1
|
Wang K, Lee Tang M. Silicon quantum dot-molecule hybrid systems and their applications. J Chem Phys 2025; 162:140901. [PMID: 40197564 DOI: 10.1063/5.0249392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/19/2025] [Indexed: 04/10/2025] Open
Abstract
Si quantum dot (QD)-molecule hybrid systems have emerged as a popular architecture in many research fields due to the ability to select for the advantages conferred by the inorganic Si component and the organic sections. This perspective will focus on the optical properties of Si QDs, the parameters that affect Si QD photophysics or energy transfer in Si QD-molecule hybrid structures, and their resultant hybrid optoelectronic devices. Examples of recent applications that employ Si QD-molecule hybrid materials are presented. Finally, we discuss current issues involving basic structure-property relationships that need to be addressed for Si QDs and conclude with an outlook on the bright future of Si QD-molecule hybrid materials.
Collapse
Affiliation(s)
- Kefu Wang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ming Lee Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
2
|
Camposeo A, Virgili T, Lombardi F, Cerullo G, Pisignano D, Polini M. Quantum Batteries: A Materials Science Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415073. [PMID: 40012274 PMCID: PMC12038544 DOI: 10.1002/adma.202415073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Indexed: 02/28/2025]
Abstract
In the context of quantum thermodynamics, quantum batteries have emerged as promising devices for energy storage and manipulation. Over the past decade, substantial progress is made in understanding the fundamental properties of quantum batteries, with several experimental implementations showing great promise. This perspective provides an overview of the solid-state materials platforms that can lead to fully operational quantum batteries. After briefly introducing the basic features of quantum batteries, organic microcavities are discussed, where superextensive charging is already demonstrated experimentally. Now, this explores other materials, including inorganic nanostructures (such as quantum wells and dots), perovskite systems, and (normal and high-temperature) superconductors. Key achievements in these areas, relevant to the experimental realization of quantum batteries, are highlighted. The challenges and future research directions are also addressed. Despite their enormous potential for energy storage devices, research into advanced materials for quantum batteries is still in its infancy. This paper aims to stimulate interdisciplinarity and convergence among different materials science research communities to accelerate the development of new materials and device architectures for quantum batteries.
Collapse
Affiliation(s)
- Andrea Camposeo
- NESTIstituto Nanoscienze – CNR and Scuola Normale SuperiorePiazza San Silvestro 12PisaI‐56127Italy
| | | | - Floriana Lombardi
- Department of Microtechnology and NanoscienceChalmers University of TechnologyGöteborgSE‐41296Sweden
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie – CNRIFNMilano20133Italy
- Dipartimento di FisicaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Dario Pisignano
- NESTIstituto Nanoscienze – CNR and Scuola Normale SuperiorePiazza San Silvestro 12PisaI‐56127Italy
- Dipartimento di Fisica “E. Fermi”Università di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| | - Marco Polini
- Dipartimento di Fisica “E. Fermi”Università di PisaLargo B. Pontecorvo 3PisaI‐56127Italy
| |
Collapse
|
3
|
Russ B, Eisler CN. The future of quantum technologies: superfluorescence from solution-processed, tunable materials. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1943-1951. [PMID: 39635086 PMCID: PMC11501137 DOI: 10.1515/nanoph-2023-0919] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 12/07/2024]
Abstract
One of the most significant and surprising recent developments in nanocrystal studies was the observation of superfluorescence from a system of self-assembled, colloidal perovskite nanocrystals [G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, "Superfluorescence from lead halide perovskite quantum dot superlattices," Nature, vol. 563, no. 7733, pp. 671-675, 2018]. Superfluorescence is a quantum-light property in which many dipoles spontaneously synchronize in phase to create a collective, synergistic photon emission with a much faster lifetime. Thus, it is surprising to observe this in more inhomogenous systems as solution-processed and colloidal structures typically suffer from high optical decoherence and non-homogeneous size distributions. Here we outline recent developments in the demonstration of superfluorescence in colloidal and solution-processed systems and explore the chemical and materials science opportunities allowed by such systems. The ability to create bright and tunable superfluorescent sources could enable transformative developments in quantum information applications and advance our understanding of quantum phenomena.
Collapse
Affiliation(s)
- Brendan Russ
- University of California, Los Angeles, Los Angeles, USA
| | | |
Collapse
|
4
|
Chandrasekaran V, Scarpelli L, Masia F, Borri P, Langbein W, Hens Z. Exciton Dephasing by Phonon-Induced Scattering between Bright Exciton States in InP/ZnSe Colloidal Quantum Dots. ACS NANO 2023. [PMID: 37326256 DOI: 10.1021/acsnano.2c12182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Decoherence or dephasing of the exciton is a central characteristic of a quantum dot (QD) that determines the minimum width of the exciton emission line and the purity of indistinguishable photon emission during exciton recombination. Here, we analyze exciton dephasing in colloidal InP/ZnSe QDs using transient four-wave mixing spectroscopy. We obtain a dephasing time of 23 ps at a temperature of 5 K, which agrees with the smallest line width of 50 μeV we measure for the exciton emission of single InP/ZnSe QDs at 5 K. By determining the dephasing time as a function of temperature, we find that exciton decoherence can be described as a phonon-induced, thermally activated process. The deduced activation energy of 0.32 meV corresponds to the small splitting within the nearly isotropic bright exciton triplet of InP/ZnSe QDs, suggesting that the dephasing is dominated by phonon-induced scattering within the bright exciton triplet.
Collapse
Affiliation(s)
- Vigneshwaran Chandrasekaran
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Lorenzo Scarpelli
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Francesco Masia
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Paola Borri
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Wolfgang Langbein
- Cardiff University School of Physics and Astronomy, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
5
|
Sun W, Krajewska CJ, Kaplan AEK, Šverko T, Berkinsky DB, Ginterseder M, Utzat H, Bawendi MG. Elastic Phonon Scattering Dominates Dephasing in Weakly Confined Cesium Lead Bromide Nanocrystals at Cryogenic Temperatures. NANO LETTERS 2023; 23:2615-2622. [PMID: 36926921 DOI: 10.1021/acs.nanolett.2c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cesium lead halide perovskite nanocrystals (PNCs) have emerged as a potential next-generation single quantum emitter (QE) material for quantum optics and quantum information science. Optical dephasing processes at cryogenic temperatures are critical to the quality of a QE, making a mechanistic understanding of coherence losses of fundamental interest. We use photon-correlation Fourier spectroscopy (PCFS) to obtain a lower bound to the optical coherence times of single PNCs as a function of temperature. We find that 20 nm CsPbBr3 PNCs emit nearly exclusively into a narrow zero-phonon line from 4 to 13 K. Remarkably, no spectral diffusion is observed at time scales of 10 μs to 5 ms. Our results suggest that exciton dephasing in this temperature range is dominated by elastic scattering from phonon modes with characteristic frequencies of 1-3 meV, while inelastic scattering is minimal due to weak exciton-phonon coupling.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tara Šverko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthias Ginterseder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hendrik Utzat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Fedin I, Goryca M, Liu D, Tretiak S, Klimov VI, Crooker SA. Enhanced Emission from Bright Excitons in Asymmetrically Strained Colloidal CdSe/Cd xZn 1-xSe Quantum Dots. ACS NANO 2021; 15:14444-14452. [PMID: 34473467 DOI: 10.1021/acsnano.1c03864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal CdSe quantum dots (QDs) designed with a high degree of asymmetric internal strain have recently been shown to host a number of desirable optical properties including subthermal room-temperature line widths, suppressed spectral diffusion, and high photoluminescence (PL) quantum yields. It remains an open question, however, whether they are well-suited for applications requiring emission of identical single photons. Here we measure the low-temperature PL dynamics and the polarization-resolved fluorescence line narrowing spectra from ensembles of these strained QDs. Our spectroscopy reveals the radiative recombination rates of bright and dark excitons, the relaxation rate between the two, and the energy spectra of the quantized acoustic phonons in the QDs that can contribute to relaxation processes. In comparison to conventional colloidal CdSe/ZnS core/shell QDs, we find that in asymmetrically strained CdSe QDs over six times more light is emitted directly by the bright exciton. These results are therefore encouraging for the prospects of chemically synthesized colloidal QDs as emitters of single indistinguishable photons.
Collapse
Affiliation(s)
- Igor Fedin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Mateusz Goryca
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dan Liu
- Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theory Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott A Crooker
- National High Magnetic Field Lab, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Yu B, Zhang C, Chen L, Huang X, Qin Z, Wang X, Xiao M. Exciton linewidth broadening induced by exciton-phonon interactions in CsPbBr 3 nanocrystals. J Chem Phys 2021; 154:214502. [PMID: 34240983 DOI: 10.1063/5.0051611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum dephasing of excitonic transitions in CsPbBr3 nanocrystals has been studied using two-dimensional electronic spectroscopy at cryogenic temperatures. The exciton-phonon interactions for acoustic and optical modes exhibit different effects on the coherent dynamics of excitonic transitions. The homogeneous linewidth shows a proportional dependence on the temperature, suggesting the primary dephasing channel of the elastic scattering between exciton and acoustic modes. The exciton-optical mode interaction is manifested as the beatings of off-diagonal signals in the population time domain at the frequencies of 29 and 51 cm-1, indicating phonon replicas of excitonic transitions arising from coherent exciton-phonon interaction. The insight information of exciton homogeneous broadening in perovskite nanocrystals is essential for the potential application of quantum light sources.
Collapse
Affiliation(s)
- Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xinyu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhengyuan Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
8
|
Utzat H, Bawendi MG. Lifetime-resolved photon-correlation Fourier spectroscopy. OPTICS EXPRESS 2021; 29:14293-14303. [PMID: 33985152 DOI: 10.1364/oe.421642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The excited state population of single solid-state emitters is subjected to energy fluctuations around the equilibrium driven by the bath and relaxation through the emission of phonons or photons. Simultaneous measurement of the associated spectral dynamics requires a technique with a high spectral and temporal resolution with an additionally high temporal dynamic range. We propose a pulsed excitation-laser analog of photon-correlation Fourier spectroscopy (PCFS), which extracts the linewidth and spectral diffusion dynamics along the emission lifetime trajectory of the emitter, effectively discriminating spectral dynamics from relaxation and bath fluctuations. This lifetime-resolved PCFS correlates photon-pairs at the output arm of a Michelson interferometer in both their time-delay between laser-excitation and photon-detection T and the time-delay between two photons τ. We propose the utility of the technique for systems with changing relative contributions to the emission from multiple states, for example, quantum emitters exhibiting phonon-mediated exchange between different fine-structure states.
Collapse
|
9
|
Liu A, Nagamine G, Bonato LG, Almeida DB, Zagonel LF, Nogueira AF, Padilha LA, Cundiff ST. Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets. ACS NANO 2021; 15:6499-6506. [PMID: 33769788 DOI: 10.1021/acsnano.0c09244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gabriel Nagamine
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz G Bonato
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Diogo B Almeida
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz F Zagonel
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Ana F Nogueira
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Lazaro A Padilha
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Kagan CR, Bassett LC, Murray CB, Thompson SM. Colloidal Quantum Dots as Platforms for Quantum Information Science. Chem Rev 2020; 121:3186-3233. [DOI: 10.1021/acs.chemrev.0c00831] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Simultaneous Existence of Confined and Delocalized Vibrational Modes in Colloidal Quantum Dots. J Phys Chem Lett 2019; 10:6144-6150. [PMID: 31556615 DOI: 10.1021/acs.jpclett.9b02474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coupling to phonon modes is a primary mechanism of excitonic dephasing and energy loss in semiconductors. However, low-energy phonons in colloidal quantum dots and their coupling to excitons are poorly understood because their experimental signatures are weak and usually obscured by the unavoidable inhomogeneous broadening of colloidal dot ensembles. We use multidimensional coherent spectroscopy at cryogenic temperatures to extract the homogeneous nonlinear optical response of excitons in a CdSe/CdZnS core/shell colloidal quantum dot ensemble. A comparison to the simulation provides evidence that the observed lineshapes arise from the coexistence of confined and delocalized vibrational modes, both of which couple strongly to excitons in CdSe/CdZnS colloidal quantum dots.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Diogo B Almeida
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wan-Ki Bae
- SKKU Advanced Institute of Nano Technology , Sungkyunkwan University , Suwon , 16419 Gyeonggi , Republic of Korea
| | - Lazaro A Padilha
- Instituto de Fisica "Gleb Wataghin" , Universidade de Campinas , Campinas , 13083-970 Sao Paulo , Brazil
| | - Steven T Cundiff
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
12
|
Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Non-Markovian Exciton-Phonon Interactions in Core-Shell Colloidal Quantum Dots at Femtosecond Timescales. PHYSICAL REVIEW LETTERS 2019; 123:057403. [PMID: 31491330 DOI: 10.1103/physrevlett.123.057403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2019] [Indexed: 06/10/2023]
Abstract
We perform two-dimensional coherent spectroscopy on CdSe/CdZnS core-shell colloidal quantum dots at cryogenic temperatures. In the two-dimensional spectra, sidebands due to electronic coupling with CdSe lattice LO-phonon modes are observed to have evolutions deviating from the exponential dephasing expected from Markovian spectral diffusion, which is instantaneous and memoryless. Comparison to simulations provides evidence that LO-phonon coupling induces energy-gap fluctuations on the finite timescales of nuclear motion. The femtosecond resolution of our technique probes exciton dynamics directly on the timescales of phonon coupling in nanocrystals.
Collapse
Affiliation(s)
- A Liu
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D B Almeida
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - W K Bae
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Gyeonggi 16419, Republic of Korea
| | - L A Padilha
- Instituto de Fisica "Gleb Wataghin," Universidade Estadual de Campinas, 13083-970 Campinas, Sao Paulo, Brazil
| | - S T Cundiff
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Becker MA, Scarpelli L, Nedelcu G, Rainò G, Masia F, Borri P, Stöferle T, Kovalenko MV, Langbein W, Mahrt RF. Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr 2Cl Perovskite Nanocrystals. NANO LETTERS 2018; 18:7546-7551. [PMID: 30407011 DOI: 10.1021/acs.nanolett.8b03027] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fully inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission, and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns time scale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBr2Cl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 to 50 K. We found a low-temperature exciton dephasing time of 24.5 ± 1.0 ps, inferred from the decay of the photon-echo amplitude at 5 K, corresponding to a homogeneous line width (fwhm) of 54 ± 5 μeV. Furthermore, oscillations in the photon-echo signal on a picosecond time scale are observed and attributed to coherent coupling of the exciton to a quantized phonon mode with 3.45 meV energy.
Collapse
Affiliation(s)
- Michael A Becker
- IBM Research-Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland
- Optical Materials Engineering Laboratory , ETH Zürich , 8092 Zürich , Switzerland
| | - Lorenzo Scarpelli
- School of Physics and Astronomy , Cardiff University , The Parade, Cardiff CF243AA , United Kingdom
| | - Georgian Nedelcu
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , 8093 Zürich , Switzerland
- Laboratory of Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , 8093 Zürich , Switzerland
- Laboratory of Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Francesco Masia
- School of Physics and Astronomy , Cardiff University , The Parade, Cardiff CF243AA , United Kingdom
| | - Paola Borri
- School of Physics and Astronomy , Cardiff University , The Parade, Cardiff CF243AA , United Kingdom
- Cardiff University School of Biosciences , Museum Avenue, Cardiff CF10 3AX , United Kingdom
| | - Thilo Stöferle
- IBM Research-Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , 8093 Zürich , Switzerland
- Laboratory of Thin Films and Photovoltaics , Empa - Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Wolfgang Langbein
- School of Physics and Astronomy , Cardiff University , The Parade, Cardiff CF243AA , United Kingdom
| | - Rainer F Mahrt
- IBM Research-Zurich , Säumerstrasse 4 , 8803 Rüschlikon , Switzerland
| |
Collapse
|
14
|
Pillai SS, Yukawa H, Onoshima D, Biju V, Baba Y. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing. ANAL SCI 2018; 33:137-142. [PMID: 28190830 DOI: 10.2116/analsci.33.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.
Collapse
|
15
|
Khosla M, Rao S, Gupta S. Polarons Explain Luminescence Behavior of Colloidal Quantum Dots at Low Temperature. Sci Rep 2018; 8:8385. [PMID: 29849075 PMCID: PMC5976793 DOI: 10.1038/s41598-018-26678-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/11/2018] [Indexed: 02/03/2023] Open
Abstract
Luminescence properties of colloidal quantum dots have found applications in imaging, displays, light-emitting diodes and lasers, and single photon sources. Despite wide interest, several experimental observations in low-temperature photoluminescence of these quantum dots, such as the short lifetime on the scale of microseconds and a zero-longitudinal optical phonon line in spectrum, both attributed to a dark exciton in literature, remain unexplained by existing models. Here we propose a theoretical model including the effect of solid-state environment on luminescence. The model captures both coherent and incoherent interactions of band-edge exciton with phonon modes. Our model predicts formation of dressed states by coupling of the exciton with a confined acoustic phonon mode, and explains the short lifetime and the presence of the zero-longitudinal optical phonon line in the spectrum. Accounting for the interaction of the exciton with bulk phonon modes, the model also explains the experimentally observed temperature-dependence of the photoluminescence decay dynamics and temperature-dependence of the photoluminescence spectrum.
Collapse
Affiliation(s)
- Meenakshi Khosla
- Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.,Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sravya Rao
- Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Shilpi Gupta
- Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
16
|
Vanacore GM, Hu J, Liang W, Bietti S, Sanguinetti S, Carbone F, Zewail AH. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044034. [PMID: 28852685 PMCID: PMC5552391 DOI: 10.1063/1.4998009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 07/28/2017] [Indexed: 05/31/2023]
Abstract
Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.
Collapse
Affiliation(s)
| | | | | | - Sergio Bietti
- L-NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, I-20125 Milano, Italy
| | - Stefano Sanguinetti
- L-NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 53, I-20125 Milano, Italy
| | - Fabrizio Carbone
- Institute of Physics, Laboratory for Ultrafast Microscopy and Electron Scattering (LUMES), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmed H Zewail
- Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Bakker MP, Snijders H, Löffler W, Barve AV, Coldren LA, Bouwmeester D, van Exter MP. Homodyne detection of coherence and phase shift of a quantum dot in a cavity. OPTICS LETTERS 2015; 40:3173-3176. [PMID: 26125395 DOI: 10.1364/ol.40.003173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A homodyne measurement technique is demonstrated that enables direct observation of the coherence and phase of light that passed through a coupled quantum dot (QD)-microcavity system, which in turn enables clear identification of coherent and incoherent QD transitions. As an example, we study the effect of power-induced decoherence, where the QD transition saturates and incoherent emission from the excited state dominates at higher power. Further, we show that the same technique allows measurement of the quantum phase shift induced by a single QD in the cavity, which is strongly enhanced by cavity quantum electrodynamics effects.
Collapse
|
18
|
Cui J, Beyler AP, Bischof TS, Wilson MWB, Bawendi MG. Deconstructing the photon stream from single nanocrystals: from binning to correlation. Chem Soc Rev 2014; 43:1287-310. [DOI: 10.1039/c3cs60330j] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Dey P, Paul J, Bylsma J, Deminico S, Karaiskaj D. Continuously tunable optical multidimensional Fourier-transform spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:023107. [PMID: 23464195 DOI: 10.1063/1.4792378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A multidimensional optical nonlinear spectrometer (MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. The MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delays between them while maintaining phase stability. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy. The present work reports on overcoming some important limitations on the original design of the MONSTR apparatus. One important advantage of the MONSTR is the fact that it is a closed platform, which provides the high stability. Once the optical alignment is performed, it is desirable to maintain the alignment over long periods of time. The previous design of the MONSTR was limited to a narrow spectral range defined by the optical coating of the beam splitters. In order to achieve tunability over a broad spectral range the internal optics needed to be changed. By using broadband coated and wedged beam splitters and compensator plates, combined with modifications of the beam paths, continuous tunability can be achieved from 520 nm to 1100 nm without changing any optics or performing alignment of the internal components of the MONSTR. Furthermore, in order to achieve continuous tunability in the spectral region between 520 nm and 720 nm, crucially important for studies on numerous biological molecules, a single longitudinal mode laser at 488.5 nm was identified and used as a metrology laser. The shorter wavelength of the metrology laser as compared to the usual HeNe laser has also increased the phase stability of the system. Finally, in order to perform experiments in the reflection geometry, a simple method to achieve active phase stabilization between the signal and the reference beams has been developed.
Collapse
Affiliation(s)
- P Dey
- Department of Physics, University of South Florida, 4202 East Fowler Ave., Tampa, Florida 33620, USA
| | | | | | | | | |
Collapse
|
20
|
Fernée MJ, Louyer Y, Tamarat P, Lounis B. Comment on "Spin-flip limited exciton dephasing in CdSe/ZnS colloidal quantum dots". PHYSICAL REVIEW LETTERS 2012; 109:229701-229702. [PMID: 23368165 DOI: 10.1103/physrevlett.109.229701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Indexed: 06/01/2023]
|
21
|
Accanto N, Masia F, Moreels I, Hens Z, Langbein W, Borri P. Engineering the spin-flip limited exciton dephasing in colloidal CdSe/CdS quantum dots. ACS NANO 2012; 6:5227-33. [PMID: 22564176 PMCID: PMC3590878 DOI: 10.1021/nn300992a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We have measured the intrinsic exciton dephasing in high-quality zinc blende CdSe/CdS colloidal quantum dots in the temperature range from 5 to 170 K using a sensitive three-beam photon echo technique in heterodyne detection, which is not affected by spectral diffusion. Pure dephasing via acoustic phonons dominates the initial dynamics, followed by an exponential zero-phonon line dephasing. From the temperature dependence of the zero-phonon line dephasing, the exciton lifetime, and the exciton thermalization within its fine structure, we show that the zero-phonon line dephasing of the lowest bright state originates from the phonon-assisted spin-flip to dark exciton states. Importantly, we can control the dephasing by tailoring the exciton fine structure through its dependence on the dot core size and shell thickness, as expected from the spin-flip mechanism. By reducing the electron-hole exchange interaction with increasing core size and delocalization of the electron wave function in the quasi-type-II core/shell band alignment, we find the longest zero-phonon line dephasing time of ∼110 ps at 5 K in dots with the largest core diameter (5.7 nm) and the thickest CdSe shell (9 monolayers) in the series studied.
Collapse
Affiliation(s)
- Nicolò Accanto
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Francesco Masia
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Iwan Moreels
- Physics and Chemistry of Nanostructures and Centre for Nano and Biophotonics, Ghent University, Ghent B-9000, Belgium
- IBM Research-Zürich, Säumerstrasse 4, CH- 8803 Rüschlikon, Switzerland
| | - Zeger Hens
- Physics and Chemistry of Nanostructures and Centre for Nano and Biophotonics, Ghent University, Ghent B-9000, Belgium
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Paola Borri
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
- Address correspondence to
| |
Collapse
|