1
|
Ciavarella AN, Bauer CW. Quantum Simulation of SU(3) Lattice Yang-Mills Theory at Leading Order in Large-N_{c} Expansion. PHYSICAL REVIEW LETTERS 2024; 133:111901. [PMID: 39331962 DOI: 10.1103/physrevlett.133.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/29/2024]
Abstract
Quantum simulations of the dynamics of QCD have been limited by the complexities of mapping the continuous gauge fields onto quantum computers. By parametrizing the gauge invariant Hilbert space in terms of plaquette degrees of freedom, we show how the Hilbert space and interactions can be expanded in inverse powers of N_{c}. At leading order in this expansion, the Hamiltonian simplifies dramatically, both in the required size of the Hilbert space as well as the type of interactions involved. Adding a truncation of the resulting Hilbert space in terms of local energy states we give explicit constructions that allow simple representations of SU(3) gauge fields on qubits and qutrits. This formulation allows a simulation of the real time dynamics of a SU(3) lattice gauge theory on a 5×5 and 8×8 lattice on ibm_torino with a CNOT depth of 113.
Collapse
|
2
|
Davoudi Z, Mueller N, Powers C. Towards Quantum Computing Phase Diagrams of Gauge Theories with Thermal Pure Quantum States. PHYSICAL REVIEW LETTERS 2023; 131:081901. [PMID: 37683176 DOI: 10.1103/physrevlett.131.081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/27/2023] [Accepted: 06/01/2023] [Indexed: 09/10/2023]
Abstract
The phase diagram of strong interactions in nature at finite temperature and chemical potential remains largely theoretically unexplored due to inadequacy of Monte-Carlo-based computational techniques in overcoming a sign problem. Quantum computing offers a sign-problem-free approach, but evaluating thermal expectation values is generally resource intensive on quantum computers. To facilitate thermodynamic studies of gauge theories, we propose a generalization of the thermal-pure-quantum-state formulation of statistical mechanics applied to constrained gauge-theory dynamics, and numerically demonstrate that the phase diagram of a simple low-dimensional gauge theory is robustly determined using this approach, including mapping a chiral phase transition in the model at finite temperature and chemical potential. Quantum algorithms, resource requirements, and algorithmic and hardware error analysis are further discussed to motivate future implementations. Thermal pure quantum states, therefore, may present a suitable candidate for efficient thermal simulations of gauge theories in the era of quantum computing.
Collapse
Affiliation(s)
- Zohreh Davoudi
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Institute for Robust Quantum Simulation, University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Niklas Mueller
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Connor Powers
- Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Institute for Robust Quantum Simulation, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
3
|
Zhang W, Wang H, Sun H, Zhang X. Non-Abelian Inverse Anderson Transitions. PHYSICAL REVIEW LETTERS 2023; 130:206401. [PMID: 37267536 DOI: 10.1103/physrevlett.130.206401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/26/2023] [Indexed: 06/04/2023]
Abstract
Inverse Anderson transitions, where the flat-band localization is destroyed by disorder, have been wildly investigated in quantum and classical systems in the presence of Abelian gauge fields. Here, we report the first investigation on inverse Anderson transitions in the system with non-Abelian gauge fields. It is found that pseudospin-dependent localized and delocalized eigenstates coexist in the disordered non-Abelian Aharonov-Bohm cage, making inverse Anderson transitions depend on the relative phase of two internal pseudospins. Such an exotic phenomenon induced by the interplay between non-Abelian gauge fields and disorder has no Abelian analogy. Furthermore, we theoretically design and experimentally fabricate non-Abelian Aharonov-Bohm topolectrical circuits to observe the non-Abelian inverse Anderson transition. Through the direct measurements of frequency-dependent impedance responses and voltage dynamics, the pseudospin-dependent non-Abelian inverse Anderson transitions are observed. Our results establish the connection between inverse Anderson transitions and non-Abelian gauge fields, and thus comprise a new insight on the fundamental aspects of localization in disordered non-Abelian flat-band systems.
Collapse
Affiliation(s)
- Weixuan Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haiteng Wang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Houjun Sun
- Beijing Key Laboratory of Millimeter Wave and Terahertz Techniques, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiangdong Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Del Pino J, Zilberberg O. Dynamical Gauge Fields with Bosonic Codes. PHYSICAL REVIEW LETTERS 2023; 130:171901. [PMID: 37172225 DOI: 10.1103/physrevlett.130.171901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
The quantum simulation of dynamical gauge field theories offers the opportunity to study complex high-energy physics with controllable low-energy devices. For quantum computation, bosonic codes promise robust error correction that exploits multiparticle redundancy in bosons. Here, we demonstrate how bosonic codes can be used to simulate dynamical gauge fields. We encode both matter and dynamical gauge fields in a network of resonators that are coupled via three-wave mixing. The mapping to a Z_{2} dynamical lattice gauge theory is established when the gauge resonators operate as Schrödinger cat states. We explore the optimal conditions under which the system preserves the required gauge symmetries. Our findings promote realizing high-energy models using bosonic codes.
Collapse
Affiliation(s)
- Javier Del Pino
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Oded Zilberberg
- Department of Physics, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
5
|
Carena M, Lamm H, Li YY, Liu W. Improved Hamiltonians for Quantum Simulations of Gauge Theories. PHYSICAL REVIEW LETTERS 2022; 129:051601. [PMID: 35960555 DOI: 10.1103/physrevlett.129.051601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Quantum simulations of lattice gauge theories for the foreseeable future will be hampered by limited resources. The historical success of improved lattice actions in classical simulations strongly suggests that Hamiltonians with improved discretization errors will reduce quantum resources, i.e., require ≳2^{d} fewer qubits in quantum simulations for lattices with d-spatial dimensions. In this work, we consider O(a^{2})-improved Hamiltonians for pure gauge theories and design the corresponding quantum circuits for its real-time evolution in terms of primitive gates. An explicit demonstration for Z_{2} gauge theory is presented including exploratory tests using the ibm_perth device.
Collapse
Affiliation(s)
- Marcela Carena
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
- Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
- Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Henry Lamm
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Ying-Ying Li
- Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - Wanqiang Liu
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Klco N, Roggero A, Savage MJ. Standard model physics and the digital quantum revolution: thoughts about the interface. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:064301. [PMID: 35213853 DOI: 10.1088/1361-6633/ac58a4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress. Pursuing the vision articulated by Feynman, a concerted effort across many areas of research and development is introducing prototypical digital quantum devices into the computing ecosystem available to domain scientists. Through interactions with these early quantum devices, the abstract vision of exploring classically-intractable quantum systems is evolving toward becoming a tangible reality. Beyond catalyzing these technological advances, entanglement is enabling parallel progress as a diagnostic for quantum correlations and as an organizational tool, both guiding improved understanding of quantum many-body systems and quantum field theories defining and emerging from the standard model. From the perspective of three domain science theorists, this article compilesthoughts about the interfaceon entanglement, complexity, and quantum simulation in an effort to contextualize recent NISQ-era progress with the scientific objectives of nuclear and high-energy physics.
Collapse
Affiliation(s)
- Natalie Klco
- Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, United States of America
| | - Alessandro Roggero
- InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195, United States of America
| | - Martin J Savage
- InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
7
|
Zohar E. Quantum simulation of lattice gauge theories in more than one space dimension-requirements, challenges and methods. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210069. [PMID: 34923840 PMCID: PMC8886423 DOI: 10.1098/rsta.2021.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/18/2021] [Indexed: 05/17/2023]
Abstract
Over recent years, the relatively young field of quantum simulation of lattice gauge theories, aiming at implementing simulators of gauge theories with quantum platforms, has gone through a rapid development process. Nowadays, it is not only of interest to the quantum information and technology communities. It is also seen as a valid tool for tackling hard, non-perturbative gauge theory problems by particle and nuclear physicists. Along the theoretical progress, nowadays more and more experiments implementing such simulators are being reported, manifesting beautiful results, but mostly on [Formula: see text] dimensional physics. In this article, we review the essential ingredients and requirements of lattice gauge theories in more dimensions and discuss their meanings, the challenges they pose and how they could be dealt with, potentially aiming at the next steps of this field towards simulating challenging physical problems in analogue, or analogue-digital ways. This article is part of the theme issue 'Quantum technologies in particle physics'.
Collapse
Affiliation(s)
- Erez Zohar
- Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
8
|
Aidelsburger M, Barbiero L, Bermudez A, Chanda T, Dauphin A, González-Cuadra D, Grzybowski PR, Hands S, Jendrzejewski F, Jünemann J, Juzeliūnas G, Kasper V, Piga A, Ran SJ, Rizzi M, Sierra G, Tagliacozzo L, Tirrito E, Zache TV, Zakrzewski J, Zohar E, Lewenstein M. Cold atoms meet lattice gauge theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210064. [PMID: 34923836 PMCID: PMC8685612 DOI: 10.1098/rsta.2021.0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/23/2021] [Indexed: 05/17/2023]
Abstract
The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.
Collapse
Affiliation(s)
- Monika Aidelsburger
- Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich 80799, Germany
- Munich Center for Quantum Science and Technology (MCQST), München 80799, Germany
| | - Luca Barbiero
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Alejandro Bermudez
- Departamento de Física Teorica, Universidad Complutense, Madrid 28040, Spain
| | - Titas Chanda
- Institute of Theoretical Physics, Jagiellonian University in Kraków, Kraków 30-348, Poland
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Alexandre Dauphin
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Daniel González-Cuadra
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Przemysław R. Grzybowski
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Simon Hands
- Department of Physics, Faculty of Science and Engineering, Swansea University, Swansea SA28PP, UK
- Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Fred Jendrzejewski
- Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg 69120, Germany
| | - Johannes Jünemann
- Institut für Physik, Johannes Gutenberg-Universität, Mainz 55128, Germany
| | - Gediminas Juzeliūnas
- Institute of Theoretical Physics and Astronomy, Vilnius University, Vilnius 10257, Lithuania
| | - Valentin Kasper
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Angelo Piga
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- Departament of Chemical Engineering, Universitat Rovira I Virgili, 43007, Tarragona, Catalonia, Spain
| | - Shi-Ju Ran
- Department of Physics, Capital Normal University, Beijing 100048, People’s Republic of China
| | - Matteo Rizzi
- Forschungszentrum Jülich GmbH, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), Jülich 52425, Germany
- Institute for Theoretical Physics, University of Cologne, Köln 50937, Germany
| | - Germán Sierra
- Instituto de Física Teórica, UAM/CSIC, Universidad Autònoma de Madrid, Madrid, Spain
| | - Luca Tagliacozzo
- Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Catalonia 08028, Spain
| | - Emanuele Tirrito
- International School for Advanced Studies (SISSA), Trieste 34136, Italy
| | - Torsten V. Zache
- Center for Quantum Physics, University of Innsbruck, Innsbruck 6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck 6020, Austria
| | - Jakub Zakrzewski
- Institute of Theoretical Physics, Jagiellonian University in Kraków, Kraków 30-348, Poland
| | - Erez Zohar
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maciej Lewenstein
- ICFO—Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA, Passeig Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Abstract
Qubit regularization is a procedure to regularize the infinite dimensional local Hilbert space of bosonic fields to a finite dimensional one, which is a crucial step when trying to simulate lattice quantum field theories on a quantum computer. When the qubit-regularized lattice quantum fields preserve important symmetries of the original theory, qubit regularization naturally enforces certain algebraic structures on these quantum fields. We introduce the concept of qubit embedding algebras (QEAs) to characterize this algebraic structure associated with a qubit regularization scheme. We show a systematic procedure to derive QEAs for the (N) lattice spin models and the SU(N) lattice gauge theories. While some of the QEAs we find were discovered earlier in the context of the D-theory approach, our method shows that QEAs are far richer. A more complete understanding of the QEAs could be helpful in recovering the fixed points of the desired quantum field theories.
Collapse
|
10
|
Armon T, Ashkenazi S, García-Moreno G, González-Tudela A, Zohar E. Photon-Mediated Stroboscopic Quantum Simulation of a Z_{2} Lattice Gauge Theory. PHYSICAL REVIEW LETTERS 2021; 127:250501. [PMID: 35029424 DOI: 10.1103/physrevlett.127.250501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Quantum simulation of lattice gauge theories, aiming at tackling nonperturbative particle and condensed matter physics, has recently received a lot of interest and attention, resulting in many theoretical proposals as well as several experimental implementations. One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear. In this Letter, we propose a method to obtain them based on a combination of stroboscopic optical atomic control and the nonlocal photon-mediated interactions appearing in nanophotonic or cavity QED setups. We illustrate the method for a Z_{2} lattice gauge theory. We also show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
Collapse
Affiliation(s)
- Tsafrir Armon
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shachar Ashkenazi
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gerardo García-Moreno
- Institute of Fundamental Physics IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain, Departamento de Física Teórica and IPARCOS, Universidad Complutense de Madrid, 28040 Madrid, Spain, and Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada, Spain
| | | | - Erez Zohar
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Atas YY, Zhang J, Lewis R, Jahanpour A, Haase JF, Muschik CA. SU(2) hadrons on a quantum computer via a variational approach. Nat Commun 2021; 12:6499. [PMID: 34764262 PMCID: PMC8586147 DOI: 10.1038/s41467-021-26825-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Quantum computers have the potential to create important new opportunities for ongoing essential research on gauge theories. They can provide simulations that are unattainable on classical computers such as sign-problem afflicted models or time evolutions. In this work, we variationally prepare the low-lying eigenstates of a non-Abelian gauge theory with dynamically coupled matter on a quantum computer. This enables the observation of hadrons and the calculation of their associated masses. The SU(2) gauge group considered here represents an important first step towards ultimately studying quantum chromodynamics, the theory that describes the properties of protons, neutrons and other hadrons. Our calculations on an IBM superconducting platform utilize a variational quantum eigensolver to study both meson and baryon states, hadrons which have never been seen in a non-Abelian simulation on a quantum computer. We develop a hybrid resource-efficient approach by combining classical and quantum computing, that not only allows the study of an SU(2) gauge theory with dynamical matter fields on present-day quantum hardware, but further lays out the premises for future quantum simulations that will address currently unanswered questions in particle and nuclear physics.
Collapse
Affiliation(s)
- Yasar Y Atas
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
| | - Jinglei Zhang
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
| | - Randy Lewis
- Department of Physics and Astronomy, York University, Toronto, ON, Canada, M3J 1P3
| | - Amin Jahanpour
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Jan F Haase
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1.
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany.
| | - Christine A Muschik
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
- Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada, N2L 2Y5
| |
Collapse
|
12
|
Mueller N, Tarasov A, Venugopalan R. Deeply inelastic scattering structure functions on a hybrid quantum computer. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.016007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Klco N, Savage MJ, Stryker JR. SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.074512] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Cardarelli L, Greschner S, Santos L. Deconfining Disordered Phase in Two-Dimensional Quantum Link Models. PHYSICAL REVIEW LETTERS 2020; 124:123601. [PMID: 32281853 DOI: 10.1103/physrevlett.124.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We explore the ground-state physics of two-dimensional spin-1/2 U(1) quantum link models, one of the simplest nontrivial lattice gauge theories with fermionic matter within experimental reach for quantum simulations. Whereas in the large mass limit we observe Neél-like vortex-antivortex and striped crystalline phases, for small masses there is a transition from the striped phases into a disordered phase whose properties resemble those at the Rokhsar-Kivelson point of the quantum dimer model. This phase is characterized on ladders by boundary Haldane-like properties, such as vanishing parity and finite string ordering. Moreover, from studies of the string tension between gauge charges, we find that, whereas the striped phases are confined, the novel disordered phase present clear indications of being deconfined. Our results open exciting perspectives of studying highly nontrivial physics in quantum simulators, such as spin-liquid behavior and confinement-deconfinement transitions, without the need of explicitly engineering plaquette terms.
Collapse
Affiliation(s)
- Lorenzo Cardarelli
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, DE-30167 Hannover, Germany
| | - Sebastian Greschner
- Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, DE-30167 Hannover, Germany
| |
Collapse
|
15
|
Carmen Bañuls M, Cichy K. Review on novel methods for lattice gauge theories. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:024401. [PMID: 31846938 DOI: 10.1088/1361-6633/ab6311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Formulating gauge theories on a lattice offers a genuinely non-perturbative way of studying quantum field theories, and has led to impressive achievements. In particular, it significantly deepened our understanding of quantum chromodynamics. Yet, some very relevant problems remain inherently challenging, such as real time evolution, or the presence of a chemical potential, cases in which Monte Carlo simulations are hindered by a sign problem. In the last few years, a number of possible alternatives have been put forward, based on quantum information ideas, which could potentially open the access to areas of research that have so far eluded more standard methods. They include tensor network calculations, quantum simulations with different physical platforms and quantum computations, and constitute nowadays a vibrant research area. Experts from different fields, including experimental and theoretical high energy physics, condensed matter, and quantum information, are turning their attention to these interdisciplinary possibilities, and driving the progress of the field. The aim of this article is to review the status and perspectives of these new avenues for the exploration of lattice gauge theories.
Collapse
Affiliation(s)
- Mari Carmen Bañuls
- Max-Planck Institut, für Quantenoptik, Garching 85748, Germany. Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, Munich 80799, Germany
| | | |
Collapse
|
16
|
Lamm H, Lawrence S, Yamauchi Y. General methods for digital quantum simulation of gauge theories. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.100.034518] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Spitz D, Berges J. Schwinger pair production and string breaking in non-Abelian gauge theory from real-time lattice improved Hamiltonians. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.99.036020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Zhang J, Unmuth-Yockey J, Zeiher J, Bazavov A, Tsai SW, Meurice Y. Quantum Simulation of the Universal Features of the Polyakov Loop. PHYSICAL REVIEW LETTERS 2018; 121:223201. [PMID: 30547605 DOI: 10.1103/physrevlett.121.223201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian Higgs model in 1+1 dimensions is a prime candidate for an experimental quantum simulation of a lattice gauge theory. To this end, we use a discrete tensor reformulation to smoothly connect the space-time isotropic version used in most numerical lattice simulations to the continuous-time limit corresponding to the Hamiltonian formulation. The eigenstates of the Hamiltonian are neutral for periodic boundary conditions, but we probe the nonzero charge sectors by introducing either a Polyakov loop or an external electric field. In both cases we obtain universal functions relating the mass gap, the gauge coupling, and the spatial size, which are invariant under the deformation of the temporal lattice spacing. We propose to use a physical multileg ladder of atoms trapped in optical lattices and interacting with Rydberg-dressed interactions to quantum simulate the model and check the universal features. Our results provide a path to the analog quantum simulation of lattice gauge theories with atoms in optical lattices.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - J Unmuth-Yockey
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - J Zeiher
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - A Bazavov
- Department of Computational Mathematics, Science and Engineering, and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - S-W Tsai
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Y Meurice
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
19
|
Brenes M, Dalmonte M, Heyl M, Scardicchio A. Many-Body Localization Dynamics from Gauge Invariance. PHYSICAL REVIEW LETTERS 2018; 120:030601. [PMID: 29400521 DOI: 10.1103/physrevlett.120.030601] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/17/2017] [Indexed: 06/07/2023]
Abstract
We show how lattice gauge theories can display many-body localization dynamics in the absence of disorder. Our starting point is the observation that, for some generic translationally invariant states, the Gauss law effectively induces a dynamics which can be described as a disorder average over gauge superselection sectors. We carry out extensive exact simulations on the real-time dynamics of a lattice Schwinger model, describing the coupling between U(1) gauge fields and staggered fermions. Our results show how memory effects and slow, double-logarithmic entanglement growth are present in a broad regime of parameters-in particular, for sufficiently large interactions. These findings are immediately relevant to cold atoms and trapped ion experiments realizing dynamical gauge fields and suggest a new and universal link between confinement and entanglement dynamics in the many-body localized phase of lattice models.
Collapse
Affiliation(s)
- Marlon Brenes
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Marcello Dalmonte
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Markus Heyl
- Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany
| | - Antonello Scardicchio
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- INFN Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
| |
Collapse
|
20
|
Cardarelli L, Greschner S, Santos L. Hidden Order and Symmetry Protected Topological States in Quantum Link Ladders. PHYSICAL REVIEW LETTERS 2017; 119:180402. [PMID: 29219574 DOI: 10.1103/physrevlett.119.180402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 06/07/2023]
Abstract
We show that, whereas spin-1/2 one-dimensional U(1) quantum-link models (QLMs) are topologically trivial, when implemented in ladderlike lattices these models may present an intriguing ground-state phase diagram, which includes a symmetry protected topological (SPT) phase that may be readily revealed by analyzing long-range string spin correlations along the ladder legs. We propose a simple scheme for the realization of spin-1/2 U(1) QLMs based on single-component fermions loaded in an optical lattice with s and p bands, showing that the SPT phase may be experimentally realized by adiabatic preparation.
Collapse
Affiliation(s)
- L Cardarelli
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - S Greschner
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
21
|
Zohar E, Farace A, Reznik B, Cirac JI. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter. PHYSICAL REVIEW LETTERS 2017; 118:070501. [PMID: 28256852 DOI: 10.1103/physrevlett.118.070501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 05/29/2023]
Abstract
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
Collapse
Affiliation(s)
- Erez Zohar
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Alessandro Farace
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Benni Reznik
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|
22
|
Zohar E, Farace A, Reznik B, Cirac JI. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter. PHYSICAL REVIEW LETTERS 2017; 118:070501. [PMID: 28256852 DOI: 10.1103/physreva.95.023604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 05/29/2023]
Abstract
We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.
Collapse
Affiliation(s)
- Erez Zohar
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Alessandro Farace
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - Benni Reznik
- School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv 69978, Israel
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|
23
|
Zohar E, Cirac JI, Reznik B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:014401. [PMID: 26684222 DOI: 10.1088/0034-4885/79/1/014401] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Can high-energy physics be simulated by low-energy, non-relativistic, many-body systems such as ultracold atoms? Such ultracold atomic systems lack the type of symmetries and dynamical properties of high energy physics models: in particular, they manifest neither local gauge invariance nor Lorentz invariance, which are crucial properties of the quantum field theories which are the building blocks of the standard model of elementary particles. However, it turns out, surprisingly, that there are ways to configure an atomic system to manifest both local gauge invariance and Lorentz invariance. In particular, local gauge invariance can arise either as an effective low-energy symmetry, or as an exact symmetry, following from the conservation laws in atomic interactions. Hence, one could hope that such quantum simulators may lead to a new type of (table-top) experiments which will be used to study various QCD (quantum chromodynamics) phenomena, such as the confinement of dynamical quarks, phase transitions and other effects, which are inaccessible using the currently known computational methods. In this report, we review the Hamiltonian formulation of lattice gauge theories, and then describe our recent progress in constructing the quantum simulation of Abelian and non-Abelian lattice gauge theories in 1 + 1 and 2 + 1 dimensions using ultracold atoms in optical lattices.
Collapse
Affiliation(s)
- Erez Zohar
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straß e 1, 85748 Garching, Germany
| | | | | |
Collapse
|
24
|
Mezzacapo A, Rico E, Sabín C, Egusquiza IL, Lamata L, Solano E. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits. PHYSICAL REVIEW LETTERS 2015; 115:240502. [PMID: 26705616 DOI: 10.1103/physrevlett.115.240502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 06/05/2023]
Abstract
We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.
Collapse
Affiliation(s)
- A Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - E Rico
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - C Sabín
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - I L Egusquiza
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - L Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - E Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
25
|
Caballero-Benitez SF, Mekhov IB. Quantum Optical Lattices for Emergent Many-Body Phases of Ultracold Atoms. PHYSICAL REVIEW LETTERS 2015; 115:243604. [PMID: 26705634 DOI: 10.1103/physrevlett.115.243604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 06/05/2023]
Abstract
Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.
Collapse
Affiliation(s)
| | - Igor B Mekhov
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
26
|
|
27
|
Watanabe H, Murayama H. Spontaneously broken non-Abelian gauge symmetries in nonrelativistic systems. Int J Clin Exp Med 2014. [DOI: 10.1103/physrevd.90.121703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Goldman N, Juzeliūnas G, Öhberg P, Spielman IB. Light-induced gauge fields for ultracold atoms. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:126401. [PMID: 25422950 DOI: 10.1088/0034-4885/77/12/126401] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle-the graviton-that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms 'feeling' laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials-both Abelian and non-Abelian-in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.
Collapse
Affiliation(s)
- N Goldman
- College de France, 11 place Marcelin Berthelot & Laboratoire Kastler Brossel, CNRS, UPMC, ENS, 24 rue Lhomond, 75005 Paris, France
| | | | | | | |
Collapse
|
29
|
Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese UJ, Zoller P. Two-dimensional lattice gauge theories with superconducting quantum circuits. ANNALS OF PHYSICS 2014; 351:634-654. [PMID: 25512676 PMCID: PMC4263216 DOI: 10.1016/j.aop.2014.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/10/2014] [Indexed: 05/27/2023]
Abstract
A quantum simulator of [Formula: see text] lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Collapse
Affiliation(s)
- D. Marcos
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | - P. Widmer
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern, Switzerland
| | - E. Rico
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - M. Hafezi
- Joint Quantum Institute, NIST/University of Maryland, College Park 20742, USA
- Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - P. Rabl
- Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien, Austria
| | - U.-J. Wiese
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern, Switzerland
| | - P. Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
30
|
Greschner S, Sun G, Poletti D, Santos L. Density-dependent synthetic gauge fields using periodically modulated interactions. PHYSICAL REVIEW LETTERS 2014; 113:215303. [PMID: 25479501 DOI: 10.1103/physrevlett.113.215303] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Indexed: 05/28/2023]
Abstract
We show that density-dependent synthetic gauge fields may be engineered by combining periodically modulated interactions and Raman-assisted hopping in spin-dependent optical lattices. These fields lead to a density-dependent shift of the momentum distribution, may induce superfluid-to-Mott insulator transitions, and strongly modify correlations in the superfluid regime. We show that the interplay between the created gauge field and the broken sublattice symmetry results, as well, in an intriguing behavior at vanishing interactions, characterized by the appearance of a fractional Mott insulator.
Collapse
Affiliation(s)
- S Greschner
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| | - G Sun
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| | - D Poletti
- Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, 138682 Singapore and Merlion MajuLab, CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2, DE-30167 Hannover, Germany
| |
Collapse
|
31
|
A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms. Sci Rep 2014; 4:5992. [PMID: 25103877 PMCID: PMC4126000 DOI: 10.1038/srep05992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
Collapse
|
32
|
Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M, Zoller P. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms. PHYSICAL REVIEW LETTERS 2014; 112:120406. [PMID: 24724634 DOI: 10.1103/physrevlett.112.120406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Indexed: 05/29/2023]
Abstract
We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasilocal constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, nonlocal interaction patterns by global coupling to laser fields.
Collapse
Affiliation(s)
- K Stannigel
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - P Hauke
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - D Marcos
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria
| | - M Hafezi
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - S Diehl
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - M Dalmonte
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - P Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria and Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
33
|
Tagliacozzo L, Celi A, Orland P, Mitchell MW, Lewenstein M. Simulation of non-Abelian gauge theories with optical lattices. Nat Commun 2013; 4:2615. [DOI: 10.1038/ncomms3615] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 09/16/2013] [Indexed: 12/28/2022] Open
|
34
|
Marcos D, Rabl P, Rico E, Zoller P. Superconducting circuits for quantum simulation of dynamical gauge fields. PHYSICAL REVIEW LETTERS 2013; 111:110504. [PMID: 24074064 DOI: 10.1103/physrevlett.111.110504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 06/02/2023]
Abstract
We describe a superconducting-circuit lattice design for the implementation and simulation of dynamical lattice gauge theories. We illustrate our proposal by analyzing a one-dimensional U(1) quantum-link model, where superconducting qubits play the role of matter fields on the lattice sites and the gauge fields are represented by two coupled microwave resonators on each link between neighboring sites. A detailed analysis of a minimal experimental protocol for probing the physics related to string breaking effects shows that, despite the presence of decoherence in these systems, distinctive phenomena from condensed-matter and high-energy physics can be visualized with state-of-the-art technology in small superconducting-circuit arrays.
Collapse
Affiliation(s)
- D Marcos
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
35
|
Kasamatsu K, Ichinose I, Matsui T. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry. PHYSICAL REVIEW LETTERS 2013; 111:115303. [PMID: 24074102 DOI: 10.1103/physrevlett.111.115303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Indexed: 06/02/2023]
Abstract
Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.
Collapse
Affiliation(s)
- Kenichi Kasamatsu
- Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | | | | |
Collapse
|
36
|
Banerjee D, Bögli M, Dalmonte M, Rico E, Stebler P, Wiese UJ, Zoller P. Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. PHYSICAL REVIEW LETTERS 2013; 110:125303. [PMID: 25166816 DOI: 10.1103/physrevlett.110.125303] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Indexed: 05/28/2023]
Abstract
Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at nonzero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
Collapse
Affiliation(s)
- D Banerjee
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012 Bern, Switzerland
| | - M Bögli
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012 Bern, Switzerland
| | - M Dalmonte
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | - E Rico
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Theoretical Physics, Innsbruck University, A-6020 Innsbruck, Austria
| | - P Stebler
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012 Bern, Switzerland
| | - U-J Wiese
- Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012 Bern, Switzerland
| | - P Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Theoretical Physics, Innsbruck University, A-6020 Innsbruck, Austria
| |
Collapse
|