1
|
Zaccone A, Samwer K. Fragility and thermal expansion control crystal melting and the glass transition. J Chem Phys 2025; 162:114502. [PMID: 40094241 DOI: 10.1063/5.0253991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Analytical relations for the glass transition temperature, Tg, and the crystal melting temperature, Tm, are developed on the basis of nonaffine lattice dynamics. The proposed relations explain the following: (i) the seemingly universal factor of ≈2/3 difference between the glass transition temperature and the melting temperature of the corresponding crystal, and (ii) the recent empirical discovery that both Tg and Tm are proportional to the liquid fragility m divided by the thermal expansion coefficient α of the solid.
Collapse
Affiliation(s)
- Alessio Zaccone
- Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy
| | - Konrad Samwer
- I. Physikalisches Institut, University of Goettingen, Goettingen, Germany
| |
Collapse
|
2
|
Wang Y, Qian Z, Tong H, Tanaka H. Hyperuniform disordered solids with crystal-like stability. Nat Commun 2025; 16:1398. [PMID: 39939581 PMCID: PMC11822127 DOI: 10.1038/s41467-025-56283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
Hyperuniform disordered solids, characterised by unusually suppressed density fluctuations at low wavenumbers (q), are of great interest due to their potentially distinct properties as a unique glass state. From the jamming perspective, there is ongoing debate about the relationship between hyperuniformity and the jamming transition, as well as whether hyperuniformity persists above the jamming point. Here, we successfully generate over-jammed disordered solids exhibiting the strongest class of hyperuniformity, characterised by a power-law density spectrum (qα with α = 4). By decompressing both hyperuniform and conventional over-jammed packings to their respective marginally jammed states, we identify protocol-independent exponents: α ≈ 0.25 for density hyperuniformity and α ≈ 2 for contact-number hyperuniformity, both associated with the jamming transition. Although both marginally jammed and conventional over-jammed packings exhibit marginal stability, we demonstrate that hyperuniform over-jammed packings possess exceptional stability across vibrational, kinetic, thermodynamic, and mechanical properties-similar to crystals. These findings suggest that hyperuniform over-jammed packings offer crucial insights into the ideal disordered solid state and stand out as promising candidates for disordered metamaterials, uniquely combining hyperuniformity with ultrastability.
Collapse
Affiliation(s)
- Yinqiao Wang
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Zhuang Qian
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Hua Tong
- Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Glova A, Karttunen M. Learning glass transition temperatures via dimensionality reduction with data from computer simulations: Polymers as the pilot case. J Chem Phys 2024; 161:184902. [PMID: 39513447 DOI: 10.1063/5.0229161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Machine learning methods provide an advanced means for understanding inherent patterns within large and complex datasets. Here, we employ the principal component analysis (PCA) and the diffusion map (DM) techniques to evaluate the glass transition temperature (Tg) from low-dimensional representations of all-atom molecular dynamic simulations of polylactide (PLA) and poly(3-hydroxybutyrate) (PHB). Four molecular descriptors were considered: radial distribution functions (RDFs), mean square displacements (MSDs), relative square displacements (RSDs), and dihedral angles (DAs). By applying Gaussian Mixture Models (GMMs) to analyze the PCA and DM projections and by quantifying their log-likelihoods as a density-based metric, a distinct separation into two populations corresponding to melt and glass states was revealed. This separation enabled the Tg evaluation from a cooling-induced sharp increase in the overlap between log-likelihood distributions at different temperatures. Tg values derived from the RDF and MSD descriptors using DM closely matched the standard computer simulation-based dilatometric and dynamic Tg values for both PLA and PHB models. This was not the case for PCA. The DM-transformed DA and RSD data resulted in Tg values in agreement with experimental ones. Overall, the fusion of atomistic simulations and DMs complemented with the GMMs presents a promising framework for computing Tg and studying the glass transition in a unified way across various molecular descriptors for glass-forming materials.
Collapse
Affiliation(s)
- Artem Glova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Mikko Karttunen
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Zheng B, Zhong L, Wang X, Lin P, Yang Z, Bai T, Shen H, Zhang H. Structural evolution during inverse vulcanization. Nat Commun 2024; 15:5507. [PMID: 38951493 PMCID: PMC11217493 DOI: 10.1038/s41467-024-49374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Inverse vulcanization exploits S8 to synthesize polysulfides. However, evolution of products and its mechanism during inverse vulcanization remains elusive. Herein, inverse vulcanization curves are obtained to describe the inverse vulcanization process in terms of three stages: induction, curing and over-cure. The typical curves exhibit a moduli increment before declining or plateauing, reflecting the process of polysulfide network formation and loosing depending on monomers. For aromatic alkenes, in the over-cure, the crosslinked polysulfide evolves significantly into a sparse network with accelerated relaxation, due to the degradation of alkenyl moieties into thiocarbonyls. The inverse vulcanization product of olefins degrades slowly with fluctuated relaxation time and modulus because of the generation of thiophene moieties, while the inverse vulcanization curve of dicyclopentadiene has a plateau following curing stage. Confirmed by calculations, the mechanisms reveal the alkenyl groups react spontaneously into thiocarbonyls or thiophenes via similar sulfur-substituted alkenyl intermediates but with different energy barriers.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Liling Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoxiao Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Peiyao Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Zezhou Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province in Jiaxing University, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
5
|
Bischoff DJ, Lee T, Kang KS, Molineux J, O'Neil Parker W, Pyun J, Mackay ME. Unraveling the rheology of inverse vulcanized polymers. Nat Commun 2023; 14:7553. [PMID: 37985754 PMCID: PMC10662295 DOI: 10.1038/s41467-023-43117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.
Collapse
Affiliation(s)
- Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Taeheon Lee
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jeffrey Pyun
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
6
|
Anzivino C, Zaccone A. Molecular-Level Relation between the Intraparticle Glass Transition Temperature and the Stability of Colloidal Suspensions. J Phys Chem Lett 2023; 14:8846-8852. [PMID: 37751526 DOI: 10.1021/acs.jpclett.3c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In many colloidal suspensions, the dispersed colloidal particles are amorphous solids, resulting from vitrification. A crucial open problem is understanding how colloidal stability is affected by the intraparticle glass transition. By dealing with the latter process from a solid-state perspective, we estabilish a proportionality relation between the intraparticle glass transition temperature, Tg, and the Hamaker constant, AH, of a generic suspension of nanoparticles. It follows that Tg can be used as a convenient parameter (alternative to AH) for controlling the stability of colloidal systems. Within the Derjaguin-Landau-Verwey-Overbeek theory, we show that the novel relationship, connecting Tg to AH, implies the critical coagulation ionic strength to be a monotonically decreasing function of Tg. We connect our predictions to recent experimental findings.
Collapse
Affiliation(s)
- Carmine Anzivino
- Department of Physics "A. Pontremoli", University of Milan, 20133 Milan, Italy
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, 20133 Milan, Italy
- I. Physikalisches Institut, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Xu T, Cui K, Nie C, Peng F, Cao R, Liu Z, Sun H, Li L. Bond Orientation-Determined Enthalpic Stress in Polymer Glasses upon Deformation. ACS Macro Lett 2023; 12:1251-1256. [PMID: 37643284 DOI: 10.1021/acsmacrolett.3c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The mechanical properties of polymer glass are determined by both intermolecular local packing structures and aligned intrachain configurations. These configurations involve multiple space scales, and the underlying mechanism is not well understood yet. By applying mechanical stimulation to cold-drawn polymer glasses, the present simulation work shows a one-to-one correspondence between arising retractive stress and the segment orientation parameter on the length scale of the intrachain connecting bond. Such retractive stress is a newly produced enthalpic stress when segment orientation on the length scale of bonds and particle mobility coexist. This reveals a potential mechanism of how the intrachain orientation on the length scale of bonds influences the mechanical behaviors of polymer glasses.
Collapse
Affiliation(s)
- Tingyu Xu
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Kunpeng Cui
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Cui Nie
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Fan Peng
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Renkuan Cao
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziwei Liu
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Hao Sun
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liangbin Li
- National Synchrotron Radiation Lab, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Xing Z, Lu H. A double-well potential model for glass transition in a glassy hydrogel undergoing bi-stable interactions with water. SOFT MATTER 2023; 19:6612-6618. [PMID: 37605800 DOI: 10.1039/d3sm00775h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The key mechanisms for achieving ultra-high mechanical properties of glassy hydrogels have not been fully understood, and it is commonly believed that their glass transitions are the crucial reasons due to the existence of significant bi-stable interactions between polymer macromolecules and water molecules. In this study, a double-well potential model is formulated to describe the mechanical properties of glassy hydrogels undergoing glass transition, by combining phase evolution theory and a rubber elasticity model. Bi-stable interactions between polymer macromolecules and water molecules (for both the trapped and free water) have been characterized using this double-well potential model, and various parameters are studied, including depth of well (for elasticity), distance between two wells (for yielding), and energy difference between two wells (for transition probability). Furthermore, constitutive stress-strain relationships are developed to explore the working principles for achieving ultra-high mechanical properties of these glassy hydrogels. Finally, the effectiveness of the proposed models is verified using finite element analysis (FEA) and also the experimental results reported in the literature, thus providing physical and mechanical insights into the ultra-high mechanical properties of glassy hydrogels.
Collapse
Affiliation(s)
- Ziyu Xing
- State Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China.
| | - Haibao Lu
- State Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China.
| |
Collapse
|
9
|
Consolati G, Nichetti D, Quasso F. Probing the Free Volume in Polymers by Means of Positron Annihilation Lifetime Spectroscopy. Polymers (Basel) 2023; 15:3128. [PMID: 37514518 PMCID: PMC10386335 DOI: 10.3390/polym15143128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Positron annihilation lifetime spectroscopy (PALS) is a valuable technique to investigate defects in solids, such as vacancy clusters and grain boundaries in metals and alloys, as well as lattice imperfections in semiconductors. Positron spectroscopy is able to reveal the size, structure and concentration of vacancies with a sensitivity of 10-7. In the field of porous and amorphous systems, PALS can probe cavities in the range from a few tenths up to several tens of nm. In the case of polymers, PALS is one of the few techniques able to give information on the holes forming the free volume. This quantity, which cannot be measured with macroscopic techniques, is correlated to important mechanical, thermal, and transport properties of polymers. It can be deduced theoretically by applying suitable equations of state derived by cell models, and PALS supplies a quantitative measure of the free volume by probing the corresponding sub-nanometric holes. The system used is positronium (Ps), an unstable atom formed by a positron and an electron, whose lifetime can be related to the typical size of the holes. When analyzed in terms of continuous lifetimes, the positron annihilation spectrum allows one to gain insight into the distribution of the free volume holes, an almost unique feature of this technique. The present paper is an overview of PALS, addressed in particular to readers not familiar with this technique, with emphasis on the experimental aspects. After a general introduction on free volume, positronium, and the experimental apparatus needed to acquire the corresponding lifetime, some of the recent results obtained by various groups will be shown, highlighting the connections between the free volume as probed by PALS and structural properties of the investigated materials.
Collapse
Affiliation(s)
- Giovanni Consolati
- Department of Aerospace Science and Technology, Politecnico di Milano, Via LaMasa, 34, 20156 Milano, Italy
- INFN, Sezione di Milano, Via Celoria, 16, 20133 Milano, Italy
| | | | - Fiorenza Quasso
- Department of Aerospace Science and Technology, Politecnico di Milano, Via LaMasa, 34, 20156 Milano, Italy
| |
Collapse
|
10
|
Ginzburg VV, Zaccone A, Casalini R. Combined description of pressure-volume-temperature and dielectric relaxation of several polymeric and low-molecular-weight organic glass-formers using SL-TS2 approach. SOFT MATTER 2022; 18:8456-8466. [PMID: 36314736 DOI: 10.1039/d2sm01049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We apply our recently-developed mean-field "SL-TS2" (two-state Sanchez-Lacombe) model to simultaneously describe dielectric α-relaxation time, τα, and pressure-volume-temperature (PVT) data in four polymers (polystyrene, poly(methylmethacrylate), poly(vinyl acetate) and poly(cyclohexane methyl acrylate)) and four organic molecular glass formers (ortho-terphenyl, glycerol, PCB-62, and PDE). Previously, it has been shown that for all eight materials, the Casalini-Roland thermodynamical scaling, τα = f(Tvγsp) (where T is temperature and vsp is specific volume) is satisfied (R. Casalini and C. M. Roland, Phys. Rev. E, 2004, 69(6), 62501). It has also been previously shown that the same scaling emerges naturally (for sufficiently low pressures) within the "SL-TS2" framework (V. V. Ginzburg, Soft Matter, 2021, 17, 9094-9106). Here, we fit the ambient pressure curves for the relaxation time and the specific volume as functions of temperature for the eight materials and observe a good agreement between theory and experiment. We then use the Casalini-Roland scaling to convert those results into "master curves", thus enabling predictions of relaxation times and specific volumes at elevated pressures. The proposed approach can be used to describe other glass-forming materials, both low-molecular-weight and polymeric.
Collapse
Affiliation(s)
- Valeriy V Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
| | - Alessio Zaccone
- Department of Physics, University of Milan, via Celoria 16, 20133 Milano, Italy
| | - Riccardo Casalini
- Chemistry Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA
| |
Collapse
|
11
|
Galimzyanov BN, Yarullin DT, Mokshin AV. Kinetics of inherent processes counteracting crystallization in supercooled monatomic liquid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:454002. [PMID: 36067789 DOI: 10.1088/1361-648x/ac8fd1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Crystallization of supercooled liquids is mainly determined by two competing processes associated with the transition of particles (atoms) from liquid phase to crystalline one and, vice versa, with the return of particles from crystalline phase to liquid one. The quantitative characteristics of these processes are the so-called attachment rateg+and the detachment rateg-, which determine how particles change their belonging from one phase to another. In the present study, acorrespondence rulebetween the ratesg+andg-as functions of the sizeNof growing crystalline nuclei is defined for the first time. In contrast to the well-known detailed balance condition, which relatesg+(N)andg-(N)atN=nc(wherencis the critical nucleus size) and is satisfied only at the beginning of the nucleation regime, the foundcorrespondence ruleis fulfilled at all the main stages of crystallization kinetics (crystal nucleation, growth and coalescence). On the example of crystallizing supercooled Lennard-Jones liquid, the rateg-was calculated for the first time at different supercooling levels and for the wide range of nucleus sizesN∈[nc;40nc]. It was found that for the whole range of nucleus sizes, the detachment rateg-is only≈2% less than the attachment rateg+. This is direct evidence that the role of the processes that counteract crystallization remains significant at all the stages of crystallization. Based on the obtained results, a kinetic equation was formulated for the time-dependent distribution function of the nucleus sizes, that is an alternative to the well-known kinetic Becker-Döring-Zeldovich-Frenkel equation.
Collapse
Affiliation(s)
- B N Galimzyanov
- Kazan Federal University, 420008 Kazan, Russia
- Udmurt Federal Research Center of the Ural Branch of the RAS, 426067 Izhevsk, Russia
| | | | - A V Mokshin
- Kazan Federal University, 420008 Kazan, Russia
- Udmurt Federal Research Center of the Ural Branch of the RAS, 426067 Izhevsk, Russia
| |
Collapse
|
12
|
Shen Z, Carrillo JMY, Sumpter BG, Wang Y. Decoding polymer self-dynamics using a two-step approach. Phys Rev E 2022; 106:014502. [PMID: 35974619 DOI: 10.1103/physreve.106.014502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The self-correlation function and corresponding self-intermediate scattering function in Fourier space are important quantities for describing the molecular motions of liquids. This work draws attention to a largely overlooked issue concerning the analysis of these space-time density-density correlation functions of polymers. We show that the interpretation of non-Gaussian behavior of polymers is generally complicated by intrachain averaging of distinct self-dynamics of different segments. By the very nature of the mathematics involved, the averaging process not only conceals critical dynamical information, but also contributes to the observed non-Gaussian dynamics. To fully expose this issue and provide a thorough benchmark of polymer self-dynamics, we perform analyses of coarse-grained molecular dynamics simulations of linear and ring polymer melts as well as several theoretical models using a "two-step" approach, where interchain and intrachain averagings of segmental self-dynamics are separated. While past investigations primarily focused on the average behavior, our results indicate that a more nuanced approach to polymer self-dynamics is clearly required.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
13
|
Jin T, Coley CW, Alexander-Katz A. Molecular signatures of the glass transition in polymers. Phys Rev E 2022; 106:014506. [PMID: 35974655 DOI: 10.1103/physreve.106.014506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The glass transition temperature (T_{g}) is one of the most fundamental properties of polymers. T_{g} is predicted by some theories as a sudden change in a "macroscopic" quantity (e.g., compressibility). However, for systems with "soft" glass transitions where the change is gradual it becomes hard to pinpoint precisely the transition temperature as well as the set of molecular changes occurring during this transition. Here, we introduce two new molecular signatures for the glass transition of polymers that exhibit clear changes as one approaches T_{g}: (i) differential change of the probability distribution of dihedral angles as a function of temperature and (ii) the distribution of fractional of the time spent in the different torsional states. These new signatures provide insights into the glass transition in polymers by directly exhibiting the concept of spatial heterogeneity and dynamical ergodicity breaking in such systems, as well as provide a key step to quantitatively obtain the transition temperature from molecular characteristics of the polymeric systems.
Collapse
Affiliation(s)
- Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
Dang MT, Duy NVA, Zaccone A, Schall P, Dinh VA. Structural modification enhances the optoelectronic properties of defect blue phosphorene thin films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:285702. [PMID: 35443237 DOI: 10.1088/1361-648x/ac68be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Active enhancement of the optical absorption coefficient to improve the light converting efficiency of thin-film solar cell materials is crucial to develop the next-generation solar cell devices. Here we report first-principles calculations with generalized gradient approximation to study the optoelectronic properties of pristine and divacancy (DV) blue phosphorene (BlueP) thin films under structural deformation. We show that instead of formingsp-like covalent bonds as in the pristine BlueP layer, a DV introduces two particular dangling bonds between the voids. Using a microscopic (non-) affine deformation model, we reveal that the orbital hybridization of these dangling bonds is strongly modified in both the velocity and vorticity directions depending on the type of deformation, creating an effective light trap to enhance the material absorption efficiency. Furthermore, this successful light trap is complemented by a clear signature ofσ+πplasmon when a DV BlueP layer is slightly compressive. These results demonstrate a practical approach to tailor the optoelectronic properties of low-dimensional materials and to pave a novel strategy to design functionalized solar cell devices from the bottom-up with selective defects.
Collapse
Affiliation(s)
- M T Dang
- School of Education, Can Tho University, 3/2 Street, Ninh Kieu, Can Tho, Vietnam
| | - N V A Duy
- FPT University, Can Tho Campus, 600 Nguyen Van Cu Street, Ninh Kieu, Can Tho, Vietnam
| | - A Zaccone
- Department of Physics 'A Pontremoli', University of Milan, via Celoria 16, 20133 Milan, Italy
| | - P Schall
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - V A Dinh
- Department of Precision Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Mirzahossein E, Grzelka M, Pan Z, Demirkurt B, Habibi M, Brouwer AM, Bonn D. Molecular rotors to probe the local viscosity of a polymer glass. J Chem Phys 2022; 156:174901. [DOI: 10.1063/5.0087572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate the local viscosity of a polymer glass around its glass transition temperature using environment-sensitive fluorescent molecular rotors embedded in the polymer matrix. The rotors' fluorescence depends on the local viscosity, and measuring the fluorescence intensity and lifetime of the probe therefore allows to measure the local free volume in the polymer glass when going through the glass transition. This also allows us to study the local viscosity and free volume when the polymer film is put under an external stress. We find that the film does not flow homogeneously, but undergoes shear banding that is visible as a spatially varying free volume and viscosity.
Collapse
Affiliation(s)
| | - Marion Grzelka
- University of Amsterdam Van der Waals-Zeeman Institute, Netherlands
| | - Zhongcheng Pan
- Institute of Physics, University of Amsterdam Van der Waals-Zeeman Institute, Netherlands
| | - Begüm Demirkurt
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Mehdi Habibi
- Laboratory of Physical Chemistry of Foods, Wageningen University, 6708WG Wageningen, Netherlands
| | - Albert M Brouwer
- University of Amsterdam Van 't Hoff Institute for Molecular Sciences, Netherlands
| | - Daniel Bonn
- Institute of Physics, University of Amsterdam, Netherlands
| |
Collapse
|
16
|
Ginzburg VV. Combined description of polymer PVT and relaxation data using a dynamic "SL-TS2" mean-field lattice model. SOFT MATTER 2021; 17:9094-9106. [PMID: 34559175 DOI: 10.1039/d1sm00953b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We develop a combined model to describe the pressure-volume-temperature (PVT) thermodynamics and the α- and β-relaxation time dynamics in glass-forming amorphous materials. The PVT results are described using a two-state modification of the Sanchez-Lacombe equation of state (SL-EoS). The minimization of the Sanchez-Lacombe free energy expression allows one to calculate the density (or specific volume) and the "solid fraction" as a function of temperature and pressure. The solid fraction, ψ(T,P), is then substituted into the TS2 mean-field model (V. V. Ginzburg, Soft Matter, 2020, 16, 810), and the equilibrium relaxation times and the glass transition temperature are calculated. Finally, we use a dynamic model of a Tool-Narayanaswami-Moynihan (TNM)-type to describe the density relaxation as a function of the cooling rate. We applied the new framework to describe experimental data for polystyrene and poly(methylmethacrylate) and found a good qualitative and quantitative agreement.
Collapse
Affiliation(s)
- Valeriy V Ginzburg
- Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw Lane, Room 2100, East Lansing, Michigan 48824-1226, USA.
| |
Collapse
|
17
|
Phan AD, Ngan NK, Le NB, Thanh LTM. Toward a Better Understanding of Activation Volume and Dynamic Decoupling of Glass‐Forming Liquids under Compression. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anh D. Phan
- Faculty of Materials Science and Engineering Phenikaa University Hanoi 12116 Vietnam
- Phenikaa Institute for Advanced Study Phenikaa University Hanoi 12116 Vietnam
| | - Nguyen K. Ngan
- Faculty of Materials Science and Engineering Phenikaa University Hanoi 12116 Vietnam
| | - Nam B. Le
- School of Engineering Physics Hanoi University of Science and Technology 1 Dai Co Viet Hanoi 10000 Vietnam
| | - Le T. M. Thanh
- Faculty of Basic Science Posts and Telecommunications Institute of Technology 122 Hoang Quoc Viet Hanoi 10000 Vietnam
| |
Collapse
|
18
|
Najafi M, Habibi M, Fokkink R, Hennink WE, Vermonden T. LCST polymers with UCST behavior. SOFT MATTER 2021; 17:2132-2141. [PMID: 33439188 DOI: 10.1039/d0sm01505a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, temperature dependent behavior of dense dispersions of core crosslinked flower-like micelles is investigated. Micelles were prepared by mixing aqueous solutions of two ABA block copolymers with PEG B-blocks and thermosensitive A-blocks containing PNIPAM and crosslinkable moieties. At a temperature above the lower critical solution temperature (LCST), self-assembly of the polymers resulted in the formation of flower-like micelles with a hydrophilic PEG shell and a hydrophobic core. The micellar core was stabilized by native chemical ligation (NCL). Above the LCST, micelles displayed a radius of ∼35 nm, while a radius of ∼48 nm was found below the LCST due to hydration of the PNIPAM core. Concentrated dispersions of these micelles (≥7.5 wt%) showed glassy state behavior below a critical temperature (Tc: 28 °C) which is close to the LCST of the polymers. Below this Tc, the increase in the micelle volume resulted in compression of micelles together above a certain concentration and formation of a glass. We quantified and compared micelle packing at different concentrations and temperatures. The storage moduli (G') of the dispersions showed a universal dependence on the effective volume fraction, which increased substantially above a certain effective volume fraction of φ = 1.2. Furthermore, a disordered lattice model describing this behavior fitted the experimental data and revealed a critical volume fraction of φc = 1.31 close to the experimental value of φ = 1.2. The findings reported provide insights for the molecular design of novel thermosensitive PNIPAM nanoparticles with tunable structural and mechanical properties.
Collapse
Affiliation(s)
- Marzieh Najafi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods, Wageningen University & Research, 6708 WG Wageningen, Wageningen, The Netherlands
| | - Remco Fokkink
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
19
|
Phan AD. Determination of Young's Modulus of Active Pharmaceutical Ingredients by Relaxation Dynamics at Elevated Pressures. J Phys Chem B 2020; 124:10500-10506. [PMID: 33164514 DOI: 10.1021/acs.jpcb.0c05523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new approach is theoretically proposed to study the glass transition of active pharmaceutical ingredients and a glass-forming anisotropic molecular liquid at high pressures. We describe amorphous materials as a fluid of hard spheres. Effects of nearest neighbor interactions and cooperative motions of particles on glassy dynamics are quantified through a local and collective elastic barrier calculated using the elastically collective nonlinear Langevin equation theory. Inserting two barriers into Kramer's theory gives the structural relaxation time. Then, we formulate a new mapping based on the thermal expansion process under pressure to intercorrelate particle density, temperature, and pressure. This analysis allows us to determine the pressure and temperature dependence of α relaxation. From this, we estimate the effective elastic modulus of amorphous materials and capture the effects of conformation on the relaxation process. Remarkably, our theoretical results agree well with experiments.
Collapse
Affiliation(s)
- Anh D Phan
- Faculty of Materials Science and Engineering, Computer Science, Artificial Intelligence Laboratory, Phenikaa Institute for Advanced Study, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
20
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
21
|
Cui B, Zaccone A. Analytical prediction of logarithmic Rayleigh scattering in amorphous solids from tensorial heterogeneous elasticity with power-law disorder. SOFT MATTER 2020; 16:7797-7807. [PMID: 32745155 DOI: 10.1039/d0sm00814a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The damping or attenuation coefficient of sound waves in solids due to impurities scales with the wavevector to the fourth power, also known as Rayleigh scattering. In amorphous solids, Rayleigh scattering may be enhanced by a logarithmic factor although computer simulations offer conflicting conclusions regarding this enhancement and its microscopic origin. We present a tensorial replica field-theoretic derivation based on heterogeneous or fluctuating elasticity (HE), which shows that long-range (power-law) spatial correlations of the elastic constants, is the origin of the logarithmic enhancement to Rayleigh scattering of phonons in amorphous solids. We also consider the case of zero spatial fluctuations in the elastic constants, and of power-law decaying fluctuations in the internal stresses. Also in this case the logarithmic enhancement to the Rayleigh scattering law can be derived from the proposed tensorial HE framework.
Collapse
Affiliation(s)
- Bingyu Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, UK.
| | - Alessio Zaccone
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, UK. and Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milano, Italy and Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, UK
| |
Collapse
|
22
|
Abstract
The chordless cycle sizes of spatially embedded networks are demonstrated to follow an exponential growth law similar to random graphs if the number of nodes [Formula: see text] is below a critical value [Formula: see text] For covalent polymer networks, increasing the network size, as measured by the number of cross-link nodes, beyond [Formula: see text] results in a crossover to a new regime in which the characteristic size of the chordless cycles [Formula: see text] no longer increases. From this result, the onset and intensity of finite-size effects can be predicted from measurement of [Formula: see text] in large networks. Although such information is largely inaccessible with experiments, the agreement of simulation results from molecular dynamics, Metropolis Monte Carlo, and kinetic Monte Carlo suggests the crossover is a fundamental physical feature which is insensitive to the details of the network generation. These results show random graphs as a promising model to capture structural differences in confined physical networks.
Collapse
Affiliation(s)
- Timothy W Sirk
- Polymers Branch, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005
| |
Collapse
|
23
|
Zaccone A, Terentjev EM. Rheology of hard glassy materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:395402. [PMID: 32579542 DOI: 10.1088/1361-648x/ab9914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Glassy solids may undergo a fluidization (yielding) transition upon deformation whereby the material starts to flow plastically. It has been a matter of debate whether this process is controlled by a specific time scale, from among different competing relaxation/kinetic processes. Here, two constitutive models of cage relaxation are examined within the microscopic model of nonaffine elasto-plasticity. One (widely used) constitutive model implies that the overall relaxation rate is dominated by the fastest between the structural (α) relaxation rate and the shear-induced relaxation rate. A different model is formulated here which, instead, assumes that the slowest (global) relaxation process controls the overall relaxation. We show that the first model is not compatible with the existence of finite elastic shear modulus for quasistatic (low-frequency) deformation, while the second model is able to describe all key features of deformation of 'hard' glassy solids, including the yielding transition, the nonaffine-to-affine plateau crossover, and the rate-stiffening of the modulus. The proposed framework provides an operational way to distinguish between 'soft' glasses and 'hard' glasses based on the shear-rate dependence of the structural relaxation time.
Collapse
Affiliation(s)
- A Zaccone
- Department of Physics 'A Pontremoli', University of Milan, via Celoria 16, 20133 Milano, Italy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
| | - E M Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
| |
Collapse
|
24
|
van der Kooij H, Broer DJ, Liu D, Sprakel J. Electroplasticization of Liquid Crystal Polymer Networks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19927-19937. [PMID: 32267679 PMCID: PMC7193546 DOI: 10.1021/acsami.0c01748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 05/14/2023]
Abstract
Shape-shifting liquid crystal networks (LCNs) can transform their morphology and properties in response to external stimuli. These active and adaptive polymer materials can have impact in a diversity of fields, including haptic displays, energy harvesting, biomedicine, and soft robotics. Electrically driven transformations in LCN coatings are particularly promising for application in electronic devices, in which electrodes are easily integrated and allow for patterning of the functional response. The morphing of these coatings, which are glassy in the absence of an electric field, relies on a complex interplay between polymer viscoelasticity, liquid crystal order, and electric field properties. Morphological transformations require the material to undergo a glass transition that plasticizes the polymer sufficiently to enable volumetric and shape changes. Understanding how an alternating current can plasticize very stiff, densely cross-linked networks remains an unresolved challenge. Here, we use a nanoscale strain detection method to elucidate this electric-field-induced devitrification of LCNs. We find how a high-frequency alternating field gives rise to pronounced nanomechanical changes at a critical frequency, which signals the electrical glass transition. Across this transition, collective motion of the liquid crystal molecules causes the network to yield from within, leading to network weakening and subsequent nonlinear expansion. These results unambiguously prove the existence of electroplasticization. Fine-tuning the induced emergence of plasticity will not only enhance the surface functionality but also enable more efficient conversion of electrical energy into mechanical work.
Collapse
Affiliation(s)
- Hanne
M. van der Kooij
- Physical Chemistry
and Soft Matter, Wageningen University &
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Dutch
Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands
| | - Dirk J. Broer
- Stimuli-Responsive Functional Materials and Devices, Department of
Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Danqing Liu
- Stimuli-Responsive Functional Materials and Devices, Department of
Chemical Engineering and Chemistry, Eindhoven
University of Technology, 5612 AE Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Joris Sprakel
- Physical Chemistry
and Soft Matter, Wageningen University &
Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
25
|
Boson peak, elasticity, and glass transition temperature in polymer glasses: Effects of the rigidity of chain bending. Sci Rep 2019; 9:19514. [PMID: 31862997 PMCID: PMC6925306 DOI: 10.1038/s41598-019-55564-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/29/2019] [Indexed: 11/24/2022] Open
Abstract
The excess low-frequency vibrational spectrum, called boson peak, and non-affine elastic response are the most important particularities of glasses. Herein, the vibrational and mechanical properties of polymeric glasses are examined by using coarse-grained molecular dynamics simulations, with particular attention to the effects of the bending rigidity of the polymer chains. As the rigidity increases, the system undergoes a glass transition at a higher temperature (under a constant pressure), which decreases the density of the glass phase. The elastic moduli, which are controlled by the decrease of the density and the increase of the rigidity, show a non-monotonic dependence on the rigidity of the polymer chain that arises from the non-affine component. Moreover, a clear boson peak is observed in the vibrational density of states, which depends on the macroscopic shear modulus G. In particular, the boson peak frequency ωBP is proportional to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt{G}$$\end{document}G. These results provide a positive correlation between the boson peak, shear elasticity, and the glass transition temperature.
Collapse
|
26
|
Cui B, Zaccone A, Rodney D. Nonaffine lattice dynamics with the Ewald method reveals strongly nonaffine elasticity of α-quartz. J Chem Phys 2019; 151:224509. [DOI: 10.1063/1.5129025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bingyu Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
| | - Alessio Zaccone
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE Cambridge, United Kingdom
- Department of Physics “A. Pontremoli”, University of Milan, via Celoria 16, 20133 Milano, Italy
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, United Kingdom
| | - David Rodney
- Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
27
|
Klochko L, Baschnagel J, Wittmer JP, Semenov AN. Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations. J Chem Phys 2019. [DOI: 10.1063/1.5110997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- L. Klochko
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J. Baschnagel
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - J. P. Wittmer
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| | - A. N. Semenov
- Institut Charles Sadron, CNRS - UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
28
|
Onuki A, Kawasaki T. Theory of applying shear strains from boundary walls: Linear response in glasses. J Chem Phys 2019; 150:124504. [PMID: 30927885 DOI: 10.1063/1.5082154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We construct a linear response theory of applying shear deformations from boundary walls in the film geometry in Kubo's theoretical scheme. Our method is applicable to any solids and fluids. For glasses, we assume quasi-equilibrium around a fixed inherent state. Then, we obtain linear-response expressions for any variables including the stress and the particle displacements, even though the glass interior is elastically inhomogeneous. In particular, the shear modulus can be expressed in terms of the correlations between the interior stress and the forces from the walls. It can also be expressed in terms of the inter-particle correlations, as has been shown in the previous literature. Our stress relaxation function includes the effect of the boundary walls and can be used for inhomogeneous flow response. We show the presence of long-ranged, long-lived correlations among the fluctuations of the forces from the walls and the displacements of all the particles in the cell. We confirm these theoretical results numerically in a two-dimensional model glass. As an application, we describe emission and propagation of transverse sounds after boundary wall motions using these time-correlation functions. We also find resonant sound amplification when the frequency of an oscillatory shear approaches that of the first transverse sound mode.
Collapse
Affiliation(s)
- Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
29
|
Palyulin VV, Ness C, Milkus R, Elder RM, Sirk TW, Zaccone A. Parameter-free predictions of the viscoelastic response of glassy polymers from non-affine lattice dynamics. SOFT MATTER 2018; 14:8475-8482. [PMID: 30152833 DOI: 10.1039/c8sm01468j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the viscoelastic response of amorphous polymers using theory and simulations. By accounting for internal stresses and considering instantaneous normal modes (INMs) within athermal non-affine theory, we make parameter-free predictions of the dynamic viscoelastic moduli obtained in coarse-grained simulations of polymer glasses at non-zero temperatures. The theoretical results show very good correspondence with rheology data collected from molecular dynamics simulations over five orders of magnitude in frequency, with some instabilities that accumulate in the low-frequency part on approach to the glass transition. These results provide evidence that the mechanical glass transition itself is continuous and thus represents a crossover rather than a true phase transition. The relatively sharp drop of the low-frequency storage modulus across the glass transition temperature can be explained mechanistically within the proposed theory: the proliferation of low-eigenfrequency vibrational excitations (boson peak and nearly-zero energy excitations) is directly responsible for the rapid growth of a negative non-affine contribution to the storage modulus.
Collapse
Affiliation(s)
- Vladimir V Palyulin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Milkus R, Ness C, Palyulin VV, Weber J, Lapkin A, Zaccone A. Interpretation of the Vibrational Spectra of Glassy Polymers Using Coarse-Grained Simulations. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rico Milkus
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Christopher Ness
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Vladimir V. Palyulin
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Jana Weber
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Alexei Lapkin
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Alessio Zaccone
- Department of Chemical Engineering
and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
31
|
van de Laar T, Schuurman H, van der Scheer P, Maarten van Doorn J, van der Gucht J, Sprakel J. Light from Within: Sensing Weak Strains and FemtoNewton Forces in Single Molecules. Chem 2018. [DOI: 10.1016/j.chempr.2017.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Zaccone A. Harnessing Entropy in Single-Molecule Force Spectroscopy with Semiconducting Polymers. Chem 2018. [DOI: 10.1016/j.chempr.2018.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Higler R, Krausser J, van der Gucht J, Zaccone A, Sprakel J. Linking slow dynamics and microscopic connectivity in dense suspensions of charged colloids. SOFT MATTER 2018; 14:780-788. [PMID: 29302676 DOI: 10.1039/c7sm01781b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The quest to unravel the nature of the glass transition, where the viscosity of a liquid increases by many orders of magnitude, while its static structure remains largely unaffected, remains unresolved. While various structural and dynamical precursors to vitrification have been identified, a predictive and quantitative description of how subtle changes at the microscopic scale give rise to the steep growth in macroscopic viscosity is missing. It was recently proposed that the presence of long-lived bonded structures within the liquid may provide the long-sought connection between local structure and global dynamics. Here we directly observe and quantify the connectivity dynamics in liquids of charged colloids en route to vitrification using three-dimensional confocal microscopy. We determine the dynamic structure from the real-space van Hove correlation function and from the particle trajectories, providing upper and lower bounds on connectivity dynamics. Based on these data, we extend Dyre's model for the glass transition to account for particle-level structural dynamics; this results in a microscopic expression for the slowing down of relaxations in the liquid that is in quantitative agreement with our experiments. These results indicate how vitrification may be understood as a dynamical connectivity transition with features that are strongly reminiscent of rigidity percolation scenarios.
Collapse
Affiliation(s)
- Ruben Higler
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
34
|
Ness C, Palyulin VV, Milkus R, Elder R, Sirk T, Zaccone A. Nonmonotonic dependence of polymer-glass mechanical response on chain bending stiffness. Phys Rev E 2018; 96:030501. [PMID: 29346945 DOI: 10.1103/physreve.96.030501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/07/2022]
Abstract
We investigate the mechanical properties of amorphous polymers by means of coarse-grained simulations and nonaffine lattice dynamics theory. A small increase of polymer chain bending stiffness leads first to softening of the material, while hardening happens only upon further strengthening of the backbones. This nonmonotonic variation of the storage modulus G^{'} with bending stiffness is caused by a competition between additional resistance to deformation offered by stiffer backbones and decreased density of the material due to a necessary decrease in monomer-monomer coordination. This counterintuitive finding suggests that the strength of polymer glasses may in some circumstances be enhanced by softening the bending of constituent chains.
Collapse
Affiliation(s)
- Christopher Ness
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Vladimir V Palyulin
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Rico Milkus
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Robert Elder
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 20783, USA.,Bennett Aerospace, Inc., Cary, North Carolina 27511, USA
| | - Timothy Sirk
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 20783, USA
| | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
35
|
Kriuchevskyi I, Wittmer JP, Meyer H, Benzerara O, Baschnagel J. Shear-stress fluctuations and relaxation in polymer glasses. Phys Rev E 2018; 97:012502. [PMID: 29448435 DOI: 10.1103/physreve.97.012502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 06/08/2023]
Abstract
We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasistatic and dynamical) shear-stress fluctuations as a function of temperature T and sampling time Δt. The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time averaged for each shear plane) to the stress-fluctuation relation μ_{sf} for the shear modulus and the shear-stress relaxation modulus G(t). Using 100 independent configurations, we pay attention to the respective standard deviations. While the ensemble-averaged modulus μ_{sf}(T) decreases continuously with increasing T for all Δt sampled, its standard deviation δμ_{sf}(T) is nonmonotonic with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump singularity at the glass transition is thus ill posed. Confirming the effective time-translational invariance of our systems, the Δt dependence of μ_{sf} and related quantities can be understood using a weighted integral over G(t).
Collapse
Affiliation(s)
- I Kriuchevskyi
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
- LAMCOS, INSA, 27 av. Jean Capelle, 69621 Villeurbanne Cedex, France
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Meyer
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - O Benzerara
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
36
|
Plaza-Rivera CO, Nguyen HT, Hoy RS. Isostaticity and the solidification of semiflexible polymer melts. SOFT MATTER 2017; 13:7948-7952. [PMID: 29034933 DOI: 10.1039/c7sm01442b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using molecular dynamics simulations of a tangent-soft-sphere bead-spring polymer model, we examine the degree to which semiflexible polymer melts solidify at isostaticity. Flexible and stiff chains crystallize when they are isostatic as defined by appropriate degree-of-freedom-counting arguments. Semiflexible chains also solidify when isostatic if a generalized isostaticity criterion that accounts for the slow freezing out of configurational freedom as chain stiffness increases is employed. The configurational freedom associated with bond angles (θ) can be associated with the characteristic ratio C∞ = (1 + 〈cos(θ)〉)/(1 - 〈cos(θ)〉). We find that the dependence of the average coordination number at solidification [Z(Ts)] on chains' characteristic ratio C∞ has the same functional form [Z ≃ a - b ln(C∞)] as the dependence of the average coordination number at jamming [Z(ϕJ)] on C∞ in athermal systems, suggesting that jamming-related phenomena play a significant role in thermal polymer solidification.
Collapse
Affiliation(s)
| | - Hong T Nguyen
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
37
|
Kriuchevskyi I, Wittmer JP, Meyer H, Baschnagel J. Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses. PHYSICAL REVIEW LETTERS 2017; 119:147802. [PMID: 29053315 DOI: 10.1103/physrevlett.119.147802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Using molecular dynamics simulation of a standard coarse-grained polymer glass model, we investigate by means of the stress-fluctuation formalism the shear modulus μ as a function of temperature T and sampling time Δt. While the ensemble-averaged modulus μ(T) is found to decrease continuously for all Δt sampled, its standard deviation δμ(T) is nonmonotonic, with a striking peak at the glass transition. Confirming the effective time-translational invariance of our systems, μ(Δt) can be understood using a weighted integral over the shear-stress relaxation modulus G(t). While the crossover of μ(T) gets sharper with an increasing Δt, the peak of δμ(T) becomes more singular. It is thus elusive to predict the modulus of a single configuration at the glass transition.
Collapse
Affiliation(s)
- I Kriuchevskyi
- Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J P Wittmer
- Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - H Meyer
- Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - J Baschnagel
- Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France
| |
Collapse
|
38
|
Bernini S, Puosi F, Leporini D. Thermodynamic scaling of relaxation: insights from anharmonic elasticity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:135101. [PMID: 28102828 DOI: 10.1088/1361-648x/aa5a7e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time [Formula: see text] in terms of the quantity [Formula: see text], where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial-energy correlations. We propose a method for evaluating both the characteristic exponent [Formula: see text] and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent [Formula: see text] in terms of the lattice Grüneisen parameter [Formula: see text] and the isochoric anharmonicity [Formula: see text]. An analytic expression of the TS master curve of [Formula: see text] with [Formula: see text] as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent [Formula: see text] and (ii) the isochoric anharmonicity [Formula: see text], as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity [Formula: see text] is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.
Collapse
Affiliation(s)
- S Bernini
- Dipartimento di Fisica 'Enrico Fermi', Università di Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. Present address: Jawaharlal Nehru Center for Advanced Scientific Research, Theoretical Sciences Unit, Jakkur Campus, Bengaluru 560064, India
| | | | | |
Collapse
|
39
|
Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz DA. Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. PHYSICAL REVIEW LETTERS 2017; 118:088003. [PMID: 28282174 DOI: 10.1103/physrevlett.118.088003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 05/12/2023]
Abstract
Crystals with low latent heat are predicted to melt from an entropically stabilized body-centered cubic symmetry. At this weakly first-order transition, strongly correlated fluctuations are expected to emerge, which could change the nature of the transition. Here we show how large fluctuations stabilize bcc crystals formed from charged colloids, giving rise to strongly power-law correlated heterogeneous dynamics. Moreover, we find that significant nonaffine particle displacements lead to a vanishing of the nonaffine shear modulus at the transition. We interpret these observations by reformulating the Born-Huang theory to account for nonaffinity, illustrating a scenario of ordered solids reaching a state where classical lattice dynamics fail.
Collapse
Affiliation(s)
- Joris Sprakel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Frans Spaepen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter Schall
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
40
|
Abstract
We study jamming in model freely rotating polymers as a function of chain length N and bond angle θ_{0}. The volume fraction at jamming ϕ_{J}(θ_{0}) is minimal for rigid-rodlike chains (θ_{0}=0), and increases monotonically with increasing θ_{0}≤π/2. In contrast to flexible polymers, marginally jammed states of freely rotating polymers are highly hypostatic, even when bond and angle constraints are accounted for. Large-aspect-ratio (small θ_{0}) chains behave comparably to stiff fibers: resistance to large-scale bending plays a major role in their jamming phenomenology. Low-aspect-ratio (large θ_{0}) chains behave more like flexible polymers, but still jam at much lower densities due to the presence of frozen-in three-body correlations corresponding to the fixed bond angles. Long-chain systems jam at lower ϕ and are more hypostatic at jamming than short-chain systems. Implications of these findings for polymer solidification are discussed.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
41
|
Cui B, Milkus R, Zaccone A. Direct link between boson-peak modes and dielectric α-relaxation in glasses. Phys Rev E 2017; 95:022603. [PMID: 28297893 DOI: 10.1103/physreve.95.022603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Indexed: 06/06/2023]
Abstract
We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting generalized Langevin equation. The resulting framework requires the knowledge of the vibrational density of states (DOS) as input, which we take from numerical evaluation of a marginally stable harmonic disordered lattice, featuring a strong boson peak (excess of soft modes over Debye ∼ω_{p}^{2} law). The dielectric function calculated based on this ansatz is compared with experimental data for the paradigmatic case of glycerol at T≲T_{g}. Good agreement is found for both the reactive (real) part of the response and for the α-relaxation peak in the imaginary part, with a significant improvement over earlier theoretical approaches. On the low-frequency side of the α peak, the fitting supports the presence of ∼ω_{p}^{4} modes at vanishing eigenfrequency as recently shown [E. Lerner, G. During, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.035501]. α-wing asymmetry and stretched-exponential behavior are recovered by our framework, which shows that these features are, to a large extent, caused by the soft boson-peak modes in the DOS.
Collapse
Affiliation(s)
- Bingyu Cui
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Cambridge CB2 3RA, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Rico Milkus
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Cambridge CB2 3RA, United Kingdom
| | - Alessio Zaccone
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Cambridge CB2 3RA, United Kingdom
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
42
|
Lappala A, Zaccone A, Terentjev EM. Polymer glass transition occurs at the marginal rigidity point with connectivity z* = 4. SOFT MATTER 2016; 12:7330-7337. [PMID: 27517325 DOI: 10.1039/c6sm01568a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We re-examine the physical origin of the polymer glass transition from the point of view of marginal rigidity, which is achieved at a certain average number of mechanically active intermolecular contacts per monomer. In the case of polymer chains in a melt/poor solvent, each monomer has two neighbors bound by covalent bonds and also a number of central-force contacts modelled by the Lennard-Jones (LJ) potential. We find that when the average number of contacts per monomer (covalent and non-covalent) exceeds the critical value z* ≈ 4, the system becomes solid and the dynamics arrested - a state that we declare the glass. Coarse-grained Brownian dynamics simulations show that at sufficient strength of LJ attraction (which effectively represents the depth of quenching, or the quality of solvent) the polymer globule indeed crosses the threshold of z*, and becomes a glass with a finite zero-frequency shear modulus, G∝ (z-z*). We verify this by showing the distinction between the 'liquid' polymer droplet at z < z*, which changes shape and adopts the spherical conformation in equilibrium, and the glassy 'solid' droplet at z > z*, which retains its shape frozen at the moment of z* crossover. These results provide a robust microscopic criterion to tell the liquid apart from the glass for the linear polymers.
Collapse
Affiliation(s)
- Anna Lappala
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|
43
|
Mizuno H, Saitoh K, Silbert LE. Elastic moduli and vibrational modes in jammed particulate packings. Phys Rev E 2016; 93:062905. [PMID: 27415345 DOI: 10.1103/physreve.93.062905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Indexed: 06/06/2023]
Abstract
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{*}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{*}→0, those modes for ω<ω^{*} contribute less and less, while contributions from those for ω>ω^{*} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.
Collapse
Affiliation(s)
- Hideyuki Mizuno
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Kuniyasu Saitoh
- Faculty of Engineering Technology, MESA+, University of Twente, 7500 AE Enschede, The Netherlands
| | - Leonardo E Silbert
- Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, USA
| |
Collapse
|
44
|
Rizzi LG, Auer S, Head DA. Importance of non-affine viscoelastic response in disordered fibre networks. SOFT MATTER 2016; 12:4332-4338. [PMID: 27079274 DOI: 10.1039/c6sm00139d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Disordered fibre networks are ubiquitous in nature and have a wide range of industrial applications as novel biomaterials. Predicting their viscoelastic response is straightforward for affine deformations that are uniform over all length scales, but when affinity fails, as has been observed experimentally, modelling becomes challenging. Here we present a numerical methodology, related to an existing framework for amorphous packings, to predict the steady-state viscoelastic spectra and degree of affinity for disordered fibre networks driven at arbitrary frequencies. Applying this method to a peptide gel model reveals a monotonic increase of the shear modulus as the soft, non-affine normal modes are successively suppressed as the driving frequency increases. In addition to being dominated by fibril bending, these low frequency network modes are also shown to be delocalised. The presented methodology provides insights into the importance of non-affinity in the viscoelastic response of peptide gels, and is easily extendible to all types of fibre networks.
Collapse
Affiliation(s)
- L G Rizzi
- Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, Brazil and School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - S Auer
- School of Chemistry, University of Leeds, LS2 9JT, Leeds, UK
| | - D A Head
- School of Computing, University of Leeds, LS2 9JT, Leeds, UK.
| |
Collapse
|
45
|
Dang MT, Denisov D, Struth B, Zaccone A, Schall P. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:44. [PMID: 27106107 DOI: 10.1140/epje/i2016-16044-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/18/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the reversibility and hysteresis of the sharp symmetry change from anisotropic solid to isotropic liquid dynamics observed in the oscillatory shear of colloidal glasses (D. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5 14359 (2015)). We use strain sweeps with increasing and decreasing strain amplitude to show that, in analogy with equilibrium transitions, this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis. Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects arise from frequency-dependent non-affine structural cage rearrangements at large strain. These results consolidate the first-order-like nature of the oscillatory shear transition and quantify related hysteresis effects both via measurements and theoretical modelling.
Collapse
Affiliation(s)
- M T Dang
- Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - D Denisov
- Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - B Struth
- Deutsches Elektronen-Synchrotron, Hamburg, Germany
| | - A Zaccone
- Statistical Physics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA, Cambridge, UK
| | - P Schall
- Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Saw S, Harrowell P. Rigidity in Condensed Matter and Its Origin in Configurational Constraint. PHYSICAL REVIEW LETTERS 2016; 116:137801. [PMID: 27082003 DOI: 10.1103/physrevlett.116.137801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Motivated by the formal argument that a nonzero shear modulus is the result of averaging over a constrained configuration space, we demonstrate that the shear modulus calculated over a range of temperatures and averaging times can be expressed (relative to its infinite frequency value) as a single function of the mean squared displacement. This result is shown to hold for both a glass-liquid and a crystal-liquid system.
Collapse
Affiliation(s)
- Shibu Saw
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
47
|
Saitoh K, Mizuno H. Anomalous energy cascades in dense granular materials yielding under simple shear deformations. SOFT MATTER 2016; 12:1360-1367. [PMID: 26701740 DOI: 10.1039/c5sm02760h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By using molecular dynamics (MD) simulations of dense granular particles in two dimensions, we study turbulent-like structures of their non-affine velocities under simple shear deformations. We find that the spectrum of non-affine velocities, introduced as an analog of the energy spectrum for turbulent flows, exhibits the power-law decay if the system is yielding in a quasi-static regime, where large-scale collective motions and inelastic interactions of granular particles are crucial for the anomalous cascade of kinetic energy. Based on hydrodynamic equations of dense granular materials, which include both kinetic and contact contributions in constitutive relations, we derive a theoretical expression for the spectrum, where a good agreement between the result of MD simulations and theoretical prediction is established over a wide range of length scales.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Faculty of Engineering Technology, MESA+, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| | | |
Collapse
|
48
|
Li D, Xu H, Wittmer JP. Glass transition of two-dimensional 80-20 Kob-Andersen model at constant pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:045101. [PMID: 26740502 DOI: 10.1088/0953-8984/28/4/045101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We reconsider numerically the two-dimensional version of the Kob-Andersen model (KA2d) with a fraction of 80% of large spheres. A constant moderate pressure is imposed while the temperature T is systematically quenched from the liquid limit through the glass transition at [Formula: see text] down to very low temperatures. Monodisperse Lennard-Jones (mdLJ) bead systems, forming a crystal phase at low temperatures, are used to highlight several features of the KA2d model. As can be seen, e.g. from the elastic shear modulus G(T), determined using the stress-fluctuation formalism, our KA2d model is a good glass-former. A continuous cusp-singularity, [Formula: see text] with [Formula: see text], is observed in qualitative agreement with other recent numerical and theoretical work, however in striking conflict with the additive jump discontinuity predicted by mode-coupling theory.
Collapse
Affiliation(s)
- D Li
- LCP-A2MC, Institut Jean Barriol, Université de Lorraine and CNRS, 1 bd Arago, 57078 Metz Cedex 03, France
| | | | | |
Collapse
|
49
|
Li SJ, Xie SJ, Li YC, Qian HJ, Lu ZY. Influence of molecular-weight polydispersity on the glass transition of polymers. Phys Rev E 2016; 93:012613. [PMID: 26871128 DOI: 10.1103/physreve.93.012613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 06/05/2023]
Abstract
It is well known that the polymer glass transition temperature T_{g} is dependent on molecular weight, but the role of molecular-weight polydispersity on T_{g} is unclear. Using molecular-dynamics simulations, we clarify that for polymers with the same number-average molecular weight, the molecular-weight distribution profile (either in Schulz-Zimm form or in bimodal form) has very little influence on the glass transition temperature T_{g}, the average segment dynamics (monomer motion, bond orientation relaxation, and torsion transition), and the relaxation-time spectrum, which are related to the local nature of the glass transition. By analyzing monomer motions in different chains, we find that the motion distribution of monomers is altered by molecular-weight polydispersity. Molecular-weight polydispersity dramatically enhances the dynamic heterogeneity of monomer diffusive motions after breaking out of the "cage," but it has a weak influence on the dynamic heterogeneity of the short time scales and the transient spatial correlation between temporarily localized monomers. The stringlike cooperative motion is also not influenced by molecular-weight polydispersity, supporting the idea that stringlike collective motion is not strongly correlated with chain connectivity.
Collapse
Affiliation(s)
- Shu-Jia Li
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| | - Shi-Jie Xie
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| | - Yan-Chun Li
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| | - Hu-Jun Qian
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| | - Zhong-Yuan Lu
- Institute of Theoretical Chemistry, State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130021, China
| |
Collapse
|
50
|
Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc Natl Acad Sci U S A 2015; 112:13762-7. [PMID: 26504208 DOI: 10.1073/pnas.1503741112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present an analytic scheme to connect the fragility and viscoelasticity of metallic glasses to the effective ion-ion interaction in the metal. This is achieved by an approximation of the short-range repulsive part of the interaction, combined with nonaffine lattice dynamics to obtain analytical expressions for the shear modulus, viscosity, and fragility in terms of the ion-ion interaction. By fitting the theoretical model to experimental data, we are able to link the steepness of the interionic repulsion to the Thomas-Fermi screened Coulomb repulsion and to the Born-Mayer valence electron overlap repulsion for various alloys. The result is a simple closed-form expression for the fragility of the supercooled liquid metal in terms of few crucial atomic-scale interaction and anharmonicity parameters. In particular, a linear relationship is found between the fragility and the energy scales of both the screened Coulomb and the electron overlap repulsions. This relationship opens up opportunities to fabricate alloys with tailored thermoelasticity and fragility by rationally tuning the chemical composition of the alloy according to general principles. The analysis presented here brings a new way of looking at the link between the outer shell electronic structure of metals and metalloids and the viscoelasticity and fragility thereof.
Collapse
|