1
|
Rusin TM. LDOS of electron pair and the role of the Pauli exclusion principle. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:065301. [PMID: 39527912 DOI: 10.1088/1361-648x/ad912f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The local density of states (LDOS) for a pair of non-relativistic electrons, influenced by repulsive Coulomb forces, is expressed in term of one-dimensional integrals over Whittaker functions. The computation of the electron pair's LDOS relies on a two-particle Green's function (GF), a generalization of the one-particle GF applicable to a charged particle in an attractive Coulomb potential. By incorporating electron spins and considering the Pauli exclusion principle, the resulting LDOS consists of two components: one originating from an exchange-even two-particle GF and the other from an exchange-odd two-particle GF. The calculated LDOS reveals its dependence on both inter-electron distance and energy. The pseudo-LDOS, derived from the two-body contribution to the LDOS, is examined. This term ensures complete LDOS suppression atr = 0, exhibiting a limited spatial extent, and the reasons for its emergence are elucidated. It is shown that for energies exceeding the effective Hartree energy and inter-electron distances beyond the effective Bohr radius, the impact of many-body contributions to the LDOS can be disregarded. The induced LDOS for an electron pair subjected to an attractive contact potential in two dimensions is evaluated. At small distancesafrom the potential center, a predicted relative difference in LDOS between even and odd state pair reaches approximately 8%. The calculated LDOS is compared with available experimental findings from a two-dimensional electron gas (2DEG). Both exhibit similar oscillation periods; however, the LDOS of the electron pair decays as1/a3, significantly faster than the1/adecay observed for free electrons in a 2DEG.
Collapse
Affiliation(s)
- Tomasz M Rusin
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-688 Warsaw, Poland
| |
Collapse
|
2
|
Othman AM, Kher-Elden MA, Ibraheem F, Hassan MA, Farouk M, Abd El-Fattah ZM. Analogous electronic states in graphene and planer metallic quantum dots. Sci Rep 2024; 14:13471. [PMID: 38866874 PMCID: PMC11169253 DOI: 10.1038/s41598-024-63465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
Graphene nanostructures offer wide range of applications due to their distinguished and tunable electronic properties. Recently, atomic and molecular graphene were modeled following simple free-electron scattering by periodic muffin tin potential leading to remarkable agreement with density functional theory. Here we extend the analogy of the π -electronic structures and quantum effects between atomic graphene quantum dots (QDs) and homogeneous planer metallic counterparts of similar size and shape. Specifically, we show that at high binding energies, below the M ¯ -point gap, graphene QDs enclose confined states and standing wave quasiparticle interference patterns analogous to those reported on coinage metal surfaces for nanoscale confining structures such as vacancy islands and quantum corrals. These confined and quantum corral-like states in graphene QDs can be resolved in tomography experiments using angle-resolved photoemission spectroscopy. Likewise, the shape of near-Fermi frontier orbitals in graphene quantum dots can be reproduced from electron confinement within homogeneous metal QDs of identical size and shape. Furthermore, confined states analogous to those found in metallic quantum stadiums can be realized in coupled QDs of graphene for reduced separation. The present study offer a simple fundamental understanding of graphene electronic structures and also open the way towards efficient modeling of novel graphene-based nanostructures.
Collapse
Affiliation(s)
- Ahmed M Othman
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Mohammad A Kher-Elden
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Fatma Ibraheem
- Physics Department, Faculty of Science, Al-Azhar University Girls Branch, Nasr City, Cairo, 11753, Egypt
| | - Moukhtar A Hassan
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohammed Farouk
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Zakaria M Abd El-Fattah
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Physics Department, Faculty of Science, Galala University, New Galala City, Suez, 43511, Egypt.
| |
Collapse
|
3
|
Chen X, Xu S, Shabani S, Zhao Y, Fu M, Millis AJ, Fogler MM, Pasupathy AN, Liu M, Basov DN. Machine Learning for Optical Scanning Probe Nanoscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2109171. [PMID: 36333118 DOI: 10.1002/adma.202109171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/09/2022] [Indexed: 06/16/2023]
Abstract
The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Sara Shabani
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yueqi Zhao
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Matthew Fu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
4
|
Wang C, Wang H, Tian Q, Zong J, Xie X, Chen W, Zhang Y, Wang K, Qiu X, Wang L, Li F, Zhang H, Zhang Y. Suppression of Intervalley Coupling in Graphene via Potassium Doping. J Phys Chem Lett 2022; 13:9396-9403. [PMID: 36190902 DOI: 10.1021/acs.jpclett.2c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The quantum interference patterns induced by impurities in graphene can form the (√3 × √3)R30° superlattice with intervalley scattering. This superlattice can lead to the folded Dirac cone at the center of Brillouin zone by coupling two non-equivalent valleys. Using angle-resolved photoemission spectroscopy (ARPES), we report the observation of suppression of the folded Dirac cone in mono- and bilayer graphene upon potassium doping. The intervalley coupling with chiral symmetry broken can persist upon a light potassium-doped level but be ruined at the heavily doped level. Meanwhile, the folded Dirac cone can be suppressed by the renormalization of the Dirac band with potassium doping. Our results demonstrate that the suppression of the intervalley scattering pattern by potassium doping could pave the way toward the realization of novel chiraltronic devices in superlattice graphene.
Collapse
Affiliation(s)
- Can Wang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Huaiqiang Wang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Qichao Tian
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Junyu Zong
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Xuedong Xie
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Wang Chen
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yongheng Zhang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Kaili Wang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Xiaodong Qiu
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Li Wang
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Fangsen Li
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu 215123, People's Republic of China
| | - Haijun Zhang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Yi Zhang
- National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| |
Collapse
|
5
|
Xu S, McLeod AS, Chen X, Rizzo DJ, Jessen BS, Yao Z, Wang Z, Sun Z, Shabani S, Pasupathy AN, Millis AJ, Dean CR, Hone JC, Liu M, Basov DN. Deep Learning Analysis of Polaritonic Wave Images. ACS NANO 2021; 15:18182-18191. [PMID: 34714043 DOI: 10.1021/acsnano.1c07011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Deep learning (DL) is an emerging analysis tool across the sciences and engineering. Encouraged by the successes of DL in revealing quantitative trends in massive imaging data, we applied this approach to nanoscale deeply subdiffractional images of propagating polaritonic waves in complex materials. Utilizing the convolutional neural network (CNN), we developed a practical protocol for the rapid regression of images that quantifies the wavelength and the quality factor of polaritonic waves. Using simulated near-field images as training data, the CNN can be made to simultaneously extract polaritonic characteristics and material parameters in a time scale that is at least 3 orders of magnitude faster than common fitting/processing procedures. The CNN-based analysis was validated by examining the experimental near-field images of charge-transfer plasmon polaritons at graphene/α-RuCl3 interfaces. Our work provides a general framework for extracting quantitative information from images generated with a variety of scanning probe methods.
Collapse
Affiliation(s)
- Suheng Xu
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Alexander S McLeod
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daniel J Rizzo
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York 10027, United States
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Ziheng Yao
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhicai Wang
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
| | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Sara Shabani
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, United States
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - D N Basov
- Department of Physics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Lin CL, Kawakami N, Arafune R, Minamitani E, Takagi N. Scanning tunneling spectroscopy studies of topological materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:243001. [PMID: 32069440 DOI: 10.1088/1361-648x/ab777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Topological materials have become promising materials for next-generation devices by utilizing their exotic electronic states. Their exotic states caused by spin-orbital coupling usually locate on the surfaces or at the edges. Scanning tunneling spectroscopy (STS) is a powerful tool to reveal the local electronic structures of condensed matters. Therefore, STS provides us with an almost perfect method to access the exotic states of topological materials. In this topical review, we report the current investigations by several methods based on the STS technique for layered topological material from transition metal dichalcogenide Weyl semimetals (WTe2 and MoTe2) to two dimensional topological insulators (layered bismuth and silicene). The electronic characteristics of these layered topological materials are experimentally identified.
Collapse
Affiliation(s)
- Chun-Liang Lin
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
7
|
Inui S, Stafford CA, Bergfield JP. Emergence of Fourier's Law of Heat Transport in Quantum Electron Systems. ACS NANO 2018; 12:4304-4311. [PMID: 29648783 DOI: 10.1021/acsnano.7b08816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microscopic origins of Fourier's venerable law of thermal transport in quantum electron systems has remained somewhat of a mystery, given that previous derivations were forced to invoke intrinsic scattering rates far exceeding those occurring in real systems. We propose an alternative hypothesis, namely, that Fourier's law emerges naturally if many quantum states participate in the transport of heat across the system. We test this hypothesis systematically in a graphene flake junction and show that the temperature distribution becomes nearly classical when the broadening of the individual quantum states of the flake exceeds their energetic separation. We develop a thermal resistor network model to investigate the scaling of the sample and contact thermal resistances and show that the latter is consistent with classical thermal transport theory in the limit of large level broadening.
Collapse
Affiliation(s)
- Sosuke Inui
- Department of Physics , University of Arizona , 1118 East Fourth Street , Tucson , Arizona 85721 , United States
- Department of Physics , Osaka City University , Sugimoto 3-3-138 , Sumiyoshi-Ku, Osaka 558-8585 , Japan
| | - Charles A Stafford
- Department of Physics , University of Arizona , 1118 East Fourth Street , Tucson , Arizona 85721 , United States
| | | |
Collapse
|
8
|
Chen L, Cheng P, Wu K. Quasiparticle interference in unconventional 2D systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:103001. [PMID: 27996961 DOI: 10.1088/1361-648x/aa54da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
Collapse
Affiliation(s)
- Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
9
|
Jung M, Sohn SD, Park J, Lee KU, Shin HJ. Fingerprints of Multiple Electron Scatterings in Single-Layer Graphene. Sci Rep 2016; 6:22570. [PMID: 26936521 PMCID: PMC4776258 DOI: 10.1038/srep22570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/18/2016] [Indexed: 11/09/2022] Open
Abstract
The electrons in graphene exhibit unusual behaviours, which can be described by massless Dirac quasiparticles. Understanding electron scattering in graphene has been of significant importance for its future application in electronic devices because electron scattering determines electrical properties such as resistivity and electron transport. There are two types of electron scatterings in graphene: intervalley scattering and intravalley scattering. In single-layer graphene, to date, it has been difficult to observe intravalley scattering because of the suppression of backscattering resulting from the chiral nature of the electrons in graphene. Here, we report the multiple electron scattering behaviours in single-layer graphene on a metallic substrate. By applying one- and two-dimensional Fourier transforms to maps of the local density of states, we can distinguish individual scattering processes from complex interference patterns. These techniques enable us to provide direct evidence of intravalley scattering, revealing a linear dispersion relation with a Fermi velocity of ~7.4 × 10(5) m/s.
Collapse
Affiliation(s)
- Minbok Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.,Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS) Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - So-Dam Sohn
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jonghyun Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Keun-U Lee
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.,KIST-UNIST Ulsan Center for Convergent Materials, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Hyung-Joon Shin
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.,Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS) Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919, Republic of Korea.,KIST-UNIST Ulsan Center for Convergent Materials, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| |
Collapse
|
10
|
Takayama A, Sato T, Souma S, Oguchi T, Takahashi T. One-dimensional edge states with giant spin splitting in a bismuth thin film. PHYSICAL REVIEW LETTERS 2015; 114:066402. [PMID: 25723232 DOI: 10.1103/physrevlett.114.066402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Indexed: 06/04/2023]
Abstract
To realize a one-dimensional (1D) system with strong spin-orbit coupling is a big challenge in modern physics, since the electrons in such a system are predicted to exhibit exotic properties unexpected from the 2D or 3D counterparts, while it was difficult to realize genuine physical properties inherent to the 1D system. We demonstrate the first experimental result that directly determines the purely 1D band structure by performing spin-resolved angle-resolved photoemission spectroscopy of Bi islands on a silicon surface that contains a metallic 1D edge structure with unexpectedly large Rashba-type spin-orbit coupling suggestive of the nontopological nature. We have also found a sizable out-of-plane spin polarization of the 1D edge state, consistent with our first-principles band calculations. Our result provides a new platform to realize exotic quantum phenomena at the 1D edge of the strong spin-orbit-coupling systems.
Collapse
Affiliation(s)
- A Takayama
- WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - T Sato
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | - S Souma
- WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - T Oguchi
- Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - T Takahashi
- WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan and Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
11
|
Yankowitz M, Xue J, LeRoy BJ. Graphene on hexagonal boron nitride. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:303201. [PMID: 24994551 DOI: 10.1088/0953-8984/26/30/303201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabrication of clean graphene devices so as not to obscure its intrinsic physical properties. Hexagonal boron nitride has emerged as a promising substrate for graphene devices as it is insulating, atomically flat and provides a clean charge environment for the graphene. Additionally, the interaction between graphene and boron nitride provides a path for the study of new physical phenomena not present in bare graphene devices. This review focuses on recent advancements in the study of graphene on hexagonal boron nitride devices from the perspective of scanning tunneling microscopy with highlights of some important results from electrical transport measurements.
Collapse
|
12
|
Fu ZG, Zhang P, Chen M, Wang Z, Zheng FW, Lin HQ. Anisotropic Fabry-Pérot resonant states confined within nano-steps on the topological insulator surface. Sci Rep 2014; 4:5544. [PMID: 24986567 PMCID: PMC4078317 DOI: 10.1038/srep05544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/16/2014] [Indexed: 11/09/2022] Open
Abstract
The peculiar nature of topological surface states, such as absence of backscattering, weak anti-localization, and quantum anomalous Hall effect, has been demonstrated mainly in bulk and film of topological insulator (TI), using surface sensitive probes and bulk transport probes. However, it is equally important and experimentally challenging to confine massless Dirac fermions with nano-steps on TI surfaces. This potential structure has similar ground with linearly-dispersed photons in Fabry-Pérot resonators, while reserving fundamental differences from well-studied Fabry-Pérot resonators and quantum corrals on noble metal surfaces. In this paper, we study the massless Dirac fermions confined within steps along the x (Γ–K) or y (Γ–M) direction on the TI surface, and the Fabry-Pérot-like resonances in the electronic local density of states (LDOS) between the steps are found. Due to the remarkable warping effect in the topological surface states, the LDOS confined in the step-well running along Γ-M direction exhibit anisotropic resonance patterns as compared to those in the step-well along Γ-K direction. The transmittance properties and spin orientation of Dirac fermion in both cases are also anisotropic in the presence of warping effect.
Collapse
Affiliation(s)
- Zhen-Guo Fu
- Beijing Computational Science Research Center, Beijing 100084, China
| | - Ping Zhang
- 1] Beijing Computational Science Research Center, Beijing 100084, China [2] Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Mu Chen
- Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Zhigang Wang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Fa-Wei Zheng
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Hai-Qing Lin
- Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
13
|
Settnes M, Power SR, Petersen DH, Jauho AP. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene. PHYSICAL REVIEW LETTERS 2014; 112:096801. [PMID: 24655267 DOI: 10.1103/physrevlett.112.096801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Indexed: 05/14/2023]
Abstract
Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.
Collapse
Affiliation(s)
- Mikkel Settnes
- Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Stephen R Power
- Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Dirch H Petersen
- Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Antti-Pekka Jauho
- Center for Nanostructured Graphene (CNG), Department of Micro- and Nanotechnology Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Feng B, Li H, Liu CC, Shao TN, Cheng P, Yao Y, Meng S, Chen L, Wu K. Observation of Dirac cone warping and chirality effects in silicene. ACS NANO 2013; 7:9049-9054. [PMID: 24003914 DOI: 10.1021/nn403661h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We performed low temperature scanning tunneling microscopy (STM) and spectroscopy (STS) studies on the electronic properties of (√3 × √3)R30° phase of silicene on Ag(111) surface. We found the existence of Dirac Fermion chirality through the observation of -1.5 and -1.0 power law decay of quasiparticle interference (QPI) patterns. Moreover, in contrast to the trigonal warping of Dirac cone in graphene, we found that the Dirac cone of silicene is hexagonally warped, which is further confirmed by density functional calculations and explained by the unique superstructure of silicene. Our results demonstrate that the (√3 × √3)R30° phase is an ideal system to investigate the unique Dirac Fermion properties of silicene.
Collapse
Affiliation(s)
- Baojie Feng
- Institute of Physics, Chinese Academy of Sciences , Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Physicochemical insight into gap openings in graphene. Sci Rep 2013; 3:1524. [PMID: 23524635 PMCID: PMC3605827 DOI: 10.1038/srep01524] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/07/2013] [Indexed: 12/04/2022] Open
Abstract
Based on a newly developed size-dependent cohesive energy formula for two-dimensional materials, a unified theoretical model was established to illustrate the gap openings in disordered graphene flakes, involving quantum dots, nanoribbons and nanoporous sheets. It tells us that the openings are essentially dominated by the variation in cohesive energy of C atoms, associated to the edge physicochemical nature regarding the coordination imperfection or the chemical bonding. In contrast to those ideal flakes, consequently, the gaps can be opened monotonously for disordered flakes on changing their sizes, affected by the dimension, geometric shape and the edge saturation. Using the density functional theory, accordingly, the electronic structures of disordered flakes differ to the ideal case because of the edge disorder. Our theoretical predictions have been validated by available experimental results, and provide us a distinct way for the quantitative modulation of bandgap in graphene for nanoelectronics.
Collapse
|
16
|
Park J, He G, Feenstra RM, Li AP. Atomic-scale mapping of thermoelectric power on graphene: role of defects and boundaries. NANO LETTERS 2013; 13:3269-3273. [PMID: 23731127 DOI: 10.1021/nl401473j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The spatially resolved thermoelectric power is studied on epitaxial graphene on SiC with direct correspondence to graphene atomic structures by a scanning tunneling microscopy (STM) method. A thermovoltage arises from a temperature gradient between the STM tip and the sample, and variations of thermovoltage are distinguished at defects and boundaries with atomic resolution. The epitaxial graphene has a high thermoelectric power of 42 μV/K with a big change (9.6 μV/K) at the monolayer-bilayer boundary. Long-wavelength oscillations are revealed in thermopower maps which correspond to the Friedel oscillations of electronic density of states associated with the intravalley scattering in graphene. On the same terrace of a graphene layer, thermopower distributions show domain structures that can be attributed to the modifications of local electronic structures induced by microscopic distortions (wrinkles) of graphene sheet on the SiC substrate. The thermoelectric power, the electronic structure, the carrier concentration, and their interplay are analyzed on the level of individual defects and boundaries in graphene.
Collapse
Affiliation(s)
- Jewook Park
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | |
Collapse
|
17
|
Li W, Chen X, Wang L, He Y, Wu Z, Cai Y, Zhang M, Wang Y, Han Y, Lortz RW, Zhang ZQ, Sheng P, Wang N. Density of States and Its Local Fluctuations Determined by Capacitance of Strongly Disordered Graphene. Sci Rep 2013. [PMCID: PMC3642665 DOI: 10.1038/srep01772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
|
19
|
Hu T, Ma D, Ma F, Xu K, Chu PK. Direct and diffuse reflection of electron waves at armchair edges of epitaxial graphene. RSC Adv 2013. [DOI: 10.1039/c3ra43215g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Chen L, Liu CC, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y, Wu K. Evidence for Dirac fermions in a honeycomb lattice based on silicon. PHYSICAL REVIEW LETTERS 2012; 109:056804. [PMID: 23006197 DOI: 10.1103/physrevlett.109.056804] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 06/01/2023]
Abstract
Silicene, a sheet of silicon atoms in a honeycomb lattice, was proposed to be a new Dirac-type electron system similar to graphene. We performed scanning tunneling microscopy and spectroscopy studies on the atomic and electronic properties of silicene on Ag(111). An unexpected √3 × √3 reconstruction was found, which is explained by an extra-buckling model. Pronounced quasiparticle interferences (QPI) patterns, originating from both the intervalley and intravalley scatter, were observed. From the QPI patterns we derived a linear energy-momentum dispersion and a large Fermi velocity, which prove the existence of Dirac fermions in silicene.
Collapse
Affiliation(s)
- Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|