1
|
Huang N, Deng H, Liu B, Wang D, Zhao Z. Features and futures of X-ray free-electron lasers. Innovation (N Y) 2021; 2:100097. [PMID: 34557749 PMCID: PMC8454599 DOI: 10.1016/j.xinn.2021.100097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/14/2021] [Indexed: 11/18/2022] Open
Abstract
Linear accelerator-based free-electron lasers (FELs) are the leading source of fully coherent X-rays with ultra-high peak powers and ultra-short pulse lengths. Current X-ray FEL facilities have proved their worth as useful tools for diverse scientific applications. In this paper, we present an overview of the features and future prospects of X-ray FELs, including the working principles and properties of X-ray FELs, the operational status of different FEL facilities worldwide, the applications supported by such facilities, and the current developments and outlook for X-ray FEL-based research.
Collapse
Affiliation(s)
- Nanshun Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixiao Deng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dong Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhentang Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
2
|
Marx-Glowna B, Uschmann I, Schulze KS, Marschner H, Wille HC, Schlage K, Stöhlker T, Röhlsberger R, Paulus GG. Advanced X-ray polarimeter design for nuclear resonant scattering. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:120-124. [PMID: 33399560 PMCID: PMC7842219 DOI: 10.1107/s1600577520015295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This work presents the improvements in the design and testing of polarimeters based on channel-cut crystals for nuclear resonant scattering experiments at the 14.4 keV resonance of 57Fe. By using four asymmetric reflections at asymmetry angles of α1 = -28°, α2 = 28°, α3 = -28° and α4 = 28°, the degree of polarization purity could be improved to 2.2 × 10-9. For users, an advanced polarimeter without beam offset is now available at beamline P01 of the storage ring PETRA III.
Collapse
Affiliation(s)
- Berit Marx-Glowna
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Ingo Uschmann
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Kai S. Schulze
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Heike Marschner
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Hans-Christian Wille
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kai Schlage
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Thomas Stöhlker
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
| | - Ralf Röhlsberger
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Gerhard G. Paulus
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| |
Collapse
|
3
|
Schulze KS, Loetzsch R, Rüffer R, Uschmann I, Röhlsberger R, Paulus GG. X-ray dichroism in polyimide caused by non-resonant scattering. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:176-180. [PMID: 33399566 PMCID: PMC7842229 DOI: 10.1107/s1600577520015568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Dichroism is one of the most important optical effects in both the visible and the X-ray range. Besides absorption, scattering can also contribute to dichroism. This paper demonstrates that, based on the example of polyimide, materials can show tiny dichroism even far from electronic resonances due to scattering. Although the effect is small, it can lead to a measurable polarization change and might have influence on highly sensitive polarimetric experiments.
Collapse
Affiliation(s)
- K. S. Schulze
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - R. Loetzsch
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - R. Rüffer
- ESRF – The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France
| | - I. Uschmann
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - R. Röhlsberger
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
- Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - G. G. Paulus
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| |
Collapse
|
4
|
Lyu C, Cavaletto SM, Keitel CH, Harman Z. Narrow-band hard-x-ray lasing with highly charged ions. Sci Rep 2020; 10:9439. [PMID: 32523007 PMCID: PMC7287111 DOI: 10.1038/s41598-020-65477-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/01/2020] [Indexed: 11/22/2022] Open
Abstract
A scheme is put forward to generate fully coherent x-ray lasers based on population inversion in highly charged ions, created by fast inner-shell photoionization using broadband x-ray free-electron-laser (XFEL) pulses in a laser-produced plasma. Numerical simulations based on the Maxwell–Bloch theory show that one can obtain high-intensity, femtosecond x-ray pulses of relative bandwidths Δω/ω = 10−5–10−7, by orders of magnitude narrower than in x-ray free-electron-laser pulses for discrete wavelengths down to the sub-ångström regime. Such x-ray lasers can be applicable in the study of x-ray quantum optics and metrology, investigating nonlinear interactions between x-rays and matter, or in high-precision spectroscopy studies in laboratory astrophysics.
Collapse
Affiliation(s)
- Chunhai Lyu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Stefano M Cavaletto
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany.
| | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| | - Zoltán Harman
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117, Heidelberg, Germany
| |
Collapse
|
5
|
Deák L, Bottyán L, Fülöp T, Merkel DG, Nagy DL, Sajti S, Schulze KS, Spiering H, Uschmann I, Wille HC. Realizing total reciprocity violation in the phase for photon scattering. Sci Rep 2017; 7:43114. [PMID: 28225031 PMCID: PMC5320471 DOI: 10.1038/srep43114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022] Open
Abstract
Reciprocity is when wave or quantum scattering satisfies a symmetry property, connecting a scattering process with the reversed one. While reciprocity involves the interchange of source and detector, it is fundamentally different from rotational invariance, and is a generalization of time reversal invariance, occurring in absorptive media as well. Due to its presence at diverse areas of physics, it admits a wide variety of applications. For polarization dependent scatterings, reciprocity is often violated, but violation in the phase of the scattering amplitude is much harder to experimentally observe than violation in magnitude. Enabled by the advantageous properties of nuclear resonance scattering of synchrotron radiation, we have measured maximal, i.e., 180-degree, reciprocity violation in the phase. For accessing phase information, we introduced a new version of stroboscopic detection. The scattering setting was devised based on a generalized reciprocity theorem that opens the way to construct new types of reciprocity related devices.
Collapse
Affiliation(s)
- László Deák
- Wigner RCP, RMKI, P.O.B. 49, 1525 Budapest, Hungary
| | | | - Tamás Fülöp
- Budapest University of Technology and Economics, 3 Műegyetem rkp., 1111 Budapest, Hungary
| | - Dániel Géza Merkel
- Wigner RCP, RMKI, P.O.B. 49, 1525 Budapest, Hungary.,European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France
| | | | | | - Kai Sven Schulze
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany.,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Hartmut Spiering
- Johannes Gutenberg Universität Mainz, Staudinger Weg 9, 55099 Mainz, Germany
| | - Ingo Uschmann
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany.,Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Hans-Christian Wille
- Deutsches Elektronen-Synchrotron (PETRA III), Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
6
|
Azzam RMA. Stokes-vector and Mueller-matrix polarimetry [Invited]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:1396-408. [PMID: 27409699 DOI: 10.1364/josaa.33.001396] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
This paper reviews the current status of instruments for measuring the full 4×1 Stokes vector S, which describes the state of polarization (SOP) of totally or partially polarized light, and the 4×4 Mueller matrix M, which determines how the SOP is transformed as light interacts with a material sample or an optical element or system. The principle of operation of each instrument is briefly explained by using the Stokes-Mueller calculus. The development of fast, automated, imaging, and spectroscopic instruments over the last 50 years has greatly expanded the range of applications of optical polarimetry and ellipsometry in almost every branch of science and technology. Current challenges and future directions of this important branch of optics are also discussed.
Collapse
|
7
|
Gunst J, Keitel CH, Pálffy A. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances. Sci Rep 2016; 6:25136. [PMID: 27118340 PMCID: PMC4846863 DOI: 10.1038/srep25136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 11/29/2022] Open
Abstract
Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.
Collapse
Affiliation(s)
- Jonas Gunst
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Christoph H. Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Adriana Pálffy
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| |
Collapse
|
8
|
Marx-Glowna B, Schulze KS, Uschmann I, Kämpfer T, Weber G, Hahn C, Wille HC, Schlage K, Röhlsberger R, Förster E, Stöhlker T, Paulus GG. Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:1151-1154. [PMID: 26289265 DOI: 10.1107/s1600577515011510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.
Collapse
Affiliation(s)
- Berit Marx-Glowna
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Kai S Schulze
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Ingo Uschmann
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Tino Kämpfer
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Günter Weber
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
| | - Christoph Hahn
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Hans Christian Wille
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kai Schlage
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Ralf Röhlsberger
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Eckhart Förster
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| | - Thomas Stöhlker
- Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena, Germany
| | - Gerhard G Paulus
- Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
| |
Collapse
|
9
|
Weber S, Beilmann C, Shah C, Tashenov S. Compton polarimeter for 10-30 keV x rays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:093110. [PMID: 26429432 DOI: 10.1063/1.4931165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a simple and versatile polarimeter for x rays in the energy range of 10-30 keV. It uses Compton scattering in low-Z materials such as beryllium or boron carbide. The azimuthal distribution of the scattered x rays is sampled by an array of 12 silicon PIN diodes operated at room temperature. We evaluated the polarimetry performance using Monte-Carlo simulations and show experimental results.
Collapse
Affiliation(s)
- S Weber
- Physics Institute, Heidelberg University, 69120 Heidelberg, Germany
| | - C Beilmann
- Physics Institute, Heidelberg University, 69120 Heidelberg, Germany
| | - C Shah
- Physics Institute, Heidelberg University, 69120 Heidelberg, Germany
| | - S Tashenov
- Physics Institute, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Pereira NR, Presura R, Wallace M, Kastengren A. X-ray polarization splitting by a single crystal evaluated with synchrotron x-rays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:073503. [PMID: 25085136 DOI: 10.1063/1.4890336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In hexagonal crystals such as quartz, an asymmetric Bragg reflection from two equivalent internal crystal planes can separate unpolarized x-rays into two linearly polarized components. The perfectly polarized and tunable x-rays from a synchrotron are ideal to evaluate polarization spitting in detail. One unanticipated feature is that additional reflections from the crystal affect the diffraction intensity of the two polarized components, an effect that is unlikely to matter in polarization spectroscopy of radiating plasmas for which the crystal is intended.
Collapse
Affiliation(s)
- N R Pereira
- Ecopulse, Inc., 7884 Vervain Ct, Springfield, Virginia 22152, USA
| | - R Presura
- Physics Department, University of Nevada, Reno 89557, USA
| | - M Wallace
- Physics Department, University of Nevada, Reno 89557, USA
| | - A Kastengren
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|