1
|
Xia X, Ni R. Designing Superselectivity in Linker-Mediated Multivalent Nanoparticle Adsorption. PHYSICAL REVIEW LETTERS 2024; 132:118202. [PMID: 38563948 DOI: 10.1103/physrevlett.132.118202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
Using a statistical mechanical model and numerical simulations, we provide the design principle for the bridging strength (ξ) and linker density (ρ) dependent superselectivity in linker-mediated multivalent nanoparticle adsorption. When the bridges are insufficient, the formation of multiple bridges leads to both ξ- and ρ-dependent superselectivity. When the bridges are excessive, the system becomes insensitive to bridging strength due to entropy-induced self-saturation and shows a superselective desorption with respect to the linker density. Counterintuitively, lower linker density or stronger bridging strength enhances the superselectivity. These findings help the understanding of relevant biological processes and open up opportunities for applications in biosensing, drug delivery, and programmable self-assembly.
Collapse
Affiliation(s)
- Xiuyang Xia
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Ran Ni
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
2
|
Xia X, Zhang G, Pica Ciamarra M, Jiao Y, Ni R. The Role of Receptor Uniformity in Multivalent Binding. JACS AU 2023; 3:1385-1391. [PMID: 37234107 PMCID: PMC10207130 DOI: 10.1021/jacsau.3c00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Multivalency is prevalent in various biological systems and applications due to the superselectivity that arises from the cooperativity of multivalent binding. Traditionally, it was thought that weaker individual binding would improve the selectivity in multivalent targeting. Here, using analytical mean field theory and Monte Carlo simulations, we discover that, for receptors that are highly uniformly distributed, the highest selectivity occurs at an intermediate binding energy and can be significantly greater than the weak binding limit. This is caused by an exponential relationship between the bound fraction and receptor concentration, which is influenced by both the strength and combinatorial entropy of binding. Our findings not only provide new guidelines for the rational design of biosensors using multivalent nanoparticles but also introduce a new perspective in understanding biological processes involving multivalency.
Collapse
Affiliation(s)
- Xiuyang Xia
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Ge Zhang
- Department
of Physics, City University of Hong Kong, 518057 Kowloon, Hong Kong China
| | - Massimo Pica Ciamarra
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Yang Jiao
- Materials
Science and Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Ran Ni
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, 637459 Singapore
| |
Collapse
|
3
|
Linne C, Visco D, Angioletti-Uberti S, Laan L, Kraft DJ. Direct visualization of superselective colloid-surface binding mediated by multivalent interactions. Proc Natl Acad Sci U S A 2021; 118:e2106036118. [PMID: 34465623 PMCID: PMC8433554 DOI: 10.1073/pnas.2106036118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this "superselectivity." However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
Collapse
Affiliation(s)
- Christine Linne
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands
| | - Daniele Visco
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Liedewij Laan
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands;
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
4
|
Overeem NJ, van der Vries E, Huskens J. A Dynamic, Supramolecular View on the Multivalent Interaction between Influenza Virus and Host Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007214. [PMID: 33682339 DOI: 10.1002/smll.202007214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Understanding how influenza viruses traverse the mucus and recognize host cells is critical for evaluating their zoonotic potential, and for prevention and treatment of the disease. The surface of the influenza A virus is covered with the receptor-binding protein hemagglutinin and the receptor-cleaving enzyme neuraminidase, which jointly control the interactions between the virus and the host cell. These proteins are organized in closely spaced trimers and tetramers to facilitate multivalent interactions with sialic acid-terminated glycans. This review shows that the individually weak multivalent interactions of influenza viruses allow superselective binding, virus-induced recruitment of receptors, and the formation of dynamic complexes that facilitate molecular walking. Techniques to measure the avidity and receptor specificity of influenza viruses are reviewed, and the pivotal role of multivalent interactions with their emergent properties in crossing the mucus and entering host cells is discussed. A model is proposed for the initiation of cell entry through virus-induced receptor clustering. The multivalent interactions of influenza viruses are maintained in a dynamic regime by a functional balance between binding and cleaving.
Collapse
Affiliation(s)
- Nico J Overeem
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| | - Erhard van der Vries
- Royal GD, Arnsbergstraat 7, Deventer, 7418 EZ, The Netherlands
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, 3584CX, The Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
5
|
Design and fabrication of novel multi-targeted magnetic nanoparticles for gene delivery to breast cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
A quantitative view on multivalent nanomedicine targeting. Adv Drug Deliv Rev 2021; 169:1-21. [PMID: 33264593 DOI: 10.1016/j.addr.2020.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Although the concept of selective delivery has been postulated over 100 years ago, no targeted nanomedicine has been clinically approved so far. Nanoparticles modified with targeting ligands to promote the selective delivery of therapeutics towards a specific cell population have been extensively reported. However, the rational design of selective particles is still challenging. One of the main reasons for this is the lack of quantitative theoretical and experimental understanding of the interactions involved in cell targeting. In this review, we discuss new theoretical models and experimental methods that provide a quantitative view of targeting. We show the new advancements in multivalency theory enabling the rational design of super-selective nanoparticles. Furthermore, we present the innovative approaches to obtain key targeting parameters at the single-cell and single molecule level and their role in the design of targeting nanoparticles. We believe that the combination of new theoretical multivalent design and experimental methods to quantify receptors and ligands aids in the rational design and clinical translation of targeted nanomedicines.
Collapse
|
7
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Li Y, Lin J, Wang P, Luo Q, Zhu F, Zhang Y, Hou Z, Liu X, Liu J. Tumor Microenvironment Cascade-Responsive Nanodrug with Self-Targeting Activation and ROS Regeneration for Synergistic Oxidation-Chemotherapy. NANO-MICRO LETTERS 2020; 12:182. [PMID: 34138172 PMCID: PMC7770705 DOI: 10.1007/s40820-020-00492-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 05/03/2023]
Abstract
Carrier-free nanodrug with exceptionally high drug payload has attracted increasing attentions. Herein, we construct a pH/ROS cascade-responsive nanodrug which could achieve tumor acidity-triggered targeting activation followed by circularly amplified ROS-triggered drug release via positive-feedback loop. The di-selenide-bridged prodrug synthesized from vitamin E succinate and methotrexate (MTX) self-assembles into nanoparticles (VSeM); decorating acidity-cleavable PEG onto VSeM surface temporarily shields the targeting ability of MTX to evade immune clearance and consequently elongate circulation time. Upon reaching tumor sites, acidity-triggered detachment of PEG results in targeting recovery to enhance tumor cell uptake. Afterward, the VSeM could be dissociated in response to intracellular ROS to trigger VES/MTX release; then the released VES could produce extra ROS to accelerate the collapse of VSeM. Finally, the excessive ROS produced from VES could synergize with the released MTX to efficiently suppress tumor growth via orchestrated oxidation-chemotherapy. Our study provides a novel strategy to engineer cascade-responsive nanodrug for synergistic cancer treatment.
Collapse
Affiliation(s)
- Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Jinyan Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Qiang Luo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Fukai Zhu
- College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China
| | - Zhenqing Hou
- College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xiaolong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China.
| | - Jingfeng Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, People's Republic of China.
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361024, People's Republic of China.
| |
Collapse
|
9
|
Abstract
The selectivity of binding of colloidal particles is an important research topic for the field of targeted drug delivery. Extensive theoretical work has shown that high selectivity can be obtained by using multivalent weak interactions. Here we provide comprehensive experimental proof using DNA-coated particles. The ligand–receptor affinity is varied by changing the number of complementary bases, showing that fewer complementary bases yield a higher binding selectivity. The experimental data and corresponding numerical model simulations demonstrate the scaling behavior between molecular density, molecular affinity, and resulting density selectivity of interparticle binding. These results are important for the design of novel systems for targeted nanoparticle drug delivery. Targeted drug delivery critically depends on the binding selectivity of cargo-transporting colloidal particles. Extensive theoretical work has shown that two factors are necessary to achieve high selectivity for a threshold receptor density: multivalency and weak interactions. Here, we study a model system of DNA-coated particles with multivalent and weak interactions that mimics ligand–receptor interactions between particles and cells. Using an optomagnetic cluster experiment, particle aggregation rates are measured as a function of ligand and receptor densities. The measured aggregation rates show that the binding becomes more selective for shorter DNA ligand–receptor pairs, proving that multivalent weak interactions lead to enhanced selectivity in interparticle binding. Simulations confirm the experimental findings and show the role of ligand–receptor dissociation in the selectivity of the weak multivalent binding.
Collapse
|
10
|
Curk T, Tito NB. First-order 'hyper-selective' binding transition of multivalent particles under force. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:214002. [PMID: 31952055 DOI: 10.1088/1361-648x/ab6d12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multivalent particles bind to targets via many independent ligand-receptor bonding interactions. This microscopic design spans length scales in both synthetic and biological systems. Classic examples include interactions between cells, virus binding, synthetic ligand-coated micrometer-scale vesicles or smaller nano-particles, functionalised polymers, and toxins. Equilibrium multivalent binding is a continuous yet super-selective transition with respect to the number of ligands and receptors involved in the interaction. Increasing the ligand or receptor density on the two particles leads to sharp growth in the number of bound particles at equilibrium. Here we present a theory and Monte Carlo simulations to show that applying mechanical force to multivalent particles causes their adsorption/desorption isotherm on a surface to become sharper and more selective, with respect to variation in the number of ligands and receptors on the two objects. When the force is only applied to particles bound to the surface by one or more ligands, then the transition can become infinitely sharp and first-order-a new binding regime which we term 'hyper-selective'. Force may be imposed by, e.g. flow of solvent around the particles, a magnetic field, chemical gradients, or triggered uncoiling of inert oligomers/polymers tethered to the particles to provide a steric repulsion to the surface. This physical principle is a step towards 'all or nothing' binding selectivity in the design of multivalent constructs.
Collapse
Affiliation(s)
- Tine Curk
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America
| | | |
Collapse
|
11
|
Chung HT, Yu HY. Binding of a Brownian nanoparticle to a thermally fluctuating membrane surface. Phys Rev E 2020; 101:032604. [PMID: 32289911 DOI: 10.1103/physreve.101.032604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
We investigate the Brownian dynamics of a nanoparticle bound to a thermally undulating elastic membrane. The ligand-functionalized nanoparticle is assumed to interact monovalently with the receptor expressed on the membrane. In order to resolve the nanoparticle transient motion subject to the instantaneous membrane configuration in a consistent manner, we employ a set of coupled Langevin equations that simultaneously incorporate the hydrodynamic effects, ligand-receptor binding interaction, intramembrane elastic forces, and thermal fluctuations. We show that the presence of a deformable, elastic fluid membrane not only affects the dynamics of a bound nanoparticle but also alters the effective binding potential felt by the nanoparticle. In contrast to a nanoparticle bound to a flat surface, the oscillatory characteristics of the nanoparticle velocity autocorrelation function are suppressed and transition to an anticorrelated long-time tail. Moreover, the nanoparticle position fluctuation becomes more coherent with that of the membrane binding site, and the width of the distribution of the nanoparticle distance from the membrane decreases with increasing membrane bending rigidity. By introducing a locally harmonic, bistable potential as an effective potential for the ligand-receptor pair, the rate of nanoparticle transitioning between two bound states is facilitated by membrane undulations as a result of stronger positional variations associated with the nanoparticle.
Collapse
Affiliation(s)
- Hsueh-Te Chung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiu-Yu Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Maslanka Figueroa S, Fleischmann D, Beck S, Goepferich A. The Effect of Ligand Mobility on the Cellular Interaction of Multivalent Nanoparticles. Macromol Biosci 2020; 20:e1900427. [PMID: 32077622 DOI: 10.1002/mabi.201900427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Indexed: 12/23/2022]
Abstract
Multivalent nanoparticle binding to cells can be of picomolar avidity making such interactions almost as intense as those seen with antibodies. However, reducing nanoparticle design exclusively to avidity optimization by the choice of ligand and its surface density does not sufficiently account for controlling and understanding cell-particle interactions. Cell uptake, for example, is of paramount significance for a plethora of biomedical applications and does not exclusively depend on the intensity of multivalency. In this study, it is shown that the mobility of ligands tethered to particle surfaces has a substantial impact on particle fate upon binding. Nanoparticles carrying angiotensin-II tethered to highly mobile 5 kDa long poly(ethylene glycol) (PEG) chains separated by ligand-free 2 kDa short PEG chains show a superior accumulation in angiotensin-II receptor type 1 positive cells. In contrast, when ligand mobility is constrained by densely packing the nanoparticle surface with 5 kDa PEG chains only, cell uptake decreases by 50%. Remarkably, irrespective of ligand mobility and density both particle types have similar EC50 values in the 1-3 × 10-9 m range. These findings demonstrate that ligand mobility on the nanoparticle corona is an indispensable attribute to be considered in particle design to achieve optimal cell uptake via multivalent interactions.
Collapse
Affiliation(s)
- Sara Maslanka Figueroa
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Universitaetsstrasse 31, 93053, Germany
| | - Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Universitaetsstrasse 31, 93053, Germany
| | - Sebastian Beck
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Universitaetsstrasse 31, 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Universitaetsstrasse 31, 93053, Germany
| |
Collapse
|
13
|
Tian X, Angioletti-Uberti S, Battaglia G. On the design of precision nanomedicines. SCIENCE ADVANCES 2020; 6:eaat0919. [PMID: 32042891 PMCID: PMC6981090 DOI: 10.1126/sciadv.aat0919] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/25/2019] [Indexed: 05/03/2023]
Abstract
Tight control on the selectivity of nanoparticles' interaction with biological systems is paramount for the development of targeted therapies. However, the large number of tunable parameters makes it difficult to identify optimal design "sweet spots" without guiding principles. Here, we combine superselectivity theory with soft matter physics into a unified theoretical framework and we prove its validity using blood brain barrier cells as target. We apply our approach to polymersomes functionalized with targeting ligands to identify the most selective combination of parameters in terms of particle size, brush length and density, as well as tether length, affinity, and ligand number. We show that the combination of multivalent interactions into multiplexed systems enable interaction as a function of the cell phenotype, that is, which receptors are expressed. We thus propose the design of a "bar-coding" targeting approach that can be tailor-made to unique cell populations enabling personalized therapies.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of Life Science, Anhui University, Hefei, P. R. China
- Department of Chemistry, Anhui University, Hefei, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, London, UK
- Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Giuseppe Battaglia
- Department of Chemistry, Anhui University, Hefei, P. R. China
- Institute for the Physics of Living Systems, University College London, London, UK
- Institute for Bioengineering of Catalonia, Barcelona Institute for Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
14
|
Lingasamy P, Tobi A, Haugas M, Hunt H, Paiste P, Asser T, Rätsep T, Kotamraju VR, Bjerkvig R, Teesalu T. Bi-specific tenascin-C and fibronectin targeted peptide for solid tumor delivery. Biomaterials 2019; 219:119373. [PMID: 31374479 DOI: 10.1016/j.biomaterials.2019.119373] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 01/15/2023]
Abstract
Oncofetal fibronectin (FN-EDB) and tenascin-C C domain (TNC-C) are nearly absent in extracellular matrix of normal adult tissues but upregulated in malignant tissues. Both FN-EDB and TNC-C are developed as targets of antibody-based therapies. Here we used peptide phage biopanning to identify a novel targeting peptide (PL1, sequence: PPRRGLIKLKTS) that interacts with both FN-EDB and TNC-C. Systemic PL1-functionalized model nanoscale payloads [iron oxide nanoworms (NWs) and metallic silver nanoparticles] homed to glioblastoma (GBM) and prostate carcinoma xenografts, and to non-malignant angiogenic neovessels induced by VEGF-overexpression. Antibody blockage experiments demonstrated that PL1 tumor homing involved interactions with both receptor proteins. Treatment of GBM mice with PL1-targeted model therapeutic nanocarrier (NWs loaded with a proapoptotic peptide) resulted in reduced tumor growth and increased survival, whereas treatment with untargeted particles had no effect. PL1 peptide may have applications as an affinity ligand for delivery of diagnostic and therapeutic compounds to microenvironment of solid tumors.
Collapse
Affiliation(s)
- Prakash Lingasamy
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Allan Tobi
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Maarja Haugas
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Hedi Hunt
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia
| | - Päärn Paiste
- Department of Geology, University of Tartu, 50411, Tartu, Estonia
| | - Toomas Asser
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Tõnu Rätsep
- Department of Neurosurgery, Tartu University Hospital, 50406, Tartu, Estonia
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Rolf Bjerkvig
- Department of Biomedicine Translational Cancer Research, University of Bergen, 5020, Bergen, Norway
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, 50411, Tartu, Estonia; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, 93106, CA, USA.
| |
Collapse
|
15
|
Multifunctional magnetic nanoparticles for controlled release of anticancer drug, breast cancer cell targeting, MRI/fluorescence imaging, and anticancer drug delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wang M, Allard J, Haun JB. Extracting multivalent detachment rates from heterogeneous nanoparticle populations. Phys Chem Chem Phys 2018; 20:21430-21440. [PMID: 30087954 DOI: 10.1039/c8cp03118e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanoparticles can form multiple bonds with target surfaces, thereby increasing adhesion strength and internalization rate into cells. This property has helped to drive interest in nanoparticles as delivery vehicles for drugs and imaging agents, but significant gaps in our understanding of multivalent adhesion make it difficult to control and optimize binding dynamics. In previous work, we experimentally observed that multivalent nanoparticle adhesion can exhibit a time-dependent detachment rate. However, simulations later indicated that the underlying cause was variability in the number of bonds that formed between individual nanoparticles within the population. Here, we use this insight to develop a simple model to isolate a series of constant detachment rates from such heterogeneous populations. Using simulations of experimental data to train the model, we first classified nanoparticles within a given population based on the most likely equilibrium bond number, which we termed the bond potential. We then assumed that each bond potential category would follow standard first-order kinetics with constant detachment rates. Model results matched the population binding data, but only if we further divided each bond potential category into two sub-components, the second of which did not detach. We then utilized bonding rates from the simulation to estimate detachment rates for the second, slower detaching sub-component. These results confirm our hypothesis that nanoparticle populations can be sub-divided based on bond potential, each of which could be characterized by a constant detachment rate. Finally, we established relationships between the new heterogeneous population detachment model and a time-dependent, empirical detachment model that we developed in previous work. This could make it possible to determine bond potential distributions directly from experimental data without computationally costly simulations, which will be explored in future work.
Collapse
Affiliation(s)
- Mingqiu Wang
- Department of Biomedical Engineering, University of California Irvine, 3107 Natural Sciences II, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
17
|
Youm I, Li W. Cochlear hair cell regeneration: an emerging opportunity to cure noise-induced sensorineural hearing loss. Drug Discov Today 2018; 23:1564-1569. [DOI: 10.1016/j.drudis.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/16/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
18
|
Liese S, Netz RR. Quantitative Prediction of Multivalent Ligand-Receptor Binding Affinities for Influenza, Cholera, and Anthrax Inhibition. ACS NANO 2018; 12:4140-4147. [PMID: 29474056 DOI: 10.1021/acsnano.7b08479] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multivalency achieves strong, yet reversible binding by the simultaneous formation of multiple weak bonds. It is a key interaction principle in biology and promising for the synthesis of high-affinity inhibitors of pathogens. We present a molecular model for the binding affinity of synthetic multivalent ligands onto multivalent receptors consisting of n receptor units arranged on a regular polygon. Ligands consist of a geometrically matching rigid polygonal core to which monovalent ligand units are attached via flexible linker polymers, closely mimicking existing experimental designs. The calculated binding affinities quantitatively agree with experimental studies for cholera toxin ( n = 5) and anthrax receptor ( n = 7) and allow to predict optimal core size and optimal linker length. Maximal binding affinity is achieved for a core that matches the receptor size and for linkers that have an equilibrium end-to-end distance that is slightly longer than the geometric separation between ligand core and receptor sites. Linkers that are longer than optimal are greatly preferable compared to shorter linkers. The angular steric restriction between ligand unit and linker polymer is shown to be a key parameter. We construct an enhancement diagram that quantifies the multivalent binding affinity compared to monovalent ligands. We conclude that multivalent ligands against influenza viral hemagglutinin ( n = 3), cholera toxin ( n = 5), and anthrax receptor ( n = 7) can outperform monovalent ligands only for a monovalent ligand affinity that exceeds a core-size dependent threshold value. Thus, multivalent drug design needs to balance core size, linker length, as well as monovalent ligand unit affinity.
Collapse
Affiliation(s)
- Susanne Liese
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
- Department of Mathematics , University of Oslo , 0851 Oslo , Norway
| | - Roland R Netz
- Department of Physics , Freie Universität Berlin , 14195 Berlin , Germany
| |
Collapse
|
19
|
Ding HM, Ma YQ. Computational approaches to cell-nanomaterial interactions: keeping balance between therapeutic efficiency and cytotoxicity. NANOSCALE HORIZONS 2018; 3:6-27. [PMID: 32254106 DOI: 10.1039/c7nh00138j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Owing to their unique properties, nanomaterials have been widely used in biomedicine since they have obvious inherent advantages over traditional ones. However, nanomaterials may also cause dysfunction in proteins, genes and cells, resulting in cytotoxic and genotoxic responses. Recently, more and more attention has been paid to these potential toxicities of nanomaterials, especially to the risks of nanomaterials to human health and safety. Therefore, when using nanomaterials for biomedical applications, it is of great importance to keep the balance between therapeutic efficiency and cytotoxicity (i.e., increase the therapeutic efficiency as well as decrease the potential toxicity). This requires a deeper understanding of the interactions between various types of nanomaterials and biological systems at the nano/bio interface. In this review, from the point of view of theoretical researchers, we will present the current status regarding the physical mechanism of cytotoxicity caused by nanomaterials, mainly based on recent simulation results. In addition, the strategies for minimizing the nanotoxicity naturally and artificially will also be discussed in detail. Furthermore, we should notice that toxicity is not always bad for clinical use since causing the death of specific cells is the main way of treating disease. Enhancing the targeting ability of nanomaterials to diseased cells and minimizing their side effects on normal cells will always be hugely challenging issues in nanomedicine. By combining the latest computational studies with some experimental verifications, we will provide special insights into recent advances regarding these problems, especially for the design of novel environment-responsive nanomaterials.
Collapse
Affiliation(s)
- Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | | |
Collapse
|
20
|
Li Y, Lin J, Ma J, Song L, Lin H, Tang B, Chen D, Su G, Ye S, Zhu X, Luo F, Hou Z. Methotrexate-Camptothecin Prodrug Nanoassemblies as a Versatile Nanoplatform for Biomodal Imaging-Guided Self-Active Targeted and Synergistic Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34650-34665. [PMID: 28920426 DOI: 10.1021/acsami.7b10027] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
"All-in-one" carrier-free-based nano-multi-drug self-delivery system could combine triple advantages of small molecules, nanoscale characteristics, and synergistic combination therapy together. Researches have showed that dual-acting small-molecular methotrexate (MTX) could target and kill the folate-receptor-overexpressing cancer cells. Inspired by this mechanism, a novel collaborative early-phase tumor-selective targeting and late-phase synergistic anticancer approach was developed for the self-assembly of chemotherapeutic drug-drug conjugate, which showed various advantages of more simplicity, efficiency, and flexibility over the conventional approach based only on single or combination cancer chemotherapy. MTX and 10-hydroxyl camptothecin (CPT) were chosen to conjugate through ester linkage. Because of the amphiphilicity and ionicity, MTX-CPT conjugates as molecular building blocks could self-assemble into MTX-CPT nanoparticles (MTX-CPT NPs) in aqueous solution, thus notably improving the aqueous solubility of CPT and the membrane permeability of MTX. The MTX-CPT NPs with a precise drug-to-drug ratio showed pH-/esterase-responsive drug release, sequential function "Targeting-Anticancer" switch, and real-time monitoring fluorescence "Off-On" switch. By doping with a lipophilic near-infrared (NIR) cyanine dye (e.g., 1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, DiR), the prepared DiR-loaded MTX-CPT NPs acted as an effective probe for in vivo NIR fluorescence (NIRF) and photoacoustic (PA) dual-modal imaging. Both in vitro and in vivo studies demonstrated that MTX-CPT NPs could specifically codeliver multidrug to different sites of action with distinct anticancer mechanisms to kill folate-receptor-overexpressing tumor cells in a synergistic way. This novel, simple, and highly convergent self-targeting nanomulti-drug codelivery system exhibited great potential in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bowen Tang
- College of Pharmacy, Western University of Health Science , Pomona, California 91766, United States
| | | | - Guanghao Su
- Children's Hospital of Soochow University , Suzhou 215025, PR China
| | | | | | | | | |
Collapse
|
21
|
Wang M, Ravindranath SR, Rahim MK, Botvinick EL, Haun JB. Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13124-13136. [PMID: 27797529 PMCID: PMC5321555 DOI: 10.1021/acs.langmuir.6b03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeted delivery of nanoparticle carriers holds tremendous potential to transform the detection and treatment of diseases. A major attribute of nanoparticles is the ability to form multiple bonds with target cells, which greatly improves the adhesion strength. However, the multivalent binding of nanoparticles is still poorly understood, particularly from a dynamic perspective. In previous experimental work, we studied the kinetics of nanoparticle adhesion and found that the rate of detachment decreased over time. Here, we have applied the adhesive dynamics simulation framework to investigate binding dynamics between an antibody-conjugated, 200-nm-diameter sphere and an ICAM-1-coated surface on the scale of individual bonds. We found that nano adhesive dynamics (NAD) simulations could replicate the time-varying nanoparticle detachment behavior that we observed in experiments. As expected, this behavior correlated with a steady increase in mean bond number with time, but this was attributed to bond accumulation only during the first second that nanoparticles were bound. Longer-term increases in bond number instead were manifested from nanoparticle detachment serving as a selection mechanism to eliminate nanoparticles that had randomly been confined to lower bond valencies. Thus, time-dependent nanoparticle detachment reflects an evolution of the remaining nanoparticle population toward higher overall bond valency. We also found that NAD simulations precisely matched experiments whenever mechanical force loads on bonds were high enough to directly induce rupture. These mechanical forces were in excess of 300 pN and primarily arose from the Brownian motion of the nanoparticle, but we also identified a valency-dependent contribution from bonds pulling on each other. In summary, we have achieved excellent kinetic consistency between NAD simulations and experiments, which has revealed new insights into the dynamics and biophysics of multivalent nanoparticle adhesion. In future work, we will leverage the simulation as a design tool for optimizing targeted nanoparticle agents.
Collapse
Affiliation(s)
- Mingqiu Wang
- Department of Biomedical Engineering, University of California—Irvine, Irvine, California 92697, United States
| | - Shreyas R. Ravindranath
- Department of Biomedical Engineering, University of California—Irvine, Irvine, California 92697, United States
| | - Maha K. Rahim
- Department of Biomedical Engineering, University of California—Irvine, Irvine, California 92697, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California—Irvine, Irvine, California 92697, United States
- Department of Surgery, School of Medicine, University of California—Irvine, Irvine, California 92697, United States
- Chao Family Comprehensive Cancer Center, University of California—Irvine, Irvine, California 92697, United States
- Beckman Laser Institute, University of California—Irvine, Irvine, California 92697, United States
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California—Irvine, Irvine, California 92697, United States
| | - Jered B. Haun
- Department of Biomedical Engineering, University of California—Irvine, Irvine, California 92697, United States
- Department of Chemical Engineering and Materials Science, University of California—Irvine, Irvine, California 92697, United States
- Chao Family Comprehensive Cancer Center, University of California—Irvine, Irvine, California 92697, United States
| |
Collapse
|
22
|
Lebouille JGJL, Leermakers FAM, Cohen Stuart MA, Tuinier R. Design of block-copolymer-based micelles for active and passive targeting. Phys Rev E 2016; 94:042503. [PMID: 27841591 DOI: 10.1103/physreve.94.042503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Indexed: 01/20/2023]
Abstract
A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the same chemistry is taken to coassemble into these micelles. At the end of the hydrophilic block of the diblock copolymers, a targeting moiety (TM) is present. Assuming that the rotation of the micelle towards the target is sufficiently fast, we can elaborate a single gradient cell model, wherein the micelle is in the center and the receptor (R) substrate exists on the outer plane of the spherical coordinate system. The distribution function of the targeting moiety corresponds to a Landau free energy with local minima and corresponding maxima. The lowest minimum, which is the ground state, shifts from within the micelle to the adsorbing state upon bringing the substrate closer to the micelle, implying a jumplike translocation of the targeting moiety. Equally deep minima represent the binodal of the phase transition, which is, due to the finite chain length, first-order like. The maximum in-between the two relevant minima implies that there is an activation barrier for the targeting moiety to reach the receptor surface. We localize the parameter space wherein the targeting moiety is (when the micelle is far from the target) preferably hidden in the stealthy hydrophilic corona of the micelle, which is desirable to avoid undesired immune responses, and still can jump out of the corona to reach the target quick enough, that is, when the barrier height is sufficiently low. The latter requirement may be identified by a spinodal condition. We found that such hidden TMs can still establish a TM-R contact at distances up to twice the corona size. The translocation transition will work best when the affinity of the TM for the core is avoided and when hydrophilic TMs are selected.
Collapse
Affiliation(s)
| | - Frans A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 7608 WE Wageningen, the Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 7608 WE Wageningen, the Netherlands.,Physics of Complex Fluids, Department of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.,Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute & Debye Institute, Padualaan 8, 3584 CH, Utrecht University, the Netherlands
| |
Collapse
|
23
|
Huang HZ, Chen YH, Yu WC, Luo KF. Superselective Adsorption of Multivalent Polymer Chains to a Surface with Receptors. CHINESE J CHEM PHYS 2016. [DOI: 10.1063/1674-0068/29/cjcp1603060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Pillai PP, Kowalczyk B, Kandere-Grzybowska K, Borkowska M, Grzybowski BA. Engineering Gram Selectivity of Mixed-Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angew Chem Int Ed Engl 2016; 55:8610-4. [PMID: 27253138 DOI: 10.1002/anie.201602965] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 12/14/2022]
Abstract
Nanoparticles covered with ligand shells comprising both positively and negatively charged ligands exhibit Gram-selective antibacterial action controlled by a single experimental parameter, namely the proportion of [+] and [-] ligands tethered onto these particles. Gram selectivity is attributed to the interplay between polyvalent electrostatic and non-covalent interactions that work in unison to disrupt the bacterial cell wall. The [+/-] nanoparticles are effective in low doses, are non-toxic to mammalian cells, and are tolerated well in mice. These results constitute the first example of rational engineering of Gram selectivity at the (macro)molecular level.
Collapse
Affiliation(s)
- Pramod P Pillai
- Department of Chemistry and Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Bartlomiej Kowalczyk
- Department of Chemistry and Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Kristiana Kandere-Grzybowska
- IBS Center for Soft and Living Matter and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Magdalena Borkowska
- IBS Center for Soft and Living Matter and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Bartosz A Grzybowski
- IBS Center for Soft and Living Matter and Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
| |
Collapse
|
25
|
Pillai PP, Kowalczyk B, Kandere‐Grzybowska K, Borkowska M, Grzybowski BA. Engineering Gram Selectivity of Mixed‐Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602965] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pramod P. Pillai
- Department of Chemistry and Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Bartlomiej Kowalczyk
- Department of Chemistry and Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Kristiana Kandere‐Grzybowska
- IBS Center for Soft and Living Matter and Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Magdalena Borkowska
- IBS Center for Soft and Living Matter and Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| | - Bartosz A. Grzybowski
- IBS Center for Soft and Living Matter and Department of Chemistry Ulsan National Institute of Science and Technology (UNIST) Ulsan South Korea
| |
Collapse
|
26
|
Seras-Franzoso J, Sánchez-Chardi A, Garcia-Fruitós E, Vázquez E, Villaverde A. Cellular uptake and intracellular fate of protein releasing bacterial amyloids in mammalian cells. SOFT MATTER 2016; 12:3451-3460. [PMID: 26956912 DOI: 10.1039/c5sm02930a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bacterial Inclusion Bodies (IBs) are amyloidal protein deposits that functionally mimic secretory granules from the endocrine system. When formed by therapeutically relevant proteins, they complement missing intracellular activities in jeopardized cell cultures, offering an intriguing platform for protein drug delivery in substitutive therapies. Despite the therapeutic potential of IBs, their capability to interact with eukaryotic cells, cross the cell membrane and release their functional building blocks into the cytosolic space remains essentially unexplored. We have systematically dissected the process by which bacterial amyloids interact with mammalian cells. An early and tight cell membrane anchorage of IBs is followed by cellular uptake of single or grouped IBs of variable sizes by macropinocytosis. Although an important fraction of the penetrating particles is led to lysosomal degradation, biologically significant amounts of protein are released into the cytosol. In addition, our data suggest the involvement of the bacterial cell folding modulator DnaK in the release of functional proteins from these amyloidal reservoirs. The mechanisms supporting the internalization of disintegrable protein nanoparticles revealed here offer clues to implement novel approaches for protein drug delivery based on controlled protein packaging as bacterial IBs.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
27
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
28
|
Li Y, Lian Y, Zhang LT, Aldousari SM, Hedia HS, Asiri SA, Liu WK. Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles. Interface Focus 2016; 6:20150086. [PMID: 26855759 DOI: 10.1098/rsfs.2015.0086] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Through nanomedicine, game-changing methods are emerging to deliver drug molecules directly to diseased areas. One of the most promising of these is the targeted delivery of drugs and imaging agents via drug carrier-based platforms. Such drug delivery systems can now be synthesized from a wide range of different materials, made in a number of different shapes, and coated with an array of different organic molecules, including ligands. If optimized, these systems can enhance the efficacy and specificity of delivery compared with those of non-targeted systems. Emerging integrated multiscale experiments, models and simulations have opened the door for endless medical applications. Current bottlenecks in design of the drug-carrying particles are the lack of knowledge about the dispersion of these particles in the microvasculature and of their subsequent internalization by diseased cells (Bao et al. 2014 J. R. Soc. Interface 11, 20140301 (doi:10.1098/rsif.2014.0301)). We describe multiscale modelling techniques that study how drug carriers disperse within the microvasculature. The immersed molecular finite-element method is adopted to simulate whole blood including blood plasma, red blood cells and nanoparticles. With a novel dissipative particle dynamics method, the beginning stages of receptor-driven endocytosis of nanoparticles can be understood in detail. Using this multiscale modelling method, we elucidate how the size, shape and surface functionality of nanoparticles will affect their dispersion in the microvasculature and subsequent internalization by targeted cells.
Collapse
Affiliation(s)
- Ying Li
- Department of Mechanical Engineering and Institute of Materials Science , University of Connecticut , Storrs, CT 06269 , USA
| | - Yanping Lian
- Department of Mechanical Engineering , Northwestern University , Evanston, IL 60201 , USA
| | - Lucy T Zhang
- Department of Mechanical, Aerospace and Nuclear Engineering , Rensselaer Polytechnic Institute , Troy, NY 12189 , USA
| | - Saad M Aldousari
- Department of Mechanical Engineering , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Hassan S Hedia
- Department of Mechanical Engineering , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Saeed A Asiri
- Department of Mechanical Engineering , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60201, USA; Distinguished Scientists Program Committee, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
van der Meulen SAJ, Helms G, Dogterom M. Solid colloids with surface-mobile linkers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233101. [PMID: 25993272 DOI: 10.1088/0953-8984/27/23/233101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.
Collapse
|
30
|
Liese S, Netz RR. Influence of length and flexibility of spacers on the binding affinity of divalent ligands. Beilstein J Org Chem 2015; 11:804-16. [PMID: 26124882 PMCID: PMC4464470 DOI: 10.3762/bjoc.11.90] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 11/23/2022] Open
Abstract
We present a quantitative model for the binding of divalent ligand–receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.
Collapse
Affiliation(s)
- Susanne Liese
- Fachbereich für Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich für Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
31
|
Ding HM, Ma YQ. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1055-71. [PMID: 25387905 DOI: 10.1002/smll.201401943] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/05/2014] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, nanoparticles have been widely used in many applications such as phototherapy, cell imaging, and drug/gene delivery. A better understanding of how nanoparticles interact with bio-system (especially cells) is of great importance for their potential biomedical applications. In this review, the current status and perspective of theoretical and computational investigations is presented on the nanoparticle-biomembrane interactions in cellular delivery. In particular, the determining parameters (including the properties of nanoparticles, cell membranes and environments) that govern the cellular uptake of nanoparticles (direct penetration and endocytosis) are discussed. Further, some special attention is paid to their interactions beyond the translocation of nanoparticles across membranes (e.g., nanoparticles escaping from endosome and entering into nucleus). Finally, a summary is given, and the challenging problems of this field in the future are identified.
Collapse
Affiliation(s)
- Hong-ming Ding
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
| | | |
Collapse
|
32
|
Li Z, Gorfe AA. Receptor-mediated membrane adhesion of lipid-polymer hybrid (LPH) nanoparticles studied by dissipative particle dynamics simulations. NANOSCALE 2015; 7:814-824. [PMID: 25438167 PMCID: PMC5048752 DOI: 10.1039/c4nr04834b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lipid-polymer hybrid (LPH) nanoparticles represent a novel class of targeted drug delivery platforms that combine the advantages of liposomes and biodegradable polymeric nanoparticles. However, the molecular details of the interaction between LPHs and their target cell membranes remain poorly understood. We have investigated the receptor-mediated membrane adhesion process of a ligand-tethered LPH nanoparticle using extensive dissipative particle dynamics (DPD) simulations. We found that the spontaneous adhesion process follows a first-order kinetics characterized by two distinct stages: a rapid nanoparticle-membrane engagement, followed by a slow growth in the number of ligand-receptor pairs coupled with structural re-organization of both the nanoparticle and the membrane. The number of ligand-receptor pairs increases with the dynamic segregation of ligands and receptors toward the adhesion zone causing an out-of-plane deformation of the membrane. Moreover, the fluidity of the lipid shell allows for strong nanoparticle-membrane interactions to occur even when the ligand density is low. The LPH-membrane avidity is enhanced by the increased stability of each receptor-ligand pair due to the geometric confinement and the cooperative effect arising from multiple binding events. Thus, our results reveal the unique advantages of LPH nanoparticles as active cell-targeting nanocarriers and provide some general principles governing nanoparticle-cell interactions that may aid future design of LPHs with improved affinity and specificity for a given target of interest.
Collapse
|
33
|
Luo F, Li Y, Jia M, Cui F, Wu H, Yu F, Lin J, Yang X, Hou Z, Zhang Q. Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro. NANOSCALE RESEARCH LETTERS 2014; 9:363. [PMID: 25114653 PMCID: PMC4118220 DOI: 10.1186/1556-276x-9-363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/18/2014] [Indexed: 05/31/2023]
Abstract
Recently, methotrexate (MTX) has been used to target to folate (FA) receptor-overexpressing cancer cells for targeted drug delivery. However, the systematic evaluation of MTX as a Janus-like agent has not been reported before. Here, we explored the validity of using MTX playing an early-phase cancer-specific targeting ligand cooperated with a late-phase therapeutic anticancer agent based on the PEGylated chitosan (CS) nanoparticles (NPs) as drug carriers. Some advantages of these nanoscaled drug delivery systems are as follows: (1) the NPs can ensure minimal premature release of MTX at off-target site to reduce the side effects to normal tissue; (2) MTX can function as a targeting ligand at target site prior to cellular uptake; and (3) once internalized by the target cell, the NPs can function as a prodrug formulation, releasing biologically active MTX inside the cells. The (MTX + PEG)-CS-NPs presented a sustained/proteases-mediated drug release. More importantly, compared with the PEG-CS-NPs and (FA + PEG)-CS-NPs, the (MTX + PEG)-CS-NPs showed a greater cellular uptake. Furthermore, the (MTX + PEG)-CS-NPs demonstrated a superior cytotoxicity compare to the free MTX. Our findings therefore validated that the MTX-loaded PEGylated CS-NPs can simultaneously target and treat FA receptor-overexpressing cancer cells.
Collapse
Affiliation(s)
- Fanghong Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
- Cancer Research Center, Medical College, Xiamen University, Xiamen 361005, China
| | - Yang Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Mengmeng Jia
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Fei Cui
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Hongjie Wu
- Department of Pharmacy, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361002, China
| | - Fei Yu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinyan Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Xiangrui Yang
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of Biomaterials and Research Center of Biochemical Engineering, College of Materials, Xiamen University, Xiamen 361005, China
| | - Qiqing Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
34
|
Rabanel JM, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 2014; 185:71-87. [DOI: 10.1016/j.jconrel.2014.04.017] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
|
35
|
Nap R, Szleifer I. How to Optimize Binding of Coated Nanoparticles: Coupling of Physical Interactions, Molecular Organization and Chemical State. Biomater Sci 2013; 1:814-823. [PMID: 23930222 PMCID: PMC3733403 DOI: 10.1039/c3bm00181d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
One of the key challenges in the development of nano carriers for drug delivery and imaging is the design of a system that selectively binds to target cells. A common strategy is to coat the delivery device with specific ligands that bind strongly to overexpressed receptors. However such devices are usually unable to discriminate between receptors found on benign and malignant cells. We demonstrate, theoretically, how one can achieve enhanced binding to target cells by using multiple physical and chemical interactions. We study the effective interactions between a polymer decorated nano micelle or nanoparticle with three types of model lipid membranes that differ in the composition of their outer leaflet. They are: i) lipid membranes with overexpressed receptors, ii) membranes with a given fraction of negatively charged lipids and iii) membranes with both overexpressed receptors and negatively charged lipids. The coating contains a mixtures of two short polymers, one neutral for protection and the other a polybase with a functional end-group to optimize specific binding with the overexpressed receptors and electrostatic interactions with charged lipid head-groups. The strength of the binding for the combined system is much larger than the sum of the independent electrostatic or specific interactions binding. We find a range of distances where the addition of two effective repulsive interactions become an attraction in the combined case. The changes in the strength and shape of the effective interaction are due to the coupling that exists between molecular organization, physical interactions and chemical state, e.g., protonation. The predictions provide guidelines for the design of carrier devices for targeted drug and nanoparticle delivery and give insight in the competing and highly non-additive nature of the different effective interactions in nanoscale systems in constrained environments that are ubiquitous in synthetic and biological systems.
Collapse
Affiliation(s)
| | - I. Szleifer
- Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3100, United States
| |
Collapse
|