1
|
Holt C, Carver JA. Invited review: Modeling milk stability. J Dairy Sci 2024; 107:5259-5279. [PMID: 38522835 DOI: 10.3168/jds.2024-24779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024]
Abstract
Novel insights into the stability of milk and milk products during storage and processing result from describing caseins near neutral pH as hydrophilic, intrinsically disordered, proteins. Casein solubility is strongly influenced by pH and multivalent ion binding. Solubility is high at a neutral pH or above, but decreases as the casein net charge approaches zero, allowing a condensed casein phase or gel to form, then increases at lower pH. Of particular importance for casein micelle stability near neutral pH is the proportion of free caseins in the micelle (i.e., caseins not bound directly to nanoclusters of calcium phosphate). Free caseins are more soluble and better able to act as molecular chaperones (to prevent casein and whey protein aggregation) than bound caseins. Some free caseins are highly phosphorylated and can also act as mineral chaperones to inhibit the growth of calcium phosphate phases and prevent mineralized deposits from forming on membranes or heat exchangers. Thus, casein micelle stability is reduced when free caseins bind to amyloid fibrils, destabilized whey proteins or calcium phosphate. The multivalent-binding model of the casein micelle quantitatively describes these and other factors affecting the stability of milk and milk protein products during manufacture and storage.
Collapse
Affiliation(s)
- C Holt
- School of Biomolecular Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| | - J A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
2
|
Ooka K, Liu R, Arai M. The Wako-Saitô-Muñoz-Eaton Model for Predicting Protein Folding and Dynamics. Molecules 2022; 27:molecules27144460. [PMID: 35889332 PMCID: PMC9319528 DOI: 10.3390/molecules27144460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the recent advances in the prediction of protein structures by deep neutral networks, the elucidation of protein-folding mechanisms remains challenging. A promising theory for describing protein folding is a coarse-grained statistical mechanical model called the Wako-Saitô-Muñoz-Eaton (WSME) model. The model can calculate the free-energy landscapes of proteins based on a three-dimensional structure with low computational complexity, thereby providing a comprehensive understanding of the folding pathways and the structure and stability of the intermediates and transition states involved in the folding reaction. In this review, we summarize previous and recent studies on protein folding and dynamics performed using the WSME model and discuss future challenges and prospects. The WSME model successfully predicted the folding mechanisms of small single-domain proteins and the effects of amino-acid substitutions on protein stability and folding in a manner that was consistent with experimental results. Furthermore, extended versions of the WSME model were applied to predict the folding mechanisms of multi-domain proteins and the conformational changes associated with protein function. Thus, the WSME model may contribute significantly to solving the protein-folding problem and is expected to be useful for predicting protein folding, stability, and dynamics in basic research and in industrial and medical applications.
Collapse
Affiliation(s)
- Koji Ooka
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Komaba Organization for Educational Excellence, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Runjing Liu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
| | - Munehito Arai
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan;
- Correspondence:
| |
Collapse
|
3
|
Weickenmeier J, Kuhl E, Goriely A. Multiphysics of Prionlike Diseases: Progression and Atrophy. PHYSICAL REVIEW LETTERS 2018; 121:158101. [PMID: 30362787 DOI: 10.1103/physrevlett.121.158101] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/21/2018] [Indexed: 05/18/2023]
Abstract
Many neurodegenerative diseases are related to the propagation and accumulation of toxic proteins throughout the brain. The lesions created by aggregates of these toxic proteins further lead to cell death and accelerated tissue atrophy. A striking feature of some of these diseases is their characteristic pattern and evolution, leading to well-codified disease stages visible to neuropathology and associated with various cognitive deficits and pathologies. Here, we simulate the anisotropic propagation and accumulation of toxic proteins in full brain geometry. We show that the same model with different initial seeding zones reproduces the characteristic evolution of different prionlike diseases. We also recover the expected evolution of the total toxic protein load. Finally, we couple our transport model to a mechanical atrophy model to obtain the typical degeneration patterns found in neurodegenerative diseases.
Collapse
Affiliation(s)
- Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Ellen Kuhl
- Living Matter Laboratory, Stanford University, Stanford, California 94305, USA
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, United Kingdom
| |
Collapse
|
4
|
Ma WJ, Hu CK. Physical mechanism for biopolymers to aggregate and maintain in non-equilibrium states. Sci Rep 2017; 7:3105. [PMID: 28596529 PMCID: PMC5465232 DOI: 10.1038/s41598-017-03136-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/25/2017] [Indexed: 11/08/2022] Open
Abstract
Many human or animal diseases are related to aggregation of proteins. A viable biological organism should maintain in non-equilibrium states. How protein aggregate and why biological organisms can maintain in non-equilibrium states are not well understood. As a first step to understand such complex systems problems, we consider simple model systems containing polymer chains and solvent particles. The strength of the spring to connect two neighboring monomers in a polymer chain is controlled by a parameter s with s → ∞ for rigid-bond. The strengths of bending and torsion angle dependent interactions are controlled by a parameter s A with s A → -∞ corresponding to no bending and torsion angle dependent interactions. We find that for very small s A , polymer chains tend to aggregate spontaneously and the trend is independent of the strength of spring. For strong springs, the speed distribution of monomers in the parallel (along the direction of the spring to connect two neighboring monomers) and perpendicular directions have different effective temperatures and such systems are in non-equilibrium states.
Collapse
Affiliation(s)
- Wen-Jong Ma
- Graduate Institute of Applied Physics, National Chengchi University, Taipei, 11605, Taiwan.
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan.
- National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Systems Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
5
|
Izmailian NS, Wu MC, Hu CK. Finite-size corrections and scaling for the dimer model on the checkerboard lattice. Phys Rev E 2016; 94:052141. [PMID: 27967158 DOI: 10.1103/physreve.94.052141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 12/30/2022]
Abstract
Lattice models are useful for understanding behaviors of interacting complex many-body systems. The lattice dimer model has been proposed to study the adsorption of diatomic molecules on a substrate. Here we analyze the partition function of the dimer model on a 2M×2N checkerboard lattice wrapped on a torus and derive the exact asymptotic expansion of the logarithm of the partition function. We find that the internal energy at the critical point is equal to zero. We also derive the exact finite-size corrections for the free energy, the internal energy, and the specific heat. Using the exact partition function and finite-size corrections for the dimer model on a finite checkerboard lattice, we obtain finite-size scaling functions for the free energy, the internal energy, and the specific heat of the dimer model. We investigate the properties of the specific heat near the critical point and find that the specific-heat pseudocritical point coincides with the critical point of the thermodynamic limit, which means that the specific-heat shift exponent λ is equal to ∞. We have also considered the limit N→∞ for which we obtain the expansion of the free energy for the dimer model on the infinitely long cylinder. From a finite-size analysis we have found that two conformal field theories with the central charges c=1 for the height function description and c=-2 for the construction using a mapping of spanning trees can be used to describe the dimer model on the checkerboard lattice.
Collapse
Affiliation(s)
| | - Ming-Chya Wu
- Research Center for Adaptive Data Analysis, National Central University, Zhongli, Taoyuan 32001, Taiwan.,Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.,National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.,Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
6
|
Sasai M, Chikenji G, Terada TP. Cooperativity and modularity in protein folding. Biophys Physicobiol 2016; 13:281-293. [PMID: 28409080 PMCID: PMC5221511 DOI: 10.2142/biophysico.13.0_281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/05/2016] [Indexed: 12/01/2022] Open
Abstract
A simple statistical mechanical model proposed by Wako and Saitô has explained the aspects of protein folding surprisingly well. This model was systematically applied to multiple proteins by Muñoz and Eaton and has since been referred to as the Wako-Saitô-Muñoz-Eaton (WSME) model. The success of the WSME model in explaining the folding of many proteins has verified the hypothesis that the folding is dominated by native interactions, which makes the energy landscape globally biased toward native conformation. Using the WSME and other related models, Saitô emphasized the importance of the hierarchical pathway in protein folding; folding starts with the creation of contiguous segments having a native-like configuration and proceeds as growth and coalescence of these segments. The Φ-values calculated for barnase with the WSME model suggested that segments contributing to the folding nucleus are similar to the structural modules defined by the pattern of native atomic contacts. The WSME model was extended to explain folding of multi-domain proteins having a complex topology, which opened the way to comprehensively understanding the folding process of multi-domain proteins. The WSME model was also extended to describe allosteric transitions, indicating that the allosteric structural movement does not occur as a deterministic sequential change between two conformations but as a stochastic diffusive motion over the dynamically changing energy landscape. Statistical mechanical viewpoint on folding, as highlighted by the WSME model, has been renovated in the context of modern methods and ideas, and will continue to provide insights on equilibrium and dynamical features of proteins.
Collapse
Affiliation(s)
- Masaki Sasai
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - George Chikenji
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Tomoki P Terada
- Department of Computational Science and Engineering and Department of Applied Physics, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
7
|
Abstract
Pathogenic protein fibrils have been shown in vitro to have nucleation-dependent kinetics despite the fact that one-dimensional structures do not have the size-dependent surface energy responsible for the lag time in classical theory. We present a theory showing that the conformational entropy of the peptide chains creates a free-energy barrier that is analogous to the translational entropy barrier in higher dimensions. We find that the dynamics of polymer rearrangement make it very unlikely for nucleation to succeed along the lowest free-energy trajectory, meaning that most of the nucleation flux avoids the free-energy saddle point. We use these results to construct a three-dimensional model for amyloid nucleation that accounts for conformational entropy, backbone H bonds, and side-chain interactions to compute nucleation rates as a function of concentration.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Xiao X, Wu MC. Simplified lattice model for polypeptide fibrillar transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042701. [PMID: 25375517 DOI: 10.1103/physreve.90.042701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 06/04/2023]
Abstract
Polypeptide fibrillar transitions are studied using a simplified lattice model, modified from the three-state Potts model, where uniform residues as spins, placed on a cubic lattice, can interact with neighbors to form coil, helical, sheet, or fibrillar structure. Using the transfer matrix method and numerical calculations, we analyzed the partition function and construct phase diagrams. The model manifests phase transitions among coil, helix, sheet, and fibril through parameterizing bond coupling energy ɛh,ɛs,ɛf, structural entropies sh,ss,sf of helical, sheet, and fibrillar states, and number density ρ. The phase diagrams show the transition sequence is basically governed by ɛh, ɛs, and ɛf, while the transition temperature is determined by the competition among ɛh, ɛs, and ɛf, as well as sh, ss, sf, and ρ. Furthermore, the fibrillation is accompanied with an abrupt phase transition from coil, helix, or sheet to fibril even for short polypeptide length, resembling the feature of nucleation-growth process. The finite-size effect in specific heat at transitions for the nonfibrillation case can be described by the scaling form of lattice model. With rich phase-transition properties, our model provides a useful reference for protein aggregation experiments and modeling.
Collapse
Affiliation(s)
- Xuhui Xiao
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chya Wu
- Research Center for Adaptive Data Analysis, National Central University, Chungli 32001, Taiwan and Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Abstract
Spontaneous folding into a specific native structure is the most important property of protein to perform their biological functions within organisms. Spontaneous folding is understood on the basis of an energy landscape picture based on the minimum frustration principle. Therefore, frustration seemingly only leads to protein functional disorder. However, frustration has recently been suggested to have a function in allosteric regulation. Functional frustration has the possibility to be a key to our deeper understanding of protein function. To explore another functional frustration, we theoretically examined structural frustration, which is designed to induce intrinsic disorder of a protein and its function through the coupled folding and binding. We extended the Wako-Saitô-Muñoz-Eaton model to take into account a frustration effect. With the model, we analyzed the binding part of neuron-restrictive silencer factor and showed that designed structural frustration in it induces intrinsic disorder. Furthermore, we showed that the folding and the binding are cooperative in interacting with a target protein. The cooperativity enables an intrinsically disordered protein to exhibit a sharp switch-like folding response to binding chemical potential change. Through this switch-like response, the structural frustration may contribute to the regulation function of interprotein interaction of the intrinsically disordered protein.
Collapse
|
10
|
Statistical mechanical treatments of protein amyloid formation. Int J Mol Sci 2013; 14:17420-52. [PMID: 23979423 PMCID: PMC3794734 DOI: 10.3390/ijms140917420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 11/16/2022] Open
Abstract
Protein aggregation is an important field of investigation because it is closely related to the problem of neurodegenerative diseases, to the development of biomaterials, and to the growth of cellular structures such as cyto-skeleton. Self-aggregation of protein amyloids, for example, is a complicated process involving many species and levels of structures. This complexity, however, can be dealt with using statistical mechanical tools, such as free energies, partition functions, and transfer matrices. In this article, we review general strategies for studying protein aggregation using statistical mechanical approaches and show that canonical and grand canonical ensembles can be used in such approaches. The grand canonical approach is particularly convenient since competing pathways of assembly and dis-assembly can be considered simultaneously. Another advantage of using statistical mechanics is that numerically exact solutions can be obtained for all of the thermodynamic properties of fibrils, such as the amount of fibrils formed, as a function of initial protein concentration. Furthermore, statistical mechanics models can be used to fit experimental data when they are available for comparison.
Collapse
|
11
|
Tsai M, Yuan J, Yamaki M, Lin C, Lin SH. Molecular Dynamics Insight into the Diverse Thermodynamic Behavior of a Beta‐Hairpin Peptide. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min‐Yeh Tsai
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Jian‐Min Yuan
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Masahiro Yamaki
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Chih‐Kai Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Sheng Hsien Lin
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| |
Collapse
|
12
|
Schreck JS, Yuan JM. A statistical mechanical approach to protein aggregation. J Chem Phys 2011; 135:235102. [DOI: 10.1063/1.3666837] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
13
|
Fitzpatrick AW, Knowles TPJ, Waudby CA, Vendruscolo M, Dobson CM. Inversion of the balance between hydrophobic and hydrogen bonding interactions in protein folding and aggregation. PLoS Comput Biol 2011; 7:e1002169. [PMID: 22022239 PMCID: PMC3192805 DOI: 10.1371/journal.pcbi.1002169] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 07/06/2011] [Indexed: 12/25/2022] Open
Abstract
Identifying the forces that drive proteins to misfold and aggregate, rather than to fold into their functional states, is fundamental to our understanding of living systems and to our ability to combat protein deposition disorders such as Alzheimer's disease and the spongiform encephalopathies. We report here the finding that the balance between hydrophobic and hydrogen bonding interactions is different for proteins in the processes of folding to their native states and misfolding to the alternative amyloid structures. We find that the minima of the protein free energy landscape for folding and misfolding tend to be respectively dominated by hydrophobic and by hydrogen bonding interactions. These results characterise the nature of the interactions that determine the competition between folding and misfolding of proteins by revealing that the stability of native proteins is primarily determined by hydrophobic interactions between side-chains, while the stability of amyloid fibrils depends more on backbone intermolecular hydrogen bonding interactions. In order to carry out their biological functions, most proteins fold into well-defined conformations known as native states. Failure to fold, or to remain folded correctly, may result in misfolding and aggregation, which are processes associated with a wide range of highly debilitating, and so far incurable, human conditions that include Alzheimer's and Parkinson's diseases and type II diabetes. In our work we investigate the nature of the fundamental interactions that are responsible for the folding and misfolding behaviour of proteins, finding that interactions between protein side-chains play a major role in stabilising native states, whilst backbone hydrogen bonding interactions are key in determining the stability of amyloid fibrils.
Collapse
Affiliation(s)
| | | | | | | | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Baiesi M, Seno F, Trovato A. Fibril elongation mechanisms of HET-s prion-forming domain: Topological evidence for growth polarity. Proteins 2011; 79:3067-81. [DOI: 10.1002/prot.23133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 01/24/2023]
|