1
|
Dietz B, Klaus T, Masi M, Miski-Oglu M, Richter A, Skipa T, Wunderle M. Closed and open superconducting microwave waveguide networks as a model for quantum graphs. Phys Rev E 2024; 109:034201. [PMID: 38632749 DOI: 10.1103/physreve.109.034201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/08/2024] [Indexed: 04/19/2024]
Abstract
We report on high-precision measurements that were performed with superconducting waveguide networks with the geometry of a tetrahedral and a honeycomb graph. They consist of junctions of valency three that connect straight rectangular waveguides of equal width but incommensurable lengths. The experiments were performed in the frequency range of a single transversal mode, where the associated Helmholtz equation is effectively one-dimensional and waveguide networks may serve as models of quantum graphs with the joints and waveguides corresponding to the vertices and bonds. The tetrahedral network comprises T junctions, while the honeycomb network exclusively consists of Y junctions, that join waveguides with relative angles 90^{∘} and 120^{∘}, respectively. We demonstrate that the vertex scattering matrix, which describes the propagation of the modes through the junctions, strongly depends on frequency and is nonsymmetric at a T junction and thus differs from that of a quantum graph with Neumann boundary conditions at the vertices. On the other hand, at a Y junction, similarity can be achieved in a certain frequency range. We investigate the spectral properties of closed waveguide networks and fluctuation properties of the scattering matrix of open ones and find good agreement with random matrix theory predictions for the honeycomb waveguide graph.
Collapse
Affiliation(s)
- Barbara Dietz
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Basic Science Program, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tobias Klaus
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Marco Masi
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Maksym Miski-Oglu
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - Achim Richter
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - Tatjana Skipa
- Darmstadt University of Applied Sciences, D-64295 Darmstadt, Germany
| | - Marcus Wunderle
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| |
Collapse
|
2
|
Wang CZ, Kononchuk R, Kuhl U, Kottos T. Loss-Induced Violation of the Fundamental Transmittance-Asymmetry Bound in Nonlinear Complex Wave Systems. PHYSICAL REVIEW LETTERS 2023; 131:123801. [PMID: 37802952 DOI: 10.1103/physrevlett.131.123801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a fundamental bound dictating that the maximum transmittance asymmetry is inversely proportional to the asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom, we show that the implementation of losses can lead to an increase of the AIR without deteriorating the AT. We develop a general theory that provides a new upper bound for AT in nonlinear complex systems and highlights the importance of their structural complexity and of losses. Our predictions are confirmed numerically and experimentally using a microwave complex network of coaxial cables.
Collapse
Affiliation(s)
- Cheng-Zhen Wang
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Rodion Kononchuk
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Ulrich Kuhl
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), 06200, Nice, France
| | - Tsampikos Kottos
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
3
|
Ławniczak M, Akhshani A, Farooq O, Białous M, Bauch S, Dietz B, Sirko L. Distributions of the Wigner reaction matrix for microwave networks with symplectic symmetry in the presence of absorption. Phys Rev E 2023; 107:024203. [PMID: 36932527 DOI: 10.1103/physreve.107.024203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023]
Abstract
We report on experimental studies of the distribution of the reflection coefficients, and the imaginary and real parts of Wigner's reaction (K) matrix employing open microwave networks with symplectic symmetry and varying size of absorption. The results are compared to analytical predictions derived for the single-channel scattering case within the framework of random-matrix theory (RMT). Furthermore, we performed Monte Carlo simulations based on the Heidelberg approach for the scattering (S) and K matrix of open quantum-chaotic systems and the two-point correlation function of the S-matrix elements. The analytical results and the Monte Carlo simulations depend on the size of absorption. To verify them, we performed experiments with microwave networks for various absorption strengths. We show that deviations from RMT predictions observed in the spectral properties of the corresponding closed quantum graph and attributed to the presence of nonuniversal short periodic orbits does not have any visible effects on the distributions of the reflection coefficients and the K and S matrices associated with the corresponding open quantum graph.
Collapse
Affiliation(s)
- Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Afshin Akhshani
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Omer Farooq
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China.,Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
4
|
Zhang W, Zhang X, Che J, Lu J, Miski-Oglu M, Dietz B. Experimental study of closed and open microwave waveguide graphs with preserved and partially violated time-reversal invariance. Phys Rev E 2022; 106:044209. [PMID: 36397497 DOI: 10.1103/physreve.106.044209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
We report on experiments that were performed with microwave waveguide systems and demonstrate that in the frequency range of a single transversal mode they may serve as a model for closed and open quantum graphs. These consist of bonds that are connected at vertices. On the bonds, they are governed by the one-dimensional Schrödinger equation with boundary conditions imposed at the vertices. The resulting transport properties through the vertices may be expressed in terms of a vertex scattering matrix. Quantum graphs with incommensurate bond lengths attracted interest within the field of quantum chaos because, depending on the characteristics of the vertex scattering matrix, its wave dynamic may exhibit features of a typical quantum system with chaotic counterpart. In distinction to microwave networks, which serve as an experimental model of quantum graphs with Neumann boundary conditions, the vertex scattering matrices associated with a waveguide system depend on the wave number and the wave functions can be determined experimentally. We analyze the spectral properties of microwave waveguide systems with preserved and partially violated time-reversal invariance, and the properties of the associated wave functions. Furthermore, we study properties of the scattering matrix describing the measurement process within the framework of random matrix theory for quantum chaotic scattering systems.
Collapse
Affiliation(s)
- Weihua Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Xiaodong Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junjie Lu
- Institut de Physique de Nice, CNRS UMR 7010, Université Côte d'Azur, 06108 Nice, France
| | - M Miski-Oglu
- GSI Helmholtzzentrum für Schwerionenforschung GmbH D-64291 Darmstadt, Germany
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| |
Collapse
|
5
|
Che J, Zhang X, Zhang W, Dietz B, Chai G. Fluctuation properties of the eigenfrequencies and scattering matrix of closed and open unidirectional graphs with chaotic wave dynamics. Phys Rev E 2022; 106:014211. [PMID: 35974604 DOI: 10.1103/physreve.106.014211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
We present experimental and numerical results for the fluctuation properties in the eigenfrequency spectra and of the scattering matrix of closed and open unidirectional quantum graphs, respectively. Unidirectional quantum graphs, that are composed of bonds connected by reflectionless vertices, were introduced by Akila and Gutkin [Akila and Gutkin, J. Phys. A: Math. Theor. 48, 345101 (2015)1751-811310.1088/1751-8113/48/34/345101]. The nearest-neighbor spacing distribution of their eigenvalues was shown to comply with random-matrix theory predictions for typical chaotic systems with completely violated time-reversal invariance. The occurrence of short periodic orbits confined to a fraction of the system, that lead in conventional quantum graphs to deviations of the long-range spectral correlations from the behavior expected for typical chaotic systems, is suppressed in unidirectional ones. Therefore, we pose the question whether such graphs may serve as a more appropriate model for closed and open chaotic systems with violated time-reversal invariance than conventional ones. We compare the fluctuation properties of their eigenvalues and scattering matrix elements and observe especially in the long-range correlations larger deviations from random-matrix theory predictions for the unidirectional graphs. These are attributed to a loss of complexity of the underlying dynamic, induced by the unidirectionality.
Collapse
Affiliation(s)
- Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaodong Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Weihua Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
- Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Guozhi Chai
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Hofmann T, Lu J, Kuhl U, Stöckmann HJ. Spectral duality in graphs and microwave networks. Phys Rev E 2021; 104:045211. [PMID: 34781486 DOI: 10.1103/physreve.104.045211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Quantum graphs and their experimental counterparts, microwave networks, are ideally suited to study the spectral statistics of chaotic systems. The graph spectrum is obtained from the zeros of a secular determinant derived from energy and charge conservation. Depending on the boundary conditions at the vertices, there are Neumann and Dirichlet graphs. The first ones are realized in experiments, since the standard junctions connecting the bonds obey Neumann boundary conditions due to current conservation. On average, the corresponding Neumann and Dirichlet eigenvalues alternate as a function of the wave number, with the consequence that the Neumann spectrum is described by random matrix theory only locally, but adopts features of the interlacing Dirichlet spectrum for long-range correlations. Another spectral interlacing is found for the Green's function, which in contrast to the secular determinant is experimentally accessible. This is illustrated by microwave studies and numerics.
Collapse
Affiliation(s)
- Tobias Hofmann
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Junjie Lu
- Institut de Physique de Nice, CNRS, Université Côte d'Azur, 06108 Nice, France, European Union
| | - Ulrich Kuhl
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany.,Institut de Physique de Nice, CNRS, Université Côte d'Azur, 06108 Nice, France, European Union
| | | |
Collapse
|
7
|
Bereczuk A, Dietz B, Che J, Kuipers J, Urbina JD, Richter K. Universal S-matrix correlations for complex scattering of wave packets in noninteracting many-body systems: Theory, simulation, and experiment. Phys Rev E 2021; 103:052209. [PMID: 34134298 DOI: 10.1103/physreve.103.052209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
We present an in-depth study of the universal correlations of scattering-matrix entries required in the framework of nonstationary many-body scattering of noninteracting indistinguishable particles where the incoming states are localized wave packets. Contrary to the stationary case, the emergence of universal signatures of chaotic dynamics in dynamical observables manifests itself in the emergence of universal correlations of the scattering matrix at different energies. We use a semiclassical theory based on interfering paths, numerical wave function based simulations, and numerical averaging over random-matrix ensembles to calculate such correlations and compare with experimental measurements in microwave graphs, finding excellent agreement. Our calculations show that the universality of the correlators survives the extreme limit of few open channels relevant for electron quantum optics, albeit at the price of dealing with large-cancellation effects requiring the computation of a large class of semiclassical diagrams.
Collapse
Affiliation(s)
- Andreas Bereczuk
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou, 730000 Gansu, China
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Juan-Diego Urbina
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
8
|
Che J, Lu J, Zhang X, Dietz B, Chai G. Missing-level statistics in classically chaotic quantum systems with symplectic symmetry. Phys Rev E 2021; 103:042212. [PMID: 34005854 DOI: 10.1103/physreve.103.042212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 11/07/2022]
Abstract
We present experimental and theoretical results for the fluctuation properties in the incomplete spectra of quantum systems with symplectic symmetry and a chaotic dynamics in the classical limit. To obtain theoretical predictions, we extend the random-matrix theory (RMT) approach introduced in Bohigas and Pato [O. Bohigas and M. P. Pato, Phys. Rev. E 74, 036212 (2006)PLEEE81539-375510.1103/PhysRevE.74.036212] for incomplete spectra of quantum systems with orthogonal symmetry. We validate these RMT predictions by randomly extracting a fraction of levels from complete sequences obtained numerically for quantum graphs and experimentally for microwave networks with symplectic symmetry and then apply them to incomplete experimental spectra to demonstrate their applicability. Independently of their symmetry class, quantum graphs exhibit nongeneric features which originate from nonuniversal contributions. Part of the associated eigenfrequencies can be identified in the level dynamics of parameter-dependent quantum graphs and extracted, thereby yielding spectra with systematically missing eigenfrequencies. We demonstrate that, even though the RMT approach relies on the assumption that levels are missing at random, it is possible to determine the fraction of missing levels and assign the appropriate symmetry class by comparison of their fluctuation properties with the RMT predictions.
Collapse
Affiliation(s)
- Jiongning Che
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junjie Lu
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China.,Institut de Physique de Nice, CNRS UMR 7010, Université Côte d'Azur, 06108 Nice, France
| | - Xiaodong Zhang
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Barbara Dietz
- Lanzhou Center for Theoretical Physics and the Gansu Provincial Key Laboratory of Theoretical Physics, Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guozhi Chai
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Chen L, Kottos T, Anlage SM. Perfect absorption in complex scattering systems with or without hidden symmetries. Nat Commun 2020; 11:5826. [PMID: 33203847 PMCID: PMC7673030 DOI: 10.1038/s41467-020-19645-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Wavefront shaping (WFS) schemes for efficient energy deposition in weakly lossy targets is an ongoing challenge for many classical wave technologies relevant to next-generation telecommunications, long-range wireless power transfer, and electromagnetic warfare. In many circumstances these targets are embedded inside complicated enclosures which lack any type of (geometric or hidden) symmetry, such as complex networks, buildings, or vessels, where the hypersensitive nature of multiple interference paths challenges the viability of WFS protocols. We demonstrate the success of a general WFS scheme, based on coherent perfect absorption (CPA) electromagnetic protocols, by utilizing a network of coupled transmission lines with complex connectivity that enforces the absence of geometric symmetries. Our platform allows for control of the local losses inside the network and of the violation of time-reversal symmetry via a magnetic field; thus establishing CPA beyond its initial concept as the time-reversal of a laser cavity, while offering an opportunity for better insight into CPA formation via the implementation of semiclassical tools.
Collapse
Affiliation(s)
- Lei Chen
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Tsampikos Kottos
- Wave Transport in Complex Systems Lab, Department of Physics, Wesleyan University, Middletown, CT, 06459, USA
| | - Steven M Anlage
- Quantum Materials Center, Department of Physics, University of Maryland, College Park, MD, 20742, USA.
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Lu J, Che J, Zhang X, Dietz B. Experimental and numerical investigation of parametric spectral properties of quantum graphs with unitary or symplectic symmetry. Phys Rev E 2020; 102:022309. [PMID: 32942473 DOI: 10.1103/physreve.102.022309] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022]
Abstract
We present experimental and numerical results for the parametric fluctuation properties in the spectra of classically chaotic quantum graphs with unitary or symplectic symmetry. A level dynamics is realized by changing the lengths of a few bonds parametrically. The long-range correlations in the spectra reveal at a fixed parameter value deviations from those expected for generic chaotic systems with corresponding universality class. They originate from modes which are confined to individual bonds or explore only a fraction of the quantum graph. Similarly, discrepancies are observed in the avoided-crossing distribution, velocity correlation function, and the curvature distribution of the level dynamics which also may be attributed to such localized modes. We demonstrate that these may be easily identified by inspecting the level dynamics and consequently their nonuniversal contributions to the parametric spectral properties may be diminished considerably. This is corroborated by numerical studies.
Collapse
Affiliation(s)
- Junjie Lu
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jiongning Che
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaodong Zhang
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Barbara Dietz
- School of Physical Science and Technology, and Key Laboratory for Magnetism and Magnetic Materials of MOE, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
11
|
Dietz B, Yunko V, Białous M, Bauch S, Ławniczak M, Sirko L. Nonuniversality in the spectral properties of time-reversal-invariant microwave networks and quantum graphs. Phys Rev E 2017; 95:052202. [PMID: 28618543 DOI: 10.1103/physreve.95.052202] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Indexed: 11/06/2022]
Abstract
We present experimental and numerical results for the long-range fluctuation properties in the spectra of quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are generally believed to provide an ideal basis for the experimental study of problems originating from the field of quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order to corroborate our supposition, we performed numerous experimental and corresponding numerical studies of long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.
Collapse
Affiliation(s)
- Barbara Dietz
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| | - Vitalii Yunko
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| | - Małgorzata Białous
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| | - Szymon Bauch
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| | - Michał Ławniczak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| | - Leszek Sirko
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
12
|
Ericson TEO, Dietz B, Richter A. Cross-section fluctuations in chaotic scattering systems. Phys Rev E 2016; 94:042207. [PMID: 27841614 DOI: 10.1103/physreve.94.042207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 11/07/2022]
Abstract
Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.
Collapse
Affiliation(s)
| | - Barbara Dietz
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany.,Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warzawa, Poland
| | - Achim Richter
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| |
Collapse
|
13
|
Gnutzmann S, Waltner D. Stationary waves on nonlinear quantum graphs: General framework and canonical perturbation theory. Phys Rev E 2016; 93:032204. [PMID: 27078341 DOI: 10.1103/physreve.93.032204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Indexed: 11/07/2022]
Abstract
In this paper we present a general framework for solving the stationary nonlinear Schrödinger equation (NLSE) on a network of one-dimensional wires modeled by a metric graph with suitable matching conditions at the vertices. A formal solution is given that expresses the wave function and its derivative at one end of an edge (wire) nonlinearly in terms of the values at the other end. For the cubic NLSE this nonlinear transfer operation can be expressed explicitly in terms of Jacobi elliptic functions. Its application reduces the problem of solving the corresponding set of coupled ordinary nonlinear differential equations to a finite set of nonlinear algebraic equations. For sufficiently small amplitudes we use canonical perturbation theory, which makes it possible to extract the leading nonlinear corrections over large distances.
Collapse
Affiliation(s)
- Sven Gnutzmann
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Daniel Waltner
- Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47048 Duisburg, Germany
| |
Collapse
|
14
|
Dietz B, Richter A. Quantum and wave dynamical chaos in superconducting microwave billiards. CHAOS (WOODBURY, N.Y.) 2015; 25:097601. [PMID: 26428554 DOI: 10.1063/1.4915527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.
Collapse
Affiliation(s)
- B Dietz
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - A Richter
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| |
Collapse
|
15
|
Dietz B, Richter A, Samajdar R. Cross-section fluctuations in open microwave billiards and quantum graphs: The counting-of-maxima method revisited. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022904. [PMID: 26382473 DOI: 10.1103/physreve.92.022904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 06/05/2023]
Abstract
The fluctuations exhibited by the cross sections generated in a compound-nucleus reaction or, more generally, in a quantum-chaotic scattering process, when varying the excitation energy or another external parameter, are characterized by the width Γcorr of the cross-section correlation function. Brink and Stephen [Phys. Lett. 5, 77 (1963)] proposed a method for its determination by simply counting the number of maxima featured by the cross sections as a function of the parameter under consideration. They stated that the product of the average number of maxima per unit energy range and Γcorr is constant in the Ercison region of strongly overlapping resonances. We use the analogy between the scattering formalism for compound-nucleus reactions and for microwave resonators to test this method experimentally with unprecedented accuracy using large data sets and propose an analytical description for the regions of isolated and overlapping resonances.
Collapse
Affiliation(s)
- B Dietz
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - A Richter
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - R Samajdar
- Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
16
|
Altland A, Gnutzmann S, Haake F, Micklitz T. A review of sigma models for quantum chaotic dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:086001. [PMID: 26181515 DOI: 10.1088/0034-4885/78/8/086001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
Collapse
Affiliation(s)
- Alexander Altland
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Deutschland
| | | | | | | |
Collapse
|
17
|
Méndez-Bermúdez JA, Alcazar-López A, Martínez-Mendoza AJ, Rodrigues FA, Peron TKD. Universality in the spectral and eigenfunction properties of random networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032122. [PMID: 25871069 DOI: 10.1103/physreve.91.032122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
By the use of extensive numerical simulations, we show that the nearest-neighbor energy-level spacing distribution P(s) and the entropic eigenfunction localization length of the adjacency matrices of Erdős-Rényi (ER) fully random networks are universal for fixed average degree ξ≡αN (α and N being the average network connectivity and the network size, respectively). We also demonstrate that the Brody distribution characterizes well P(s) in the transition from α=0, when the vertices in the network are isolated, to α=1, when the network is fully connected. Moreover, we explore the validity of our findings when relaxing the randomness of our network model and show that, in contrast to standard ER networks, ER networks with diagonal disorder also show universality. Finally, we also discuss the spectral and eigenfunction properties of small-world networks.
Collapse
Affiliation(s)
- J A Méndez-Bermúdez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - A Alcazar-López
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - A J Martínez-Mendoza
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico and Elméleti Fizika Tanszék, Fizikai Intézet, Budapesti Műszaki és Gazdaságtudományi Egyetem, H-1521 Budapest, Hungary
| | - Francisco A Rodrigues
- Departamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668,13560-970 São Carlos, São Paulo, Brazil
| | - Thomas K Dm Peron
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
18
|
Pluhař Z, Weidenmüller HA. Universal quantum graphs. PHYSICAL REVIEW LETTERS 2014; 112:144102. [PMID: 24765968 DOI: 10.1103/physrevlett.112.144102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 06/03/2023]
Abstract
For time-reversal invariant graphs we prove the Bohigas-Giannoni-Schmit conjecture in its most general form: For graphs that are mixing in the classical limit, all spectral correlation functions coincide with those of the Gaussian orthogonal ensemble of random matrices. For open graphs, we derive the analogous identities for all S-matrix correlation functions.
Collapse
Affiliation(s)
- Z Pluhař
- Faculty of Mathematics and Physics, Charles University, 180 00 Praha 8, Czech Republic
| | | |
Collapse
|
19
|
Allgaier M, Gehler S, Barkhofen S, Stöckmann HJ, Kuhl U. Spectral properties of microwave graphs with local absorption. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022925. [PMID: 25353563 DOI: 10.1103/physreve.89.022925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Indexed: 06/04/2023]
Abstract
The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50Ω load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.
Collapse
Affiliation(s)
- Markus Allgaier
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Stefan Gehler
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Sonja Barkhofen
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - H-J Stöckmann
- Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| | - Ulrich Kuhl
- LPMC, CNRS UMR 7336, Université de Nice Sophia-Antipolis, F-06108 Nice, France and Fachbereich Physik der Philipps-Universität Marburg, D-35032 Marburg, Germany
| |
Collapse
|
20
|
Pluhař Z, Weidenmüller HA. Chaotic scattering on individual quantum graphs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022902. [PMID: 24032896 DOI: 10.1103/physreve.88.022902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Indexed: 06/02/2023]
Abstract
For chaotic scattering on quantum graphs, the semiclassical approximation is exact. We use this fact and employ supersymmetry, the color-flavor transformation, and the saddle-point approximation to calculate the exact expression for the lowest and asymptotic expressions in the Ericson regime for all higher correlation functions of the scattering matrix. Our results agree with those available from the random-matrix approach to chaotic scattering. We conjecture that our results hold universally for quantum-chaotic scattering.
Collapse
Affiliation(s)
- Z Pluhař
- Faculty of Mathematics and Physics, Charles University, 180 00 Praha 8, Czech Republic
| | | |
Collapse
|
21
|
Martínez-Mendoza AJ, Alcazar-López A, Méndez-Bermúdez JA. Scattering and transport properties of tight-binding random networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012126. [PMID: 23944433 DOI: 10.1103/physreve.88.012126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Indexed: 06/02/2023]
Abstract
We study numerically scattering and transport statistical properties of tight-binding random networks characterized by the number of nodes N and the average connectivity α. We use a scattering approach to electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from insulating to metallic behavior in the average scattering matrix elements <|S(mn)|(2)>, the conductance probability distribution w(T), the average conductance <T>, the shot noise power P, and the elastic enhancement factor F by varying α from small (α→0) to large (α→1) values. We also show that all these quantities are invariant for fixed ξ=αN. Moreover, we proposes a heuristic and universal relation between <|S(mn)|(2)>, <T>, and P and the disorder parameter ξ.
Collapse
Affiliation(s)
- A J Martínez-Mendoza
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | | | | |
Collapse
|