jens Brede
- Donostia International Physics Center, San Sebastián, E-20018, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, E-20018, Spain
| | - Nestor Merino-Díez
- Donostia International Physics Center, San Sebastián, E-20018, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, E-20018, Spain
| | - Alejandro Berdonces-Layunta
- Donostia International Physics Center, San Sebastián, E-20018, Spain
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, E-20018, Spain
| | - Sofía Sanz
- Donostia International Physics Center, San Sebastián, E-20018, Spain
| | - Amelia Domínguez-Celorrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain
| | - Jorge Lobo-Checa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, E-50009, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, E-50009, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, E-15782, Spain
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, E-15782, Spain
| | - Thomas Frederiksen
- Donostia International Physics Center, San Sebastián, E-20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48013, Spain
| | - José I Pascual
- Ikerbasque, Basque Foundation for Science, Bilbao, E-48013, Spain.
- CIC nanoGUNE BRTA, San Sebastián, E-20018, Spain.
| | - Dimas G de Oteyza
- Donostia International Physics Center, San Sebastián, E-20018, Spain.
- Centro de Física de Materiales (MPC), CSIC-UPV/EHU, San Sebastián, E-20018, Spain.
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, El Entrego, E-33940, Spain.
| | - David Serrate
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, E-50009, Spain.
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, E-50009, Spain.
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza, E-50009, Spain.
| |
Collapse
|
5
|
Castrillo-Bodero R, Blanco-Rey M, Ali K, Ortega JE, Schiller F, Fernández L. Tuning the carrier injection barrier of hybrid metal-organic interfaces on rare earth-gold surface compounds. NANOSCALE 2023; 15:4090-4100. [PMID: 36744853 DOI: 10.1039/d2nr06440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic hybrid metal-organic interfaces possess a great potential in areas such as organic spintronics and quantum information processing. However, tuning their carrier injection barriers on-demand is fundamental for the implementation in technological devices. We have prepared hybrid metal-organic interfaces by the adsorption of copper phthalocyanine CuPc on REAu2 surfaces (RE = Gd, Ho and Yb) and studied their growth, electrostatics and electronic structure. CuPc exhibits a long-range commensurability and a vacuum level pinning of the molecular energy levels. We observe a significant effect of the RE valence of the substrate on the carrier injection barrier of the hybrid metal-organic interface. CuPc adsorbed on trivalent RE-based surfaces (HoAu2 and GdAu2) exhibits molecular level energies that may allow injection carriers significantly closer to an ambipolar injection behavior than in the divalent case (YbAu2).
Collapse
Affiliation(s)
- R Castrillo-Bodero
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| | - M Blanco-Rey
- Universidad del País Vasco UPV/EHU, Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - K Ali
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
- Chalmers University of Technology, Chalmersplatsen 4, Götenborg, 41296, Sweden
| | - J E Ortega
- Universidad del País Vasco UPV/EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - F Schiller
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain
| | - L Fernández
- Centro de Física de Materiales CSIC-UPV/EHU-Materials Physics Center, 20018 San Sebastián, Spain.
| |
Collapse
|
6
|
Liu J, Li J, Xu Z, Zhou X, Xue Q, Wu T, Zhong M, Li R, Sun R, Shen Z, Tang H, Gao S, Wang B, Hou S, Wang Y. On-surface preparation of coordinated lanthanide-transition-metal clusters. Nat Commun 2021; 12:1619. [PMID: 33712614 PMCID: PMC7954866 DOI: 10.1038/s41467-021-21911-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
The study of lanthanide (Ln)-transition-metal (TM) heterometallic clusters which play key roles in various high-tech applications is a rapid growing field of research. Despite the achievement of numerous Ln-TM cluster compounds comprising one Ln atom, the synthesis of Ln-TM clusters containing multiple Ln atoms remains challenging. Here, we present the preparation and self-assembly of a series of Au-bridged heterometallic clusters containing multiple cerium (Ce) atoms via on-surface coordination. By employing different pyridine and nitrile ligands, the ordered coordination assemblies of clusters containing 2, 3 and 4 Ce atoms bridged by Au adatoms are achieved on Au(111) and Au(100), as revealed by scanning tunneling microscopy. Density functional theory calculations uncover the indispensable role of the bridging Au adatoms in constructing the multi-Ce-containing clusters by connecting the Ce atoms via unsupported Ce-Au bonds. These findings demonstrate on-surface coordination as an efficient strategy for preparation and organization of the multi-Ln-containing heterometallic clusters.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Peking University Information Technology Institute (Tianjin Binhai), Tianjin, China
| | - Zhen Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Xiong Zhou
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qiang Xue
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Mingjun Zhong
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Ruoning Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Sun
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ziyong Shen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Hao Tang
- CEMES, UPR CNRS 8011, Toulouse Cedex 4, France
| | - Song Gao
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Peking University Information Technology Institute (Tianjin Binhai), Tianjin, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China.
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China.
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Fernandez L, Blanco-Rey M, Castrillo-Bodero R, Ilyn M, Ali K, Turco E, Corso M, Ormaza M, Gargiani P, Valbuena MA, Mugarza A, Moras P, Sheverdyaeva PM, Kundu AK, Jugovac M, Laubschat C, Ortega JE, Schiller F. Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds. NANOSCALE 2020; 12:22258-22267. [PMID: 33146198 DOI: 10.1039/d0nr04964f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer.
Collapse
Affiliation(s)
- L Fernandez
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Blanco-Rey
- Universidad del País Vasco UPV-EHU, Dpto. de Polímeros y Materiales Avanzados: Física, Química y Tecnología, 20018 San Sebastián, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
| | - R Castrillo-Bodero
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Ilyn
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - K Ali
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - E Turco
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Corso
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - M Ormaza
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
| | - P Gargiani
- ALBA Synchrotron Light Source, Carretera BP 1413 km 3.3, 08290 Cerdanyola del Vallès, Spain
| | - M A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- IMDEA Nanociencia, 28049 Madrid, Spain
| | - A Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08070 Barcelona, Spain
| | - P Moras
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - P M Sheverdyaeva
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - Asish K Kundu
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - M Jugovac
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 34149 Trieste, Italy
| | - C Laubschat
- Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | - J E Ortega
- Universidad del País Vasco UPV-EHU, Dpto. Física Aplicada I, 20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| | - F Schiller
- Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, 20018 San Sebastián, Spain
| |
Collapse
|
8
|
Que Y, Zhuang Y, Liu Z, Xu C, Liu B, Wang K, Du S, Xiao X. Two-Dimensional Rare Earth-Gold Intermetallic Compounds on Au(111) by Surface Alloying. J Phys Chem Lett 2020; 11:4107-4112. [PMID: 32368917 DOI: 10.1021/acs.jpclett.0c00981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Surface alloying is a straightforward route to control and modify the structure and electronic properties of surfaces. Here, we present a systematic study on the structural and electronic properties of three novel rare earth-based intermetallic compounds, namely, ReAu2 (Re = Tb, Ho, and Er), on Au(111) via directly depositing rare earth metals onto the hot Au(111) surface. Scanning tunneling microscopy/spectroscopy measurements reveal very similar atomic structures and electronic properties, e.g., electronic states and surface work functions, for all these intermetallic compound systems because of the physical and chemical similarities between these rare earth elements. Further, these electronic properties are periodically modulated by the moiré structures caused by the lattice mismatches between ReAu2 and Au(111). These periodically modulated surfaces could serve as templates for the self-assembly of nanostructures. In addition, these two-dimensional rare earth-based intermetallic compounds provide platforms to investigate rare earth-related catalysis, magnetisms, etc. in the lower dimensions.
Collapse
Affiliation(s)
- Yande Que
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuan Zhuang
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ziyuan Liu
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaoqiang Xu
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bin Liu
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kedong Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xudong Xiao
- Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
9
|
Muntwiler M, Zhang J, Stania R, Matsui F, Oberta P, Flechsig U, Patthey L, Quitmann C, Glatzel T, Widmer R, Meyer E, Jung TA, Aebi P, Fasel R, Greber T. Surface science at the PEARL beamline of the Swiss Light Source. JOURNAL OF SYNCHROTRON RADIATION 2017; 24:354-366. [PMID: 28009578 PMCID: PMC5182030 DOI: 10.1107/s1600577516018646] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/21/2016] [Indexed: 05/19/2023]
Abstract
The Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM). Photoelectron diffraction in angle-scanned mode measures bonding angles of atoms near the emitter atom, and thus allows the orientation of small molecules on a substrate to be determined. In energy scanned mode it measures the distance between the emitter and neighboring atoms; for example, between adsorbate and substrate. STM provides complementary, real-space information, and is particularly useful for comparing the sample quality with reference measurements. In this article, the key features and measured performance data of the beamline and the experimental station are presented. As scientific examples, the adsorbate-substrate distance in hexagonal boron nitride on Ni(111), surface quantum well states in a metal-organic network of dicyano-anthracene on Cu(111), and circular dichroism in the photoelectron diffraction of Cu(111) are discussed.
Collapse
Affiliation(s)
| | - Jun Zhang
- Paul Scherrer Institut, Villigen, Switzerland
| | - Roland Stania
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Zürich, Zürich, Switzerland
| | - Fumihiko Matsui
- Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Peter Oberta
- Paul Scherrer Institut, Villigen, Switzerland
- Institute of Physics, Academy of Sciences of the Czech Republic, Praha Czech Republic
| | | | - Luc Patthey
- Paul Scherrer Institut, Villigen, Switzerland
| | - Christoph Quitmann
- Paul Scherrer Institut, Villigen, Switzerland
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | - Roland Widmer
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | | - Thomas A. Jung
- Paul Scherrer Institut, Villigen, Switzerland
- Universität Basel, Basel, Switzerland
| | | | - Roman Fasel
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Dübendorf, Switzerland
| | | |
Collapse
|
10
|
Fernández L, Ilyn M, Magaña A, Vitali L, Ortega JE, Schiller F. Growth of Co Nanomagnet Arrays with Enhanced Magnetic Anisotropy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600187. [PMID: 27711268 PMCID: PMC5039974 DOI: 10.1002/advs.201600187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/02/2016] [Indexed: 05/27/2023]
Abstract
A trigon structure formed by submonolayer gadolinium deposition onto Au(111) is revealed as a robust growth template for Co nanodot arrays. Scanning Tunneling Microscopy and X-Ray Magnetic Circular Dichroism measurements evidence that the Co nanoislands behave as independent magnetic entities with an out-of-plane easy axis of anisotropy and enhanced magnetic anisotropy values, as compared to other self-organized Co nanodot superlattices. The large strain induced by the lattice mismatch at the interface between Co and trigons is discussed as the main reason for the increased magnetic anisotropy of the nanoislands.
Collapse
Affiliation(s)
- Laura Fernández
- Donostia International Physics Center20018Donostia‐San SebastiánSpain
- Fachbereich Physik und Zentrum für MaterialwissenschaftenPhilipps‐Universität Marburg35032MarburgGermany
| | - Maxim Ilyn
- Centro de Física de Materiales (CSIC‐UPV‐EHU) and Materials Physics Center (MPC)20018San SebastiánSpain
| | - Ana Magaña
- Centro de Física de Materiales (CSIC‐UPV‐EHU) and Materials Physics Center (MPC)20018San SebastiánSpain
- Departamento de Física Aplicada IUniversidad del País Vasco UPV/EHU20018San SebastiánSpain
| | - Lucia Vitali
- Centro de Física de Materiales (CSIC‐UPV‐EHU) and Materials Physics Center (MPC)20018San SebastiánSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| | - José Enrique Ortega
- Donostia International Physics Center20018Donostia‐San SebastiánSpain
- Centro de Física de Materiales (CSIC‐UPV‐EHU) and Materials Physics Center (MPC)20018San SebastiánSpain
- Departamento de Física Aplicada IUniversidad del País Vasco UPV/EHU20018San SebastiánSpain
| | - Frederik Schiller
- Fachbereich Physik und Zentrum für MaterialwissenschaftenPhilipps‐Universität Marburg35032MarburgGermany
- Centro de Física de Materiales (CSIC‐UPV‐EHU) and Materials Physics Center (MPC)20018San SebastiánSpain
| |
Collapse
|
11
|
Ormaza M, Fernández L, Ilyn M, Magaña A, Xu B, Verstraete MJ, Gastaldo M, Valbuena MA, Gargiani P, Mugarza A, Ayuela A, Vitali L, Blanco-Rey M, Schiller F, Ortega JE. High Temperature Ferromagnetism in a GdAg2 Monolayer. NANO LETTERS 2016; 16:4230-5. [PMID: 27247988 DOI: 10.1021/acs.nanolett.6b01197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Materials that exhibit ferromagnetism, interfacial stability, and tunability are highly desired for the realization of emerging magnetoelectronic phenomena in heterostructures. Here we present the GdAg2 monolayer alloy, which possesses all such qualities. By combining X-ray absorption, Kerr effect, and angle-resolved photoemission with ab initio calculations, we have investigated the ferromagnetic nature of this class of Gd-based alloys. The Curie temperature can increase from 19 K in GdAu2 to a remarkably high 85 K in GdAg2. We find that the exchange coupling between Gd atoms is barely affected by their full coordination with noble metal atoms, and instead, magnetic coupling is effectively mediated by noble metal-Gd hybrid s,p-d bands. The direct comparison between isostructural GdAu2 and GdAg2 monolayers explains how the higher degree of surface confinement and electron occupation of such hybrid s,p-d bands promote the high Curie temperature in the latter. Finally, the chemical composition and structural robustness of the GdAg2 alloy has been demonstrated by interfacing them with organic semiconductors or magnetic nanodots. These results encourage systematic investigations of rare-earth/noble metal surface alloys and interfaces, in order to exploit them in magnetoelectronic applications.
Collapse
Affiliation(s)
- M Ormaza
- Universidad del País Vasco , Dpto. Física Aplicada I, E-20018 San Sebastián, Spain
- IPCMS, CNRS UMR 7504, Université de Strasbourg , 67034 Strasbourg, France
| | - L Fernández
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität , 35032 Marburg, Germany
- Donostia International Physics Center , E-20018 Donostia-San Sebastián, Spain
| | - M Ilyn
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
| | - A Magaña
- Universidad del País Vasco , Dpto. Física Aplicada I, E-20018 San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
| | - B Xu
- Université de Liège , Institut de Physique and European Theoretical Spectroscopy Facility (ETSF), allée du 6 août, 17 Sart-Tilman, B-4000 Liège, Belgium
| | - M J Verstraete
- Université de Liège , Institut de Physique and European Theoretical Spectroscopy Facility (ETSF), allée du 6 août, 17 Sart-Tilman, B-4000 Liège, Belgium
| | - M Gastaldo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - M A Valbuena
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - P Gargiani
- ALBA Synchrotron Light Source , Carretera BP 1413 km 3.3, E-08290 Cerdanyola del Vallès, Spain
| | - A Mugarza
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology , Campus UAB, Bellaterra, 08193 Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats , Lluis Companys 23, 08010 Barcelona, Spain
| | - A Ayuela
- Donostia International Physics Center , E-20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
| | - L Vitali
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao, Spain
| | - M Blanco-Rey
- Donostia International Physics Center , E-20018 Donostia-San Sebastián, Spain
- Universidad del País Vasco , Dpto. Física Materiales, E-20018 San Sebastián, Spain
| | - F Schiller
- Fachbereich Physik und Zentrum für Materialwissenschaften, Philipps-Universität , 35032 Marburg, Germany
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
| | - J E Ortega
- Universidad del País Vasco , Dpto. Física Aplicada I, E-20018 San Sebastián, Spain
- Donostia International Physics Center , E-20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center , E-20018 San Sebastián, Spain
| |
Collapse
|
12
|
Fernández L, Blanco-Rey M, Ilyn M, Vitali L, Magaña A, Correa A, Ohresser P, Ortega JE, Ayuela A, Schiller F. Co nanodot arrays grown on a GdAu2 template: substrate/nanodot antiferromagnetic coupling. NANO LETTERS 2014; 14:2977-2981. [PMID: 24798248 DOI: 10.1021/nl403471z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Controlling anisotropy and exchange coupling in patterned magnetic nanostructures is the key for developing advanced magnetic storage and spintronic devices. We report on the antiferromagnetic interaction between a Co nanodot array and its supporting GdAu2 nanotemplate that induces large anisotropy values in individual Co nanodots. In clear contrast with nonmagnetic Au substrates, GdAu2 triggers an earlier switch from out-of-plane anisotropy in monatomic high dots to in-plane when the dot height becomes biatomic.
Collapse
Affiliation(s)
- Laura Fernández
- Donostia International Physics Center , 20018 Donostia-San Sebastián, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|