1
|
Prakash P, Baig Y, Peaudecerf FJ, Goldstein RE. Dynamics of an algae-bacteria microcosm: Photosynthesis, chemotaxis, and expulsion in inhomogeneous active matter. Proc Natl Acad Sci U S A 2025; 122:e2410225122. [PMID: 40096603 PMCID: PMC11962504 DOI: 10.1073/pnas.2410225122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025] Open
Abstract
In nature, there are significant relationships known between microorganisms from two kingdoms of life, as in the supply of vitamin B12 by bacteria to algae. Such interactions motivate general investigations into the spatiotemporal dynamics of metabolite exchanges. Here we study by experiment and theory a model system: a coculture of the bacterium Bacillus subtilis, an obligate aerobe that is chemotactic to oxygen, and a nonmotile mutant of the alga Chlamydomonas reinhardtii, which photosynthetically produces oxygen when illuminated. Strikingly, when a shaft of light illuminates a thin, initially uniform suspension of the two, the chemotactic influx of bacteria to the photosynthetically active region leads to expulsion of the algae from that area. We propose that this effect arises from advection by the inhomogeneous bacterial concentration. The resulting generalization of Fick's law has been proposed in the context of chemotaxis and is mathematically related to the "turbulent pumping" in magnetohydrodynamics.
Collapse
Affiliation(s)
- Praneet Prakash
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | - Yasa Baig
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| | | | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, CambridgeCB3 0WA, United Kingdom
| |
Collapse
|
2
|
Nishiguchi D, Shiratani S, Takeuchi KA, Aranson IS. Vortex reversal is a precursor of confined bacterial turbulence. Proc Natl Acad Sci U S A 2025; 122:e2414446122. [PMID: 40085657 PMCID: PMC11929451 DOI: 10.1073/pnas.2414446122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
Active turbulence, or chaotic self-organized collective motion, is often observed in concentrated suspensions of motile bacteria and other systems of self-propelled interacting agents. To date, there is no fundamental understanding of how geometrical confinement orchestrates active turbulence and alters its physical properties. Here, by combining large-scale experiments, computer modeling, and analytical theory, we have identified a generic sequence of transitions occurring in bacterial suspensions confined in cylindrical wells of varying radii. With increasing the well's radius, we observed that persistent vortex motion gives way to periodic vortex reversals, four-vortex pulsations, and then well-developed active turbulence. Using computational modeling and analytical theory, we have shown that vortex reversal results from the nonlinear interaction of the first three azimuthal modes that become unstable with the radius increase. The analytical results account for our key experimental findings. To further validate our approach, we reconstructed equations of motion from experimental data. Our findings shed light on the universal properties of confined bacterial active matter and can be applied to various biological and synthetic active systems.
Collapse
Affiliation(s)
- Daiki Nishiguchi
- Department of Physics, School of Science, Institute of Science Tokyo, Meguro-ku, Tokyo152–8551, Japan
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Sora Shiratani
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Kazumasa A. Takeuchi
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Institute for Physics of Intelligence, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
| | - Igor S. Aranson
- Department of Physics, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo113–0033, Japan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Mathematics, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
3
|
Nourhani A. Biomimetic swarm of active particles with coupled passive-active interactions. SOFT MATTER 2025. [PMID: 40028744 DOI: 10.1039/d4sm01298d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We study the universal behavior of a class of active colloids whose design is inspired by the collective dynamics of natural systems such as schools of fish and flocks of birds. These colloids, with off-center repulsive interaction sites, self-organize into polar swarms exhibiting long-range order and directional motion without significant hydrodynamic interactions. Our simulations show that the system transitions from motile perfect crystals to solid-like, liquid-like, and gas-like states depending on noise levels, repulsive interaction strength, and particle density. By analyzing swarm polarity and hexatic bond order parameters, we demonstrate that effective volume fractions based on force-range and torque-range interactions explain the system's universal behavior. This work lays a groundwork for biomimetic applications utilizing the cooperative polar dynamics of active colloids.
Collapse
Affiliation(s)
- Amir Nourhani
- Department of Mechanical Engineering, University of Akron, Akron, Ohio 44325, USA
- Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, USA
- Departments of Biology, University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
4
|
Japaridze A, Struijk V, Swamy K, Rosłoń I, Shoshani O, Dekker C, Alijani F. Synchronization of E. coli Bacteria Moving in Coupled Microwells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407832. [PMID: 39584392 PMCID: PMC11753501 DOI: 10.1002/smll.202407832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Indexed: 11/26/2024]
Abstract
Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E. coli cells that can be mutually synchronized. Circular microcavities are used to isolate E. coli cells that swim along the cavity wall, resulting in self-sustained oscillations. Connecting these cavities by microchannels yields synchronization patterns with phase slips. It is demonstrated that the coordinated movement observed in coupled E. coli oscillators follows mathematical rules of synchronization which is used to quantify the coupling strength. These findings advance the understanding of motility in confinement, and open up new opportunities for engineering networks of coupled oscillators in microbial active matter.
Collapse
Affiliation(s)
| | - Victor Struijk
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Kushal Swamy
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | | | - Oriel Shoshani
- Ben‐Gurion University of the NegevBeer‐Sheva841050Israel
| | - Cees Dekker
- Delft University of TechnologyDelft2628 CDThe Netherlands
| | - Farbod Alijani
- Delft University of TechnologyDelft2628 CDThe Netherlands
| |
Collapse
|
5
|
He SQ, Yin X, Liang D, Chang Z, Xu GK. Spontaneous oscillation in collective microswimmers: Insights from a chiral self-propelled rod model. Phys Rev E 2025; 111:014411. [PMID: 39972754 DOI: 10.1103/physreve.111.014411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/23/2024] [Indexed: 02/21/2025]
Abstract
Active systems exhibit fascinating self-organized structures and rich motility patterns, yet the underlying mechanisms governing their emergence and characteristics remain elusive. Here, we develop a chiral self-propelled rod (CSPR) model with mechanical contact-induced quorum sensing to investigate the spatiotemporal dynamics of dense bacteria populations. Our findings show that the CSPR model showcases spontaneous nonequilibrium oscillatory clustering of active systems. The motion characteristics of these clusters depend on colony features (microswimmers' morphology and density) and mechanical contact-induced sensing mechanisms (polarization alignment and angular velocity alignment of CSPR). Interestingly, reinforced strength of polar alignment accelerates the formation of stable oscillations, while decreased density and angular velocity alignment strength modify their emergence pattern. Significantly, our study identifies three distinct oscillation patterns: global stable oscillation, bistable oscillation, and multistable oscillation, and reveals that their phase transitions are driven by variations in the spatial correlation of CSPR. These insights provide a new perspective on understanding the intricate evolution of active matter, opening possible avenues for emerging applications.
Collapse
Affiliation(s)
- Shuang-Quan He
- Xi'an Jiaotong University, Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an 710049, China
| | - Xu Yin
- Xi'an Jiaotong University, Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an 710049, China
| | - Dong Liang
- Xi'an Jiaotong University, Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an 710049, China
| | - Zhuo Chang
- Xi'an Jiaotong University, Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an 710049, China
| | - Guang-Kui Xu
- Xi'an Jiaotong University, Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an 710049, China
| |
Collapse
|
6
|
Xu G, Zhou X, Chen W, Hu G, Yan Z, Li Z, Yang S, Qiu CW. Hydrodynamic moiré superlattice. Science 2024; 386:1377-1383. [PMID: 39700273 DOI: 10.1126/science.adq2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
The structural periodicity in photonic crystals guarantees the crystal's effective energy band structure, which is the fundamental cornerstone of topological and moiré physics. However, the shear modulus in most fluids is close to zero, which makes it challenging for fluids to maintain spatial periodicity akin to photonic crystals. We realized periodic vortices in hydrodynamic metamaterials and created a bilayer moiré superlattice by stacking and twisting two such vortex fluids. We observed energy delocalization and localization when the twist angles, respectively, result in the Pythagorean and non-Pythagorean triples in the fluidic moiré superlattice. Anomalous localization was found even in commensurate moiré fluids with large lattice constants that satisfy Pythagorean triples. Our work reports the moiré phenomena in fluids and opens an unexpected door to controlling the energy transfer, mass transport, and particle navigation through the elaborate dynamics of vortices in fluidic moiré superlattices.
Collapse
Affiliation(s)
- Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Xue Zhou
- School of Computer Science and Information Engineering, Chongqing Technology and Business University, Chongqing, China
| | - Weijin Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Zhiyuan Yan
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Zhipeng Li
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Shuihua Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore
| |
Collapse
|
7
|
Carlsson C, Gao T. Active droplet driven by collective chemotaxis. SOFT MATTER 2024; 20:9562-9571. [PMID: 39576104 DOI: 10.1039/d4sm00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Surfactant-laden fluid interfaces of soft colloids, such as bubbles and droplets, are ubiquitously seen in various natural phenomena and industrial settings. In canonical systems where microparticles are driven in hydrodynamic flows, convection of the surfactant changes local surface tension. Subsequently, the interplay of Marangoni and hydrodynamic stresses leads to rich interfacial dynamics that directly impact the particle motions. Here we introduce a new mechanism for self-propelled droplets, driven by a thin layer of chemically active microparticles situated at the interface of a suspended droplet, which is a direct extension of the planar collective surfing model by Masoud and Shelley (H. Masoud and M. J. Shelley, Phys. Rev. Lett., 2014, 112, 128304). These particles can generate chemicals locally, leading to spontaneous Marangoni flows that drive the self-aggregation of microparticles. This process, in turn, creates a polarized surfactant distribution, which induces collective chemotaxis and dipolar bulk flows, ultimately breaking the symmetry. By assuming the local surfactant production to be either proportional to particle density or saturated at a high particle density, we observe that the system can be chemotactically diverging or approach a steady state with constant migration velocity. The system is studied analytically in the linear region for the initial transient dynamics, yielding critical numbers and familiar patterns, as well as numerically for larger amplitudes and over a long time using spectral methods.
Collapse
Affiliation(s)
- Christian Carlsson
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48864, USA.
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48864, USA
| |
Collapse
|
8
|
Peters FD, Rahman T, Zhang H, Wan LQ. Energetic scaling behavior of patterned epithelium. J Biomech 2024; 176:112342. [PMID: 39342903 PMCID: PMC11560681 DOI: 10.1016/j.jbiomech.2024.112342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Cellular monolayers display various degrees of coordinated motion ranging from the small scale of just a few cells to large multi-cellular scales. This collective migration carries important physical cues for creating proper tissue morphology. Previous studies have demonstrated that the energetics of the epithelial monolayer show a linear variation with time in conjunction with an arrest in monolayer motion after confluency. However, little is known about how the energetics of monolayer development are affected by confined geometries. Here, we demonstrate that micropatterned epithelial monolayers display a non-linear change in energetic variables, which coincides with the large-scale coordination of migration. This non-linear scaling behavior was further seen to be associated with the biased alignment of cells and cell-cell adhesion. These findings provide a new understanding of how developing epithelia may be impacted by different conditions in vivo.
Collapse
Affiliation(s)
- Frank D Peters
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Tasnif Rahman
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Haokang Zhang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Modeling, Simulation, and Imaging in Medicine, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
9
|
Neville L, Eggers J, Liverpool TB. Controlling wall-particle interactions with activity. SOFT MATTER 2024; 20:8395-8406. [PMID: 39390954 DOI: 10.1039/d4sm00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We theoretically determine the effective forces on hard disks near walls embedded inside active nematic liquid crystals. When the disks are sufficiently close to the wall and the flows are sufficiently slow, we can obtain exact expressions for the effective forces. We find these forces and the dynamics of disks near the wall depend both on the properties of the active nematic and on the anchoring conditions on the disks and the wall. Our results show that the presence of active stresses attract planar anchored disks to walls if the activity is extensile, and repel them if contractile. For normal anchored disks the reverse is true; they are attracted in contractile systems, and repelled in extensile ones. By choosing the activity and anchoring, these effects may be helpful in controlling the self assembly of active nematic colloids.
Collapse
Affiliation(s)
- Luke Neville
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
- The Isaac Newton Institute for Mathematical Sciences, Cambridge CB3 0EH, UK
| | - Jens Eggers
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
- The Isaac Newton Institute for Mathematical Sciences, Cambridge CB3 0EH, UK
| |
Collapse
|
10
|
Wei D, Yang Y, Wei X, Golestanian R, Li M, Meng F, Peng Y. Scaling Transition of Active Turbulence from Two to Three Dimensions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402643. [PMID: 39137163 PMCID: PMC11481389 DOI: 10.1002/advs.202402643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/25/2024] [Indexed: 08/15/2024]
Abstract
Turbulent flows are observed in low-Reynolds active fluids, which display similar phenomenology to the classical inertial turbulence but are of a different nature. Understanding the dependence of this new type of turbulence on dimensionality is a fundamental challenge in non-equilibrium physics. Real-space structures and kinetic energy spectra of bacterial turbulence are experimentally measured from two to three dimensions. The turbulence shows three regimes separated by two critical confinement heights, resulting from the competition of bacterial length, vortex size and confinement height. Meanwhile, the kinetic energy spectra display distinct universal scaling laws in quasi-2D and 3D regimes, independent of bacterial activity, length, and confinement height, whereas scaling exponents transition in two steps around the critical heights. The scaling behaviors are well captured by the hydrodynamic model we develop, which employs image systems to represent the effects of confining boundaries. The study suggests a framework for investigating the effect of dimensionality on non-equilibrium self-organized systems.
Collapse
Affiliation(s)
- Da Wei
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Yaochen Yang
- CAS Key Laboratory for Theoretical PhysicsInstitute of Theoretical PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| | - Xuefeng Wei
- CAS Key Laboratory for Theoretical PhysicsInstitute of Theoretical PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self‐Organization (MPIDS)D‐37077GöttingenGermany
- Rudolf Peierls centre for Theoretical PhysicsUniversity of OxfordOxfordOX1 3PUUnited Kingdom
| | - Ming Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| | - Fanlong Meng
- CAS Key Laboratory for Theoretical PhysicsInstitute of Theoretical PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
| | - Yi Peng
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- School of Physical SciencesUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049China
| |
Collapse
|
11
|
Gautam D, Meena H, Matheshwaran S, Chandran S. Harnessing density to control the duration of intermittent Lévy walks in bacterial turbulence. Phys Rev E 2024; 110:L012601. [PMID: 39160909 DOI: 10.1103/physreve.110.l012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/29/2024] [Indexed: 08/21/2024]
Abstract
Dense bacterial suspensions display collective motion exhibiting coherent flow structures reminiscent of turbulent flows. However, in contrast to inertial turbulence, the microscopic dynamics underlying bacterial turbulence is only beginning to be understood. Here, we report experiments revealing correlations between microscopic dynamics and the emergence of collective motion in bacterial suspensions. Our results demonstrate the existence of three microscopic dynamical regimes: initial ballistic dynamics followed by an intermittent Lévy walk before the intriguing decay to random Gaussian fluctuations. Our experiments capture that the fluid correlation time earmarks the transition from Lévy to Gaussian fluctuations demonstrating the microscopic reason underlying the observation. By harnessing the flow activity via bacterial concentration, we reveal systematic control over the flow correlation timescales, which, in turn, allows controlling the duration of the Lévy walk.
Collapse
|
12
|
Tiwari C, Singh SP. Collective dynamics of active dumbbells near a circular obstacle. SOFT MATTER 2024; 20:4816-4826. [PMID: 38855922 DOI: 10.1039/d4sm00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In this article, we present the collective dynamics of active dumbbells in the presence of a static circular obstacle using Brownian dynamics simulation. The active dumbbells aggregate on the surface of a circular obstacle beyond a critical radius. The aggregation is non-uniform along the circumference, and the aggregate size increases with the activity (Pe) and the curvature radius (Ro). The dense aggregate of active dumbbells displays persistent rotational motion with a certain angular speed, which linearly increases with activity. Furthermore, we show a strong polar ordering of the active dumbbells within the aggregate. The polar ordering exhibits long-range correlation, with the correlation length corresponding to the aggregate size. Additionally, we show that the residence time of an active dumbbell on the obstacle surface increases rapidly with area fraction due to many-body interactions that lead to a slowdown of the rotational diffusion. This article further considers the dynamical behavior of a tracer particle in the solution of active dumbbells. Interestingly, the speed of the passive tracer particle displays a crossover from monotonically decreasing to increasing with the size of the tracer particle upon increasing the dumbbells' speed. Furthermore, the effective diffusion of the tracer particle displays non-monotonic behavior with the area fraction; the initial increase in diffusivity is followed by a decrease for a larger area fraction.
Collapse
Affiliation(s)
- Chandranshu Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
13
|
Backofen R, Altawil AYA, Salvalaglio M, Voigt A. Nonequilibrium hyperuniform states in active turbulence. Proc Natl Acad Sci U S A 2024; 121:e2320719121. [PMID: 38848299 PMCID: PMC11181138 DOI: 10.1073/pnas.2320719121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
We demonstrate that the complex spatiotemporal structure in active fluids can feature characteristics of hyperuniformity. Using a hydrodynamic model, we show that the transition from hyperuniformity to nonhyperuniformity and antihyperuniformity depends on the strength of active forcing and can be related to features of active turbulence without and with scaling characteristics of inertial turbulence. Combined with identified signatures of Levy walks and nonuniversal diffusion in these systems, this allows for a biological interpretation and the speculation of nonequilibrium hyperuniform states in active fluids as optimal states with respect to robustness and strategies of evasion and foraging.
Collapse
Affiliation(s)
- Rainer Backofen
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
| | - Abdelrahman Y. A. Altawil
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
| | - Marco Salvalaglio
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
- Dresden Centre for Computational Materials Science, Technische Universität Dresden, 01062Dresden, Germany
| | - Axel Voigt
- Institute of Scientific Computing, Faculty of Mathematics, Technische Universität Dresden, Dresden01062
- Dresden Centre for Computational Materials Science, Technische Universität Dresden, 01062Dresden, Germany
- Center of Systems Biology Dresden, 01307Dresden, Germany
- Cluster of Excellence, Physics of Life, Technische Universität Dresden, 01307Dresden, Germany
| |
Collapse
|
14
|
Yashunsky V, Pearce DJG, Ariel G, Be'er A. Topological defects in multi-layered swarming bacteria. SOFT MATTER 2024; 20:4237-4245. [PMID: 38747575 PMCID: PMC11135144 DOI: 10.1039/d4sm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Topological defects, which are singular points in a director field, play a major role in shaping active systems. Here, we experimentally study topological defects and the flow patterns around them, that are formed during the highly rapid dynamics of swarming bacteria. The results are compared to the predictions of two-dimensional active nematics. We show that, even though some of the assumptions underlying the theory do not hold, the swarm dynamics is in agreement with two-dimensional nematic theory. In particular, we look into the multi-layered structure of the swarm, which is an important feature of real, natural colonies, and find a strong coupling between layers. Our results suggest that the defect-charge density is hyperuniform, i.e., that long range density-fluctuations are suppressed.
Collapse
Affiliation(s)
- Victor Yashunsky
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel.
| | - Daniel J G Pearce
- Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel.
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- The Department of Physics, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| |
Collapse
|
15
|
Keta YE, Klamser JU, Jack RL, Berthier L. Emerging Mesoscale Flows and Chaotic Advection in Dense Active Matter. PHYSICAL REVIEW LETTERS 2024; 132:218301. [PMID: 38856251 DOI: 10.1103/physrevlett.132.218301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
We study two models of overdamped self-propelled disks in two dimensions, with and without aligning interactions. Both models support active mesoscale flows, leading to chaotic advection and transport over large length scales in their homogeneous dense fluid states, away from dynamical arrest. They form streams and vortices reminiscent of multiscale flow patterns in turbulence. We show that the characteristics of these flows do not depend on the specific details of the active fluids, and result from the competition between crowding effects and persistent propulsions. This observation suggests that dense active suspensions of self-propelled particles present a type of "active turbulence" distinct from collective flows reported in other types of active systems.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
| | - Juliane U Klamser
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
16
|
Yadav RS, Sharma S, Metzler R, Chakrabarti R. A passive star polymer in a dense active bath: insights from computer simulations. SOFT MATTER 2024; 20:3910-3922. [PMID: 38700098 DOI: 10.1039/d4sm00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Sanaa Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Germany.
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
17
|
Romaguera ARDC, Vasconcelos JVA, Negreiros-Neto LG, Pessoa NL, Silva JFD, Cadena PG, Souza AJFD, Oliveira VMD, Barbosa ALR. Multifractal fluctuations in zebrafish (Danio rerio) polarization time series. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:29. [PMID: 38704810 DOI: 10.1140/epje/s10189-024-00423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
In this work, we study the polarization time series obtained from experimental observation of a group of zebrafish (Danio rerio) confined in a circular tank. The complex dynamics of the individual trajectory evolution lead to the appearance of multiple characteristic scales. Employing the Multifractal Detrended Fluctuation Analysis (MF-DFA), we found distinct behaviors according to the parameters used. The polarization time series are multifractal at low fish densities and their average scales with ρ - 1 / 4 . On the other hand, they tend to be monofractal, and their average scales with ρ - 1 / 2 for high fish densities. These two regimes overlap at critical density ρ c , suggesting the existence of a phase transition separating them. We also observed that for low densities, the polarization velocity shows a non-Gaussian behavior with heavy tails associated with long-range correlation and becomes Gaussian for high densities, presenting an uncorrelated regime.
Collapse
Affiliation(s)
- Antonio R de C Romaguera
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil.
| | - João V A Vasconcelos
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Luis G Negreiros-Neto
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Nathan L Pessoa
- Centro de Apoio à Pesquisa, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Jadson F da Silva
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Pabyton G Cadena
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Adauto J F de Souza
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Viviane M de Oliveira
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| | - Anderson L R Barbosa
- Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil
| |
Collapse
|
18
|
Matsukiyo H, Fukuda JI. Oscillating edge current in polar active fluid. Phys Rev E 2024; 109:054604. [PMID: 38907507 DOI: 10.1103/physreve.109.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 06/24/2024]
Abstract
Dense bacterial suspensions exhibit turbulent behavior called bacterial turbulence. The behavior of the bulk unconstrained bacterial turbulence is described well by the Toner-Tu-Swift-Hohenberg (TTSH) equation for the velocity field. However, it remains unclear how we should treat boundary conditions on bacterial turbulence in contact with some boundaries (e.g., solid walls). To be more specific, although the importance of the edge current, the flow along the boundary, has been demonstrated in several experimental studies on confined bacterial suspensions, previous numerical studies based on the TTSH equation employ nonslip boundary conditions and do not seem to properly describe the behavior of bacteria near the boundaries. In this paper, we impose a slip boundary condition on the TTSH equation to describe the bacterial motion at boundaries. We develop a method to implement the slip boundary condition. Using this method, we have successfully produced edge current and discovered that the direction of the edge current temporally oscillates. The oscillation can be attributable to the advection term in the TTSH equation. Our paper demonstrates that boundary conditions could play an important role in the collective dynamics of active systems.
Collapse
Affiliation(s)
- Hiroki Matsukiyo
- Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jun-Ichi Fukuda
- Department of Physics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Langeslay B, Fahy W, Juarez G. Stress and alignment response to curved obstacles in growing bacterial monolayers. Phys Rev E 2024; 109:054608. [PMID: 38907398 DOI: 10.1103/physreve.109.054608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/09/2024] [Indexed: 06/24/2024]
Abstract
Monolayers of growing bacteria, confined within channel geometries, exhibit self-organization into a highly aligned laminar state along the axis of the channel. Although this phenomenon has been observed in experiments and simulations under various boundary conditions, the underlying physical mechanism driving this alignment remains unclear. In this study, we conduct simulations of growing bacteria in two-dimensional channel geometries perturbed by fixed obstacles, either circular or arc shaped, placed at the channel's center. Our findings reveal that even sizable obstacles cause only short-ranged disruptions to the baseline laminar state. These disruptions arise from a competition between local planar anchoring and bulk laminar alignment. At smaller obstacle sizes, bulk alignment fully dominates, while at larger sizes planar anchoring induces increasing local disruptions. Furthermore, our analysis indicates that the resulting configurations of the bacterial system display a striking resemblance to the arrangement of hard-rod smectic liquid crystals around circular obstacles. This suggests that modeling hard-rod bacterial monolayers as smectic, rather than nematic, liquid crystals may yield successful outcomes. The insights gained from our study contribute to the expanding body of research on bacterial growth in channels. Our work provides perspectives on the stability of the laminar state and extends our understanding to encompass more intricate confinement schemes.
Collapse
|
20
|
Padhan NB, Kiran KV, Pandit R. Novel turbulence and coarsening arrest in active-scalar fluids. SOFT MATTER 2024; 20:3620-3627. [PMID: 38619449 DOI: 10.1039/d4sm00163j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We uncover a new type of turbulence - activity-induced homogeneous and isotropic turbulence - in a model that has been employed to investigate motility-induced phase separation (MIPS) in a system of microswimmers. The active Cahn-Hilliard-Navier-Stokes (CHNS) equations, also called active model H, provide a natural theoretical framework for our study. In this CHNS model, a single scalar order parameter ϕ, positive (negative) in regions of high (low) microswimmer density, is coupled with the velocity field u. The activity of the microswimmers is governed by an activity parameter ζ that is positive for extensile swimmers and negative for contractile swimmers. With extensile swimmers, this system undergoes complete phase separation, which is similar to that in binary-fluid mixtures. By carrying out pseudospectral direct numerical simulations (DNSs), we show, for the first time, that (a) this model develops an emergent nonequilibrium, but statistically steady, state (NESS) of active turbulence, for the case of contractile swimmers, if ζ is sufficiently large and negative, and (b) this turbulence arrests the phase separation. We quantify this suppression by showing how the coarsening-arrest length scale does not grow indefinitely, with time t, but saturates at a finite value at large times. We characterise the statistical properties of this active-scalar turbulence by employing energy spectra and fluxes and the spectrum of ϕ. For sufficiently high Reynolds numbers, the energy spectrum (k) displays an inertial range, with a power-law dependence on the wavenumber k. We demonstrate that, in this range, the flux Π(k) assumes a nearly constant, negative value, which indicates that the system shows an inverse cascade of energy, even though energy injection occurs over a wide range of wavenumbers in our active-CHNS model.
Collapse
Affiliation(s)
- Nadia Bihari Padhan
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Kolluru Venkata Kiran
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Rahul Pandit
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
21
|
Wen X, Feng J, Sang Y, Ge F, Chaté H, He Y. United under stress: High-speed transport network emerging at bacterial living edge. FUNDAMENTAL RESEARCH 2024; 4:563-569. [PMID: 38933215 PMCID: PMC11197528 DOI: 10.1016/j.fmre.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 11/19/2022] Open
Abstract
Individuals tend to move freely when there is enough room but would act collectively for their survival under external stress. In the case of living cells, for instance, when a drop of low-density flagellated bacterial solution is transferred onto the agar surface, the initially disordered movement of individual bacteria would be replaced with coordinated cell swarming after a lag phase of a few hours. Here, we study how such cooperation is established while overcoming the disorder at the onset of the lag phase with single nanoparticle tracking. Upon the spreading of the droplet, the bacteria in the solution cluster and align near the almost immobilized contact line confining the drop, forming a narrow ring of cells. As individual cells move in and out of the ring continuously, certain flow patterns emerge in the inter-bacterial fluid. We reveal high-speed long-distance unidirectional flows with definite chirality along the outside of the ring, along the inside of the ring and across the ring. We speculate that these flows enable the fast and efficient transport, facilitating the communication and unification of the bacterial community.
Collapse
Affiliation(s)
- Xiaodong Wen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China
| | - Jingjing Feng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China
| | - Yuqian Sang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China
| | - Feng Ge
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191, France
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Yan He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tshinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Li C, Nijjer J, Feng L, Zhang Q, Yan J, Zhang S. Agent-based modeling of stress anisotropy driven nematic ordering in growing biofilms. SOFT MATTER 2024; 20:3401-3410. [PMID: 38563244 PMCID: PMC11041162 DOI: 10.1039/d3sm01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.
Collapse
Affiliation(s)
- Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Newbolt JW, Lewis N, Bleu M, Wu J, Mavroyiakoumou C, Ramananarivo S, Ristroph L. Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves. Nat Commun 2024; 15:3462. [PMID: 38658577 PMCID: PMC11043384 DOI: 10.1038/s41467-024-47525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Collectively locomoting animals are often viewed as analogous to states of matter in that group-level phenomena emerge from individual-level interactions. Applying this framework to fish schools and bird flocks must account for visco-inertial flows as mediators of the physical interactions. Motivated by linear flight formations, here we show that pairwise flow interactions tend to promote crystalline or lattice-like arrangements, but such order is disrupted by unstably growing positional waves. Using robotic experiments on "mock flocks" of flapping wings in forward flight, we find that followers tend to lock into position behind a leader, but larger groups display flow-induced oscillatory modes - "flonons" - that grow in amplitude down the group and cause collisions. Force measurements and applied perturbations inform a wake interaction model that explains the self-ordering as mediated by spring-like forces and the self-amplification of disturbances as a resonance cascade. We further show that larger groups may be stabilized by introducing variability among individuals, which induces positional disorder while suppressing flonon amplification. These results derive from generic features including locomotor-flow phasing and nonreciprocal interactions with memory, and hence these phenomena may arise more generally in macroscale, flow-mediated collectives.
Collapse
Affiliation(s)
- Joel W Newbolt
- New York University, Courant Institute, Applied Math Lab, New York, USA
| | - Nickolas Lewis
- New York University, Courant Institute, Applied Math Lab, New York, USA
| | - Mathilde Bleu
- New York University, Courant Institute, Applied Math Lab, New York, USA
| | - Jiajie Wu
- New York University, Courant Institute, Applied Math Lab, New York, USA
| | | | | | - Leif Ristroph
- New York University, Courant Institute, Applied Math Lab, New York, USA.
| |
Collapse
|
24
|
Reinken H, Menzel AM. Vortex Pattern Stabilization in Thin Films Resulting from Shear Thickening of Active Suspensions. PHYSICAL REVIEW LETTERS 2024; 132:138301. [PMID: 38613265 DOI: 10.1103/physrevlett.132.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
The need for structuring on micrometer scales is abundant, for example, in view of phononic applications. We here outline a novel approach based on the phenomenon of active turbulence on the mesoscale. As we demonstrate, a shear-thickening carrier fluid of active microswimmers intrinsically stabilizes regular vortex patterns of otherwise turbulent active suspensions. The fluid self-organizes into a periodically structured nonequilibrium state. Introducing additional passive particles of intermediate size leads to regular spatial organization of these objects. Our approach opens a new path toward functionalization through patterning of thin films and membranes.
Collapse
Affiliation(s)
- Henning Reinken
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
25
|
de Wit XM, Fruchart M, Khain T, Toschi F, Vitelli V. Pattern formation by turbulent cascades. Nature 2024; 627:515-521. [PMID: 38509279 PMCID: PMC10954557 DOI: 10.1038/s41586-024-07074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/15/2024] [Indexed: 03/22/2024]
Abstract
Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1-6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear. It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an intermediate scale, which is neither the system size nor the smallest scales at which energy is usually dissipated. Using a combination of theory and large-scale simulations, we show that the tunable wavelength of these cascade-induced patterns can be set by a non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids ranging from bioactive to quantum systems8-12. Odd viscosity, which acts as a scale-dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can arise in natural systems, including atmospheric flows13-19, stellar plasma such as the solar wind20-22, or the pulverization and coagulation of objects or droplets in which mass rather than energy cascades23-25.
Collapse
Affiliation(s)
- Xander M de Wit
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Michel Fruchart
- Gulliver, ESPCI Paris, Université PSL, CNRS, Paris, France
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Tali Khain
- James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands.
- CNR-IAC, Rome, Italy.
| | - Vincenzo Vitelli
- James Franck Institute, The University of Chicago, Chicago, IL, USA.
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Xu H, Wu Y. Self-enhanced mobility enables vortex pattern formation in living matter. Nature 2024; 627:553-558. [PMID: 38480895 DOI: 10.1038/s41586-024-07114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Ranging from subcellular organelle biogenesis to embryo development, the formation of self-organized structures is a hallmark of living systems. Whereas the emergence of ordered spatial patterns in biology is often driven by intricate chemical signalling that coordinates cellular behaviour and differentiation1-4, purely physical interactions can drive the formation of regular biological patterns such as crystalline vortex arrays in suspensions of spermatozoa5 and bacteria6. Here we discovered a new route to self-organized pattern formation driven by physical interactions, which creates large-scale regular spatial structures with multiscale ordering. Specifically we found that dense bacterial living matter spontaneously developed a lattice of mesoscale, fast-spinning vortices; these vortices each consisted of around 104-105 motile bacterial cells and were arranged in space at greater than centimetre scale and with apparent hexagonal order, whereas individual cells in the vortices moved in coordinated directions with strong polar and vortical order. Single-cell tracking and numerical simulations suggest that the phenomenon is enabled by self-enhanced mobility in the system-that is, the speed of individual cells increasing with cell-generated collective stresses at a given cell density. Stress-induced mobility enhancement and fluidization is prevalent in dense living matter at various scales of length7-9. Our findings demonstrate that self-enhanced mobility offers a simple physical mechanism for pattern formation in living systems and, more generally, in other active matter systems10 near the boundary of fluid- and solid-like behaviours11-17.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China.
| |
Collapse
|
27
|
Partovifard A, Grawitter J, Stark H. Controlling active turbulence by activity patterns. SOFT MATTER 2024; 20:1800-1814. [PMID: 38305449 DOI: 10.1039/d3sm01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.
Collapse
Affiliation(s)
- Arghavan Partovifard
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Josua Grawitter
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
28
|
Ye H, Ouyang Z, Lin J. On particle motion in a confined square domain filled with active fluids. SOFT MATTER 2024; 20:1786-1799. [PMID: 38305105 DOI: 10.1039/d3sm01321a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The motion of passive particles in a confined square domain filled with active fluids has been numerically simulated using a direct-fictitious domain method. The ratio of particle diameter to the side length of the square domain (dp/L) is adopted to classify the degree of confinement (i.e., strong or weak confinement). The translational mean-squared displacement (MSDT) of weakly-confined particles scales well with the reported theoretical and experimental results in a short time and eventually reaches a plateau because of the confined environment. Additionally, the radial probability densities of the particle positions gradually increase with increasing distance from the center of the square domain at relatively high activity levels, displaying an apparent rise near the boundary and maximize near the corner. Conversely, the strongly confined particles migrate toward the center of the square domain or approach the corner with continuous rotation. In addition, the localized minima of the angular velocity of the particles show a periodic behavior, with the vortices periodically becoming more organized. Moreover, with increasing activity, two distinct linearly correlated regimes emerge in the relationship between the particle's rotational velocity and the activity. A comprehensive analysis of the collective dynamics reveals that the cutoff length is Rc ≈ 0.19(2.375dp), pointing to the distance at which the velocities of two particles are uncorrelated. Moreover, the spatial correlation function (Ip) shows a small peak at Rr ≈ 0.12(1.5dp), suggesting a relatively strong correlation between a given particle and another particle located at a distance Rr from it. Interestingly, both Rc and Rr are smaller than those observed in an unbounded flow, which indicates that boundary confinement significantly influences the ability of the particles to form coherent structures.
Collapse
Affiliation(s)
- Hao Ye
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
| | - Zhenyu Ouyang
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| | - Jianzhong Lin
- Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou, China.
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, 315210 Ningbo, China.
| |
Collapse
|
29
|
Li Y, Zarei Z, Tran PN, Wang Y, Baskaran A, Fraden S, Hagan MF, Hong P. A machine learning approach to robustly determine director fields and analyze defects in active nematics. SOFT MATTER 2024; 20:1869-1883. [PMID: 38318759 DOI: 10.1039/d3sm01253k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Active nematics are dense systems of rodlike particles that consume energy to drive motion at the level of the individual particles. They exist in natural systems like biological tissues and artificial materials such as suspensions of self-propelled colloidal particles or synthetic microswimmers. Active nematics have attracted significant attention in recent years due to their spectacular nonequilibrium collective spatiotemporal dynamics, which may enable applications in fields such as robotics, drug delivery, and materials science. The director field, which measures the direction and degree of alignment of the local nematic orientation, is a crucial characteristic of active nematics and is essential for studying topological defects. However, determining the director field is a significant challenge in many experimental systems. Although director fields can be derived from images of active nematics using traditional imaging processing methods, the accuracy of such methods is highly sensitive to the settings of the algorithms. These settings must be tuned from image to image due to experimental noise, intrinsic noise of the imaging technology, and perturbations caused by changes in experimental conditions. This sensitivity currently limits automatic analysis of active nematics. To address this, we developed a machine learning model for extracting reliable director fields from raw experimental images, which enables accurate analysis of topological defects. Application of the algorithm to experimental data demonstrates that the approach is robust and highly generalizable to experimental settings that are different from those in the training data. It could be a promising tool for investigating active nematics and may be generalized to other active matter systems.
Collapse
Affiliation(s)
- Yunrui Li
- Computer Science Department, Brandeis University, USA.
| | - Zahra Zarei
- Physics Department, Brandeis University, USA
| | - Phu N Tran
- Physics Department, Brandeis University, USA
| | - Yifei Wang
- Computer Science Department, Brandeis University, USA.
| | | | - Seth Fraden
- Physics Department, Brandeis University, USA
| | | | - Pengyu Hong
- Computer Science Department, Brandeis University, USA.
| |
Collapse
|
30
|
Si X, Fang L. Biologically generated turbulent energy flux in shear flow depends on tensor geometry. PNAS NEXUS 2024; 3:pgae056. [PMID: 38725533 PMCID: PMC11079614 DOI: 10.1093/pnasnexus/pgae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/31/2024] [Indexed: 05/12/2024]
Abstract
It has been proposed that biologically generated turbulence plays an important role in material transport and ocean mixing. Both experimental and numerical studies have reported evidence of the nonnegligible mixing by moderate Reynolds number swimmers, such as zooplankton, in quiescent water, especially at aggregation scales. However, the interaction between biologically generated agitation and the background flow, as a key factor in biologically generated turbulence that could reshape our previous knowledge of biologically generated turbulence, has long been ignored. Here, we show that the geometry between the biologically generated agitation and the background hydrodynamic shear can determine both the intensity and direction of biologically generated turbulent energy flux. Measuring the migration of a centimeter-scale swimmer-as represented by the brine shrimp Artemia salina-in a shear flow and verifying through an analog experiment with an artificial jet revealed that different geometries between the biologically generated agitation and the background shear can result in spectral energy transferring toward larger or smaller scales, which consequently intensifies or attenuates the large-scale hydrodynamic shear. Our results suggest that the long ignored geometry between the biologically generated agitation and the background flow field is an important factor that should be taken into consideration in future studies of biologically generated turbulence.
Collapse
Affiliation(s)
- Xinyu Si
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lei Fang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
31
|
Caporusso CB, Negro G, Suma A, Digregorio P, Carenza LN, Gonnella G, Cugliandolo LF. Phase behaviour and dynamics of three-dimensional active dumbbell systems. SOFT MATTER 2024; 20:923-939. [PMID: 38189452 DOI: 10.1039/d3sm01030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We present a comprehensive numerical study of the phase behavior and dynamics of a three-dimensional active dumbbell system with attractive interactions. We demonstrate that attraction is essential for the system to exhibit nontrivial phases. We construct a detailed phase diagram by exploring the effects of the system's activity, density, and attraction strength. We identify several distinct phases, including a disordered, a gel, and a completely phase-separated phase. Additionally, we discover a novel dynamical phase, that we name percolating network, which is characterized by the presence of a spanning network of connected dumbbells. In the phase-separated phase we characterize numerically and describe analytically the helical motion of the dense cluster.
Collapse
Affiliation(s)
- C B Caporusso
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | - G Negro
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | - A Suma
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | - P Digregorio
- Departement de Fisica de la Materia Condensada, Facultat de Fisica, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - L N Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Department of Physics, Koç University, Rumelifeneri Yolu, 34450 Saryer, Istanbul, Turkey
| | - G Gonnella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy.
| | - L F Cugliandolo
- CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
32
|
Luo W, Baskaran A, Pelcovits RA, Powers TR. Flow states of two dimensional active gels driven by external shear. SOFT MATTER 2024; 20:738-753. [PMID: 38168972 DOI: 10.1039/d3sm00919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow of active gels in straight and annular two-dimensional channels subject to an externally imposed shear. The gels are isotropic in the absence of externally- or activity-driven shear, but have nematic order that increases with shear rate. Using the finite element method, we determine the possible flow states for a range of activities and shear rates. Linear stability analysis of an unconfined gel in a straight channel shows that an externally imposed shear flow can stabilize an extensile fluid that would be unstable to spontaneous flow in the absence of the shear flow, and destabilize a contractile fluid that would be stable against spontaneous flow in the absence of shear flow. These results are in rough agreement with the stability boundaries between the base shear flow state and the nonlinear flow states that we find numerically for a confined active gel. For extensile fluids, we find three kinds of nonlinear flow states in the range of parameters we study: unidirectional flows, oscillatory flows, and dancing flows. To highlight the activity-driven spontaneous component of the nonlinear flows, we characterize these states by the average volumetric flow rate and the wall stress. For contractile fluids, we only find the linear shear flow and a nonlinear unidirectional flow in the range of parameters that we studied. For large magnitudes of the activity, the unidirectional contractile flow develops a boundary layer. Our analysis of annular channels shows how curvature of the streamlines in the base flow affects the transitions among flow states.
Collapse
Affiliation(s)
- Wan Luo
- School of Engineering, Brown University, Providence, RI 02912, USA.
- Center for Fluid Mechanics, Brown University, Providence, RI 02912, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA
| | - Robert A Pelcovits
- Department of Physics, Brown University, Providence, RI 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI 02912, USA
| | - Thomas R Powers
- School of Engineering, Brown University, Providence, RI 02912, USA.
- Center for Fluid Mechanics, Brown University, Providence, RI 02912, USA
- Department of Physics, Brown University, Providence, RI 02912, USA
- Brown Theoretical Physics Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
33
|
Manoharan A, Cp S, Joy A. Persistence in active turbulence. Phys Rev E 2023; 108:L062602. [PMID: 38243515 DOI: 10.1103/physreve.108.l062602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Active fluids such as bacterial swarms, self-propelled colloids, and cell tissues can all display complex spatiotemporal vortices that are reminiscent of inertial turbulence. This emergent behavior, despite the overdamped nature of these systems, is the hallmark of active turbulence. In this Letter, using a generalized hydrodynamic model, we present a study of the persistence problem in active turbulence. We report that the persistence time of passive tracers inside the coherent vortices follows a Weibull probability density whose shape and scale are decided by the strength of activity-contrary to inertial turbulence that displays power-law statistics in this region. In the turbulent background, the persistence time is exponentially distributed that is remindful of inertial turbulence. Finally we show that the driver of persistence inside the coherent vortices is the temporal decorrelation of the topological field, whereas it is the vortex turnover time in the turbulent background.
Collapse
Affiliation(s)
- Amal Manoharan
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjay Cp
- International Center for Theoretical Sciences, Bengaluru 560089, India
| | - Ashwin Joy
- Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
34
|
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field ofheterogeneous anomalous transport(HAT) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nickolay Korabel
- Department of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
35
|
Liao W, Aranson IS. Viscoelasticity enhances collective motion of bacteria. PNAS NEXUS 2023; 2:pgad291. [PMID: 37719751 PMCID: PMC10503537 DOI: 10.1093/pnasnexus/pgad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming. While the collective behavior of bacteria in Newtonian fluids is relatively well understood, many fundamental questions remain open for complex fluids. Here, we report on the collective bacterial motion in a representative biological non-Newtonian viscoelastic environment exemplified by mucus. Experiments are performed with synthetic porcine gastric mucus, natural cow cervical mucus, and a Newtonian-like polymer solution. We have found that an increase in mucin concentration and, correspondingly, an increase in the suspension's elasticity monotonously increases the length scale of collective bacterial locomotion. On the contrary, this length remains practically unchanged in Newtonian polymer solution in a wide range of concentrations. The experimental observations are supported by computational modeling. Our results provide insight into how viscoelasticity affects the spatiotemporal organization of bacterial active matter. They also expand our understanding of bacterial colonization of mucosal surfaces and the onset of antibiotic resistance due to swarming.
Collapse
Affiliation(s)
- Wentian Liao
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor S Aranson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Tiribocchi A, Durve M, Lauricella M, Montessori A, Succi S. Spontaneous motion of a passive fluid droplet in an active microchannel. SOFT MATTER 2023; 19:6556-6568. [PMID: 37599649 PMCID: PMC10467333 DOI: 10.1039/d3sm00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
We numerically study the dynamics of a passive fluid droplet confined within a microchannel whose walls are covered with a thin layer of active gel. The latter represents a fluid of extensile material modelling, for example, a suspension of cytoskeletal filaments and molecular motors. Our results show that the layer is capable of producing a spontaneous flow triggering a rectilinear motion of the passive droplet. For a hybrid design (a single wall covered by the active layer), at the steady state the droplet attains an elliptical shape, resulting from an asymmetric saw-toothed structure of the velocity field. In contrast, if the active gel covers both walls, the velocity field exhibits a fully symmetric pattern considerably mitigating morphological deformations. We further show that the structure of the spontaneous flow in the microchannel can be controlled by the anchoring conditions of the active gel at the wall. These findings are also confirmed by selected 3D simulations. Our results may stimulate further research addressed to design novel microfludic devices whose functioning relies on the collective properties of active gels.
Collapse
Affiliation(s)
- Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Mihir Durve
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| | - Marco Lauricella
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
| | - Andrea Montessori
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche (DICITA), Università degli studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
| | - Sauro Succi
- Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, 00185 Rome, Italy.
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
37
|
Lou Y. Appetizer on soft matter physics concepts in mechanobiology. Dev Growth Differ 2023; 65:234-244. [PMID: 37126437 PMCID: PMC11520965 DOI: 10.1111/dgd.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Mechanosensing, the active responses of cells to the mechanics on multiple scales, plays an indispensable role in regulating cell behaviors and determining the fate of biological entities such as tissues and organs. Here, I aim to give a pedagogical illustration of the fundamental concepts of soft matter physics that aid in understanding biomechanical phenomena from the scale of tissues to proteins. Examples of up-to-date research are introduced to elaborate these concepts. Challenges in applying physics models to biology have also been discussed for biologists and physicists to meet in the field of mechanobiology.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
38
|
Puggioni L, Boffetta G, Musacchio S. Flocking turbulence of microswimmers in confined domains. Phys Rev E 2023; 107:055107. [PMID: 37329031 DOI: 10.1103/physreve.107.055107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
We extensively study the Toner-Tu-Swift-Hohenberg model of motile active matter by means of direct numerical simulations in a two-dimensional confined domain. By exploring the space of parameters of the model we investigate the emergence of a new state of active turbulence which occurs when the aligning interactions and the self-propulsion of the swimmers are strong. This regime of flocking turbulence is characterized by a population of few strong vortices, each surrounded by an island of coherent flocking motion. The energy spectrum of flocking turbulence displays a power-law scaling with an exponent which depends weakly on the model parameters. By increasing the confinement we observe that the system, after a long transient characterized by power-law-distributed transition times, switches to the ordered state of a single giant vortex.
Collapse
Affiliation(s)
- L Puggioni
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - G Boffetta
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - S Musacchio
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| |
Collapse
|
39
|
Krommydas D, Carenza LN, Giomi L. Hydrodynamic Enhancement of p-atic Defect Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098101. [PMID: 36930922 DOI: 10.1103/physrevlett.130.098101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
We investigate numerically and analytically the effects of hydrodynamics on the dynamics of topological defects in p-atic liquid crystals, i.e., two-dimensional liquid crystals with p-fold rotational symmetry. Importantly, we find that hydrodynamics fuels a generic passive self-propulsion mechanism for defects of winding number s=(p-1)/p and arbitrary p. Strikingly, we discover that hydrodynamics always accelerates the annihilation dynamics of pairs of ±1/p defects and that, contrary to expectations, this effect increases with p. Our Letter paves the way toward understanding cell intercalation and other remodeling events in epithelial layers.
Collapse
Affiliation(s)
- Dimitrios Krommydas
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Livio Nicola Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
40
|
Lei T, Zhao C, Yan R, Zhao N. Collective behavior of chiral active particles with anisotropic interactions in a confined space. SOFT MATTER 2023; 19:1312-1329. [PMID: 36723153 DOI: 10.1039/d2sm01402e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Extensive studies so far have indicated that chirality, anisotropic interactions and spatial confinement play important roles in collective dynamics in active matter systems. However, how the overall interplay of these crucial factors affects the novel phases and macroscopic properties remains less explored. Here, using Langevin dynamics simulations, we investigate the self-organization of a chiral active system composed of amphiphilic Janus particles, where the embedded anisotropic interaction orientation is assumed to be either the same or just opposite to the direction of active force. A wealth of dynamic phases are observed including formation of phase separation, clustering state, homogeneous state, spiral vortex flow, swarm and spatiotemporal oscillation. By tuning self-propelled angular speed and anisotropic interaction strength, we identify the non-equilibrium phase diagrams, and reveal the very non-trivial modulation of both vortex and swarm patterns. Intriguingly, we find that strong chirality-alignment-confinement coupling yields a self-driven spatial and temporal organization periodically oscillating between a counterclockwise vortex and a clockwise one. Our work provides a new understanding of the novel self-assembly arising in such a confined system and enables new strategies for achieving ordered dynamic structures.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Chaonan Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
41
|
Sar GK, Ghosh D, O'Keeffe K. Pinning in a system of swarmalators. Phys Rev E 2023; 107:024215. [PMID: 36932525 DOI: 10.1103/physreve.107.024215] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/19/2023]
Abstract
We study a population of swarmalators (swarming/mobile oscillators) which run on a ring and are subject to random pinning. The pinning represents the tendency of particles to stick to defects in the underlying medium which competes with the tendency to sync and swarm. The result is rich collective behavior. A highlight is low dimensional chaos which in systems of ordinary, Kuramoto-type oscillators is uncommon. Some of the states (the phase wave and split phase wave) resemble those seen in systems of Janus matchsticks or Japanese tree frogs. The others (such as the sync and unsteady states) may be observable in systems of vinegar eels, electrorotated Quincke rollers, or other swarmalators moving in disordered environments.
Collapse
Affiliation(s)
- Gourab Kumar Sar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Kevin O'Keeffe
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
42
|
Zhang YH, Yao Z. Alignment rule and geometric confinement lead to stability of a vortex in active flow. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:4. [PMID: 36682015 DOI: 10.1140/epje/s10189-023-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Vortices are hallmarks of a wide range of nonequilibrium phenomena in fluids at multiple length scales. In this work, we numerically study the whirling motion of self-propelled soft point particles confined in circular domain, and aim at addressing the stability issue of the coherent vortex structure. By the combination of dynamical and statistical analysis at the individual particle level, we reveal the persistence of the whirling motion resulting from the subtle competition of activity and geometric confinement. In the stable whirling motion, the scenario of the coexistence of the irregular microscopic motions of individual particles and the regular global whirling motion is fundamentally different from the motion of a vortex in passive fluid. Possible orientational order coexisting with the whirling are further explored. This work shows the stability mechanism of vortical dynamics in active media under the alignment rule in confined space and may have implications in creating and harnessing macroscale coherent dynamical states by tuning the confining geometry.
Collapse
Affiliation(s)
- Yi-Heng Zhang
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhenwei Yao
- School of Physics and Astronomy, Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
43
|
Samatas S, Lintuvuori J. Hydrodynamic Synchronization of Chiral Microswimmers. PHYSICAL REVIEW LETTERS 2023; 130:024001. [PMID: 36706412 DOI: 10.1103/physrevlett.130.024001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We study synchronization in bulk suspensions of spherical microswimmers with chiral trajectories using large scale numerics. The model is generic. It corresponds to the lowest order solution of a general model for self-propulsion at low Reynolds numbers, consisting of a nonaxisymmetric rotating source dipole. We show that both purely circular and helical swimmers can spontaneously synchronize their rotation. The synchronized state corresponds to velocity alignment with high orientational order in both the polar and azimuthal directions. Finally, we consider a racemic mixture of helical swimmers where intraspecies synchronization is observed while the system remains as a spatially uniform fluid. Our results demonstrate hydrodynamic synchronization as a natural collective phenomenon for microswimmers with chiral trajectories.
Collapse
Affiliation(s)
- Sotiris Samatas
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Juho Lintuvuori
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
44
|
Lim S, Du Y, Lee Y, Panda SK, Tong D, Khalid Jawed M. Fabrication, control, and modeling of robots inspired by flagella and cilia. BIOINSPIRATION & BIOMIMETICS 2022; 18:011003. [PMID: 36533860 DOI: 10.1088/1748-3190/aca63d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medicalin vivomicrobots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yayun Du
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yongkyu Lee
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Shivam Kumar Panda
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Dezhong Tong
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
45
|
Morris RJ, Stevenson D, Sukhodub T, Stanley-Wall NR, MacPhee CE. Density and temperature controlled fluid extraction in a bacterial biofilm is determined by poly-γ-glutamic acid production. NPJ Biofilms Microbiomes 2022; 8:98. [PMID: 36528619 PMCID: PMC9759580 DOI: 10.1038/s41522-022-00361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.
Collapse
Affiliation(s)
- Ryan J. Morris
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| | - David Stevenson
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Tetyana Sukhodub
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Nicola R. Stanley-Wall
- grid.8241.f0000 0004 0397 2876Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH UK
| | - Cait E. MacPhee
- grid.4305.20000 0004 1936 7988National Biofilms Innovation Centre, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD UK
| |
Collapse
|
46
|
Chen L, Lee CF, Maitra A, Toner J. Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d>2. PHYSICAL REVIEW LETTERS 2022; 129:198001. [PMID: 36399725 DOI: 10.1103/physrevlett.129.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We present a hydrodynamic theory of incompressible polar active fluids with quenched random field disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder and move coherently, in the sense of having a nonzero mean velocity in the hydrodynamic limit. However, the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling exponents in these dimensions.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95302 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
47
|
Maity R, Burada PS. Near- and far-field hydrodynamic interaction of two chiral squirmers. Phys Rev E 2022; 106:054613. [PMID: 36559415 DOI: 10.1103/physreve.106.054613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Hydrodynamic interaction strongly influences the collective behavior of microswimmers. With this work, we study the behavior of two hydrodynamically interacting self-propelled chiral swimmers in the low Reynolds number regime, considering both the near- and far-field interactions. We use the chiral squirmer model [see Burada et al., Phys. Rev. E 105, 024603 (2022)2470-004510.1103/PhysRevE.105.024603], a spherically shaped body with nonaxisymmetric surface slip velocity, which generalizes the well-known squirmer model. The previous work was restricted only to the case, while the far-field hydrodynamic interaction was influential among the swimmers. It did not approach the scenario while both the swimmers are very close and lubrication effects become dominant. We calculate the lubrication force between the swimmers when they are very close. By varying the slip coefficients and the initial configuration of the swimmers, we investigate their hydrodynamic behavior. In the presence of lubrication force, the swimmers either repel each other or exhibit bounded motion where the distance between the swimmers alters periodically. We identify the possible behaviors exhibited by the chiral squirmers, such as monotonic divergence, divergence, and bounded, as was found in the previous study. However, in the current study, we observe that both the monotonic convergence and the convergence states are converted into divergence states due to the arising lubrication effects. The lubrication force favors the bounded motion in some parameter regimes. This study helps to understand the collective behavior of dense suspension of ciliated microorganisms and artificial swimmers.
Collapse
Affiliation(s)
- Ruma Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
48
|
Gomez-Solano JR, Rodríguez RF, Salinas-Rodríguez E. Nonequilibrium dynamical structure factor of a dilute suspension of active particles in a viscoelastic fluid. Phys Rev E 2022; 106:054602. [PMID: 36559383 DOI: 10.1103/physreve.106.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
In this work we investigate the dynamics of the number-density fluctuations of a dilute suspension of active particles in a linear viscoelastic fluid. We propose a model for the frequency-dependent diffusion coefficient of the active particles which captures the effect of rotational diffusion on the persistence of their self-propelled motion and the viscoelasticity of the medium. Using fluctuating hydrodynamics, the linearized equations for the active suspension are derived, from which we calculate its dynamic structure factor and the corresponding intermediate scattering function. For a Maxwell-type rheological model, we find an intricate dependence of these functions on the parameters that characterize the viscoelasticity of the solvent and the activity of the particles, which can significantly deviate from those of an inert suspension of passive particles and of an active suspension in a Newtonian solvent. In particular, in some regions of the parameter space we uncover the emergence of oscillations in the intermediate scattering function at certain wave numbers which represent the hallmark of the nonequilibrium particle activity in the dynamical structure of the suspension and also encode the viscoelastic properties of the medium.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico
| | - Rosalío F Rodríguez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México, Código Postal 04510, Mexico.,FENOMEC, Universidad Nacional Autónoma de México, Apdo. Postal 20-726, 01000 Ciudad de México, Mexico
| | - Elizabeth Salinas-Rodríguez
- Departamento I. P. H., Universidad Autónoma Metropolitana, Iztapalapa, Apdo. Postal 55-534, 09340 Ciudad de México, Mexico
| |
Collapse
|
49
|
Puggioni L, Boffetta G, Musacchio S. Giant vortex dynamics in confined bacterial turbulence. Phys Rev E 2022; 106:055103. [PMID: 36559438 DOI: 10.1103/physreve.106.055103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
We report the numerical evidence of a new state of bacterial turbulence in confined domains. By means of extensive numerical simulations of the Toner-Tu-Swift-Hohenberg model for dense bacterial suspensions in circular geometry, we discover the formation a stable, ordered state in which the angular momentum symmetry is broken. This is achieved by self-organization of a turbulent-like flow into a single, giant vortex of the size of the domain. The giant vortex is surrounded by an annular region close to the boundary, characterized by small-scale, radial vorticity streaks. The average radial velocity profile of the vortex is found to be in agreement with a simple analytical prediction. We also provide an estimate of the temporal and spatial scales of a suitable experimental setup comparable with our numerical findings.
Collapse
Affiliation(s)
- L Puggioni
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - G Boffetta
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| | - S Musacchio
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, via P. Giuria 1, 10125 Torino, Italy
| |
Collapse
|
50
|
Najma B, Varghese M, Tsidilkovski L, Lemma L, Baskaran A, Duclos G. Competing instabilities reveal how to rationally design and control active crosslinked gels. Nat Commun 2022; 13:6465. [PMID: 36309493 PMCID: PMC9617906 DOI: 10.1038/s41467-022-34089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
How active stresses generated by molecular motors set the large-scale mechanics of the cell cytoskeleton remains poorly understood. Here, we combine experiments and theory to demonstrate how the emergent properties of a biomimetic active crosslinked gel depend on the properties of its microscopic constituents. We show that an extensile nematic elastomer exhibits two distinct activity-driven instabilities, spontaneously bending in-plane or buckling out-of-plane depending on its composition. Molecular motors play a dual antagonistic role, fluidizing or stiffening the gel depending on the ATP concentration. We demonstrate how active and elastic stresses are set by each component, providing estimates for the active gel theory parameters. Finally, activity and elasticity were manipulated in situ with light-activable motor proteins, controlling the direction of the instability optically. These results highlight how cytoskeletal stresses regulate the self-organization of living matter and set the foundations for the rational design and optogenetic control of active materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Minu Varghese
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lev Tsidilkovski
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Linnea Lemma
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
- Department of Physics, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Guillaume Duclos
- Department of Physics, Brandeis University, Waltham, MA, 02453, USA.
| |
Collapse
|