1
|
Rath M, Srivastava S, Carmona E, Battumur S, Arumugam S, Albertus P, Woehl T. Transient colloidal crystals fueled by electrochemical reaction products. Nat Commun 2025; 16:2077. [PMID: 40021648 PMCID: PMC11871323 DOI: 10.1038/s41467-025-57333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/15/2025] [Indexed: 03/03/2025] Open
Abstract
Conventional electric field directed colloidal assembly enables fabricating ordered structures but lacks temporal control over assembly state. Chemical reaction networks have been discovered that transiently assemble colloids; however, they have slow dynamics (hrs - days) and poor temporal tunability, utilize complex reagents, and produce kinetically trapped states. Here we demonstrate transient colloidal crystals that autonomously form, breakup, and reconstitute in response to an electrochemical reaction network driven by a time invariant electrical stimulus. Aqueous mixtures of micron sized colloids and para-benzoquinone (BQ) were subjected to superimposed oscillatory and steady electric potentials, i.e., multimode potentials, that induce electrokinetic flows around colloids and proton-coupled BQ redox reactions. Transient assembly states coincided with electrochemically generated pH spikes near the cathode. We demonstrate wide tunability of transient assembly state lifetimes over two orders of magnitude by modifying the electric potential and electrode separation. An electrochemical transport model showed that interaction of advancing acidic and alkaline pH fronts from anodic BQ oxidation and cathodic BQ reduction caused pH transients. We present theoretical and experimental evidence that indicates transient colloidal crystals were mediated by competition between opposing colloidal scale electrohydrodynamic and electroosmotic flows, the latter of which is pH dependent.
Collapse
Affiliation(s)
- Medha Rath
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Satyam Srivastava
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Eric Carmona
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Sarangua Battumur
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Shakti Arumugam
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Paul Albertus
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA.
| | - Taylor Woehl
- Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
Sanoria M, Chelakkot R, Nandi A. Percolation transitions in a binary mixture of active Brownian particles with different softness. SOFT MATTER 2024; 20:9184-9192. [PMID: 39530663 DOI: 10.1039/d4sm00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Homogeneous active Brownian particle (ABP) systems with purely repulsive interactions are considered to exhibit a simple phase behavior, but various physical attributes of active entities can lead to variation in the collective dynamics. Recent studies have shown that even homogeneous ABPs exhibit complex behavior due to an interplay between particle softness and motility. However, the heterogeneity in the composition of ABPs has not been explored yet. In this paper, we study the structural properties of a binary mixture of ABPs with different particle softness by varying the relative softness and composition. We found that upon varying the motility parameter, the system underwent a motility-induced phase separation (MIPS) followed by a percolation transition similar to the homogeneous systems. However, we observed a novel feature: the formation of a space-filling structure made of particles with higher stiffness, within the dense cluster of MIPS containing both types of particles. Our systematic analysis shows that this structure formation occurs only if the difference in softness of both types of particles is sufficiently large. Furthermore, the presence of a non-linear scaling for different compositions of binary ABPs suggests that there is a complex relationship between the composition and the structural properties. Our study demonstrates that the composition heterogeneity of ABPs can lead to complex phase behavior.
Collapse
Affiliation(s)
- Monika Sanoria
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
- Center for Cellular and Biomolecular Machines, University of California Merced, CA, 95343, USA.
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
Kurjahn M, Abbaspour L, Papenfuß F, Bittihn P, Golestanian R, Mahault B, Karpitschka S. Collective self-caging of active filaments in virtual confinement. Nat Commun 2024; 15:9122. [PMID: 39443452 PMCID: PMC11499643 DOI: 10.1038/s41467-024-52936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order. We explore how the light pattern, in particular its boundary curvature, impacts aggregation. A minimal mechanistic model of active flexible filaments resembles the experimental findings, thereby revealing the emergent and generic character of these structures. This phenomenon may enable elongated microorganisms to generate adaptive colony architectures in limited habitats or guide the assembly of biomimetic fibrous materials.
Collapse
Affiliation(s)
- Maximilian Kurjahn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Leila Abbaspour
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Franziska Papenfuß
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
| | - Stefan Karpitschka
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), Göttingen, Germany.
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany.
- Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, Konstanz, Germany.
| |
Collapse
|
4
|
Rana N, Golestanian R. Defect Solutions of the Nonreciprocal Cahn-Hilliard Model: Spirals and Targets. PHYSICAL REVIEW LETTERS 2024; 133:078301. [PMID: 39213550 DOI: 10.1103/physrevlett.133.078301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 05/16/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects, spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate radially outward traveling waves and thus break the parity and time-reversal symmetry. For a given strength of nonreciprocity, spirals and targets with unique asymptotic wave number and amplitude are selected. We use large-scale simulations to show that at low nonreciprocity α, disordered states evolve into quasistationary spiral networks. With increasing α, we observe networks composed primarily of targets. Beyond a critical threshold α_{c}, a disorder-order transition from defect networks to traveling waves emerges. The transition is marked by a sharp rise in the global polar order.
Collapse
|
5
|
Cao J, Wu J, Hou Z. Quorum sensing-induced transition from colloidal waves to Turing-like patterns in chemorepulsive active colloids. Phys Chem Chem Phys 2024; 26:7783-7793. [PMID: 38375586 DOI: 10.1039/d3cp04910h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The study of active systems, especially in the presence of a chemical background field, is garnering significant attention. Traditionally, the self-propelled velocity of active colloids was assumed to be constant, independent of the local density of colloids. In this work, we introduce a chemotactic active system that features quorum sensing (QS), wherein particles act as chemorepellents. Interestingly, these particles lose their activity in regions of high local particle density. Our findings reveal that QS leads to a transition from an oscillatory colloidal wave to a Turing-like pattern, with the observation of an intermediate state. With the variation of the sensing threshold, both the mean oscillation frequency of the system and the number of clusters exhibit non-monotonic dependence. Furthermore, the QS-induced pattern differs markedly from systems without QS, primarily due to the competitive interplay between diffusion and chemotaxis. The dynamics of this phenomenon are explained using a coarse-grained mean field model.
Collapse
Affiliation(s)
- Jiaqi Cao
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, ichEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jiaxin Wu
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, ichEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, ichEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
6
|
Huang H, Yang S, Ying Y, Chen X, Puigmartí-Luis J, Zhang L, Pané S. 3D Motion Manipulation for Micro- and Nanomachines: Progress and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305925. [PMID: 37801654 DOI: 10.1002/adma.202305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Indexed: 10/08/2023]
Abstract
In the past decade, micro- and nanomachines (MNMs) have made outstanding achievements in the fields of targeted drug delivery, tumor therapy, microsurgery, biological detection, and environmental monitoring and remediation. Researchers have made significant efforts to accelerate the rapid development of MNMs capable of moving through fluids by means of different energy sources (chemical reactions, ultrasound, light, electricity, magnetism, heat, or their combinations). However, the motion of MNMs is primarily investigated in confined two-dimensional (2D) horizontal setups. Furthermore, three-dimensional (3D) motion control remains challenging, especially for vertical movement and control, significantly limiting its potential applications in cargo transportation, environmental remediation, and biotherapy. Hence, an urgent need is to develop MNMs that can overcome self-gravity and controllably move in 3D spaces. This review delves into the latest progress made in MNMs with 3D motion capabilities under different manipulation approaches, discusses the underlying motion mechanisms, explores potential design concepts inspired by nature for controllable 3D motion in MNMs, and presents the available 3D observation and tracking systems.
Collapse
Affiliation(s)
- Hai Huang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Li Zhang
- Department of Mechanical and Automation Engineering, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong, 999077, China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zürich, Tannenstrasse 3, Zürich, CH-8092, Switzerland
| |
Collapse
|
7
|
Sharan P, Daddi-Moussa-Ider A, Agudo-Canalejo J, Golestanian R, Simmchen J. Pair Interaction between Two Catalytically Active Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300817. [PMID: 37165719 DOI: 10.1002/smll.202300817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Indexed: 05/12/2023]
Abstract
Due to the intrinsically complex non-equilibrium behavior of the constituents of active matter systems, a comprehensive understanding of their collective properties is a challenge that requires systematic bottom-up characterization of the individual components and their interactions. For self-propelled particles, intrinsic complexity stems from the fact that the polar nature of the colloids necessitates that the interactions depend on positions and orientations of the particles, leading to a 2d - 1 dimensional configuration space for each particle, in d dimensions. Moreover, the interactions between such non-equilibrium colloids are generically non-reciprocal, which makes the characterization even more complex. Therefore, derivation of generic rules that enable us to predict the outcomes of individual encounters as well as the ensuing collective behavior will be an important step forward. While significant advances have been made on the theoretical front, such systematic experimental characterizations using simple artificial systems with measurable parameters are scarce. Here, two different contrasting types of colloidal microswimmers are studied, which move in opposite directions and show distinctly different interactions. To facilitate the extraction of parameters, an experimental platform is introduced in which these parameters are confined on a 1D track. Furthermore, a theoretical model for interparticle interactions near a substrate is developed, including both phoretic and hydrodynamic effects, which reproduces their behavior. For subsequent validation, the degrees of freedom are increased to 2D motion and resulting trajectories are predicted, finding remarkable agreement. These results may prove useful in characterizing the overall alignment behavior of interacting self-propelling active swimmer and may find direct applications in guiding the design of active-matter systems involving phoretic and hydrodynamic interactions.
Collapse
Affiliation(s)
- Priyanka Sharan
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
| | | | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01062, Dresden, Germany
- Pure and applied chemistry, University of Strathclyde, G11XL, Glasgow
| |
Collapse
|
8
|
Ouazan-Reboul V, Agudo-Canalejo J, Golestanian R. Self-organization of primitive metabolic cycles due to non-reciprocal interactions. Nat Commun 2023; 14:4496. [PMID: 37495589 PMCID: PMC10372013 DOI: 10.1038/s41467-023-40241-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
One of the greatest mysteries concerning the origin of life is how it has emerged so quickly after the formation of the earth. In particular, it is not understood how metabolic cycles, which power the non-equilibrium activity of cells, have come into existence in the first instances. While it is generally expected that non-equilibrium conditions would have been necessary for the formation of primitive metabolic structures, the focus has so far been on externally imposed non-equilibrium conditions, such as temperature or proton gradients. Here, we propose an alternative paradigm in which naturally occurring non-reciprocal interactions between catalysts that can partner together in a cyclic reaction lead to their recruitment into self-organized functional structures. We uncover different classes of self-organized cycles that form through exponentially rapid coarsening processes, depending on the parity of the cycle and the nature of the interaction motifs, which are all generic but have readily tuneable features.
Collapse
Affiliation(s)
- Vincent Ouazan-Reboul
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077, Göttingen, Germany.
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OX1 3PU, Oxford, UK.
| |
Collapse
|
9
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
10
|
Konara M, Mudugamuwa A, Dodampegama S, Roshan U, Amarasinghe R, Dao DV. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. MICROMACHINES 2022; 13:1987. [PMID: 36422416 PMCID: PMC9699214 DOI: 10.3390/mi13111987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/19/2023]
Abstract
Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.
Collapse
Affiliation(s)
- Menaka Konara
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Amith Mudugamuwa
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Shanuka Dodampegama
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Uditha Roshan
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Ranjith Amarasinghe
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
11
|
Roca-Bonet S, Wagner M, Ripoll M. Clustering of self-thermophilic asymmetric dimers: the relevance of hydrodynamics. SOFT MATTER 2022; 18:7741-7751. [PMID: 35916336 DOI: 10.1039/d2sm00523a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-thermophilic dimers are characterized by a net phoretic attraction which, in combination with hydrodynamic interactions, results in the formation of crystalline-like aggregates. To distinguish the effect of the different contributions is frequently an important challenge. We present a simulation investigation done in parallel in the presence and the absence of hydrodynamic interactions for the case of asymmetric self-thermophoretic dimers. In the absence of hydrodynamics, the clusters have the standard heads-in configurations. In contrast, in the presence of hydrodynamics, clusters with heads-in conformation are being formed, in which dimers with their propulsion velocity pointing out of the cluster are assembled and stabilized by strong hydrodynamic osmotic flows. Significant variation in the material properties is to be expected from such differences in the collective behavior, whose understanding and control is of great relevance for the development of new synthetic active materials.
Collapse
Affiliation(s)
- Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
12
|
Sanoria M, Chelakkot R, Nandi A. Percolation transition in phase-separating active fluid. Phys Rev E 2022; 106:034605. [PMID: 36266899 DOI: 10.1103/physreve.106.034605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The motility-induced phase separation exhibited by active particles with repulsive interactions is well known. We show that the interaction softness of active particles destabilizes the highly ordered dense phase, leading to the formation of a porous cluster which spans the system. This soft limit can also be achieved if the particle motility is increased beyond a critical value, at which the system clearly exhibits all the characteristics of a standard percolation transition. We also show that in the athermal limit, active particles exhibit similar transitions even at low motility. With these additional new phases, the phase diagram of repulsive active particles is revealed to be richer than what was previously conceived.
Collapse
Affiliation(s)
- Monika Sanoria
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
13
|
Roca-Bonet S, Ripoll M. Self-phoretic Brownian dynamics simulations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:25. [PMID: 35303182 PMCID: PMC8933386 DOI: 10.1140/epje/s10189-022-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 05/03/2023]
Abstract
A realistic and effective model to simulate phoretic Brownian dynamics swimmers based on the general form of the thermophoretic force is here presented. The collective behavior of self-phoretic dimers is investigated with this model and compared with two simpler versions, allowing the understanding of the subtle interplay of steric interactions, propulsion, and phoretic effects. The phoretic Brownian dynamics method has control parameters which can be tuned to closely map the properties of experiments or simulations with explicit solvent, in particular those performed with multiparticle collision dynamics. The combination of the phoretic Brownian method and multiparticle collision dynamics is a powerful tool to precisely identify the importance of hydrodynamic interactions in systems of self-phoretic swimmers.
Collapse
Affiliation(s)
- Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
14
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
15
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
16
|
Huang D, Du Y, Jiang H, Hou Z. Emergent spiral vortex of confined biased active particles. Phys Rev E 2021; 104:034606. [PMID: 34654190 DOI: 10.1103/physreve.104.034606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Confinement is known to have profound effects on the collective dynamics of many active systems. Here, we investigate a modeled active system in circular confinement consisting of biased active particles, where the direction of active force deviates a biased angle from the principle orientation of the anisotropic interaction. We find that such particles can spontaneously form a spiral vortex with two concentric and counter-rotating regions near the boundary. The emerged vortex can be measured by the vortex order parameter which shows nonmonotonic dependencies on both the biased angle and the strength of the anisotropic interaction. Our work can provide an understanding of such dynamic behaviors and enable different strategies for designing ordered collective behaviors.
Collapse
Affiliation(s)
- Deping Huang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Auschra S, Bregulla A, Kroy K, Cichos F. Thermotaxis of Janus particles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:90. [PMID: 34218345 PMCID: PMC8254728 DOI: 10.1140/epje/s10189-021-00090-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 05/26/2023]
Abstract
The interactions of autonomous microswimmers play an important role for the formation of collective states of motile active matter. We study them in detail for the common microswimmer-design of two-faced Janus spheres with hemispheres made from different materials. Their chemical and physical surface properties may be tailored to fine-tune their mutual attractive, repulsive or aligning behavior. To investigate these effects systematically, we monitor the dynamics of a single gold-capped Janus particle in the external temperature field created by an optically heated metal nanoparticle. We quantify the orientation-dependent repulsion and alignment of the Janus particle and explain it in terms of a simple theoretical model for the induced thermoosmotic surface fluxes. The model reveals that the particle's angular velocity is solely determined by the temperature profile on the equator between the Janus particle's hemispheres and their phoretic mobility contrast. The distortion of the external temperature field by their heterogeneous heat conductivity is moreover shown to break the apparent symmetry of the problem.
Collapse
Affiliation(s)
- Sven Auschra
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Andreas Bregulla
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Abstract
Optical manipulation of colloidal systems is of high interest for both fundamental studies and practical applications. It has been shown that optically induced thermophoresis and nonlinear interactions can significantly affect the properties of dense colloidal media. However, macroscopic scale phenomena can also be generated at thermal equilibrium. Here, we demonstrate that steady-state variations of particle density can be created over large, three-dimensional regions by appropriately structured external optical fields. We prove analytically and experimentally that an optical vortex beam can dynamically control the spatial density of microscopic particles along the direction of its propagation. We show that these artificial steady-states can be generated at will and can be maintained indefinitely, which can be beneficial for applications such as path clearing and mass transportation.
Collapse
|
19
|
Wagner M, Roca-Bonet S, Ripoll M. Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:43. [PMID: 33772651 PMCID: PMC8004524 DOI: 10.1140/epje/s10189-021-00043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 05/20/2023]
Abstract
Colloids driven by phoresis constitute one of the main avenues for the design of synthetic microswimmers. For these swimmers, the specific form of the phoretic and hydrodynamic interactions dramatically influences their dynamics. Explicit solvent simulations allow the investigation of the different behaviors of dimeric Janus active colloids. The phoretic character is modified from thermophilic to thermophobic, and this, together with the relative size of the beads, strongly influences the resulting solvent velocity fields. Hydrodynamic flows can change from puller-type to pusher-type, although the actual flows significantly differ from these standard flows. Such hydrodynamic interactions combined with phoretic interactions between dimers result in several interesting phenomena in three-dimensional bulk conditions. Thermophilic dimeric swimmers are attracted to each other and form large and stable aggregates. Repulsive phoretic interactions among thermophobic dimeric swimmers hinder such clustering and lead, together with long- and short-ranged attractive hydrodynamic interactions, to short-lived, aligned swarming structures.
Collapse
Affiliation(s)
- Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
20
|
Meng F, Matsunaga D, Mahault B, Golestanian R. Magnetic Microswimmers Exhibit Bose-Einstein-like Condensation. PHYSICAL REVIEW LETTERS 2021; 126:078001. [PMID: 33666487 DOI: 10.1103/physrevlett.126.078001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
We study an active matter system comprised of magnetic microswimmers confined in a microfluidic channel and show that it exhibits a new type of self-organized behavior. Combining analytical techniques and Brownian dynamics simulations, we demonstrate how the interplay of nonequilibrium activity, external driving, and magnetic interactions leads to the condensation of swimmers at the center of the channel via a nonequilibrium phase transition that is formally akin to Bose-Einstein condensation. We find that the effective dynamics of the microswimmers can be mapped onto a diffusivity-edge problem, and use the mapping to build a generalized thermodynamic framework, which is verified by a parameter-free comparison with our simulations. Our work reveals how driven active matter has the potential to generate exotic classical nonequilibrium phases of matter with traits that are analogous to those observed in quantum systems.
Collapse
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls center for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Daiki Matsunaga
- Rudolf Peierls center for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Graduate School of Engineering Science, Osaka University, 5608531 Osaka, Japan
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| | - Ramin Golestanian
- Rudolf Peierls center for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
| |
Collapse
|
21
|
Wang D, Gao C, Si T, Li Z, Guo B, He Q. Near-infrared light propelled motion of needlelike liquid metal nanoswimmers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
|
23
|
Li Z, Zhang H, Wang D, Gao C, Sun M, Wu Z, He Q. Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007911] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zesheng Li
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Hongyue Zhang
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Daolin Wang
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Changyong Gao
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Mengmeng Sun
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Zhiguang Wu
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| | - Qiang He
- Micro/Nanotechnology Research Centre Harbin Institute of Technology No. 92 XiDaZhi Street Harbin 150001 China
| |
Collapse
|
24
|
Reconfigurable Assembly of Active Liquid Metal Colloidal Cluster. Angew Chem Int Ed Engl 2020; 59:19884-19888. [DOI: 10.1002/anie.202007911] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/07/2022]
|
25
|
Li K, Guo F, Zhou X, Wang X, He L, Zhang L. An attraction-repulsion transition of force on two asymmetric wedges induced by active particles. Sci Rep 2020; 10:11702. [PMID: 32678189 PMCID: PMC7367348 DOI: 10.1038/s41598-020-68677-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/21/2020] [Indexed: 02/04/2023] Open
Abstract
Effective interaction between two asymmetric wedges immersed in a two-dimensional active bath is investigated by computer simulations. The attraction–repulsion transition of effective force between two asymmetric wedges is subjected to the relative position of two wedges, the wedge-to-wedge distance, the active particle density, as well as the apex angle of two wedges. By exchanging the position of the two asymmetric wedges in an active bath, firstly a simple attraction–repulsion transition of effective force occurs, completely different from passive Brownian particles. Secondly the transition of effective force is symmetric for the long-range distance between two asymmetric wedges, while it is asymmetric for the short-range case. Our investigations may provide new possibilities to govern the motion and assembly of microscopic objects by taking advantage of the self-driven behaviour of active particles.
Collapse
Affiliation(s)
- Ke Li
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Fuchen Guo
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xiaolin Zhou
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| |
Collapse
|
26
|
Sprenger AR, Fernandez-Rodriguez MA, Alvarez L, Isa L, Wittkowski R, Löwen H. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7066-7073. [PMID: 31975603 DOI: 10.1021/acs.langmuir.9b03617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combining experiments on active colloids, whose propulsion velocity can be controlled via a feedback loop, and the theory of active Brownian motion, we explore the dynamics of an overdamped active particle with a motility that depends explicitly on the particle orientation. In this case, the active particle moves faster when oriented along one direction and slower when oriented along another, leading to anisotropic translational dynamics which is coupled to the particle's rotational diffusion. We propose a basic model of active Brownian motion for orientation-dependent motility. On the basis of this model, we obtain analytical results for the mean trajectories, averaged over the Brownian noise for various initial configurations, and for the mean-square displacements including their non-Gaussian behavior. The theoretical results are found to be in good agreement with the experimental data. Orientation-dependent motility is found to induce significant anisotropy in the particle displacement, mean-square displacement, and non-Gaussian parameter even in the long-time limit. Our findings establish a methodology for engineering complex anisotropic motilities of active Brownian particles, with a potential impact in the study of the swimming behavior of microorganisms subjected to anisotropic driving fields.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | - Laura Alvarez
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Ji F, Jin D, Wang B, Zhang L. Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS NANO 2020; 14:6990-6998. [PMID: 32463226 DOI: 10.1021/acsnano.0c01464] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Swarm behaviors are nature's strategies for performing cooperative work, and extensive research has been aimed at emulating these strategies in engineering systems. However, the implementation of vertical motion and construction of a 3D structure are still challenging. Herein, we propose a simple strategy for creating a hybrid-driven paramagnetic tornado-like microswarm in an aqueous solution by integrating the use of a magnetic field and light. The precession of a magnetic field results in in-plane rotation, and light promotes the conversion of a planar microswarm to a microswarm tornado, thus realizing the transition from 2D to 3D patterns. This 3D microswarm is capable of performing reversible, vertical mass transportation. The reconfigurable collective behavior of the swarm from 2D to 3D motion consists of rising, hovering, oscillation, and landing stages. Moreover, this 3D tornado-like microswarm is capable of controlling the chemical reaction rate of the liquid in which it is deployed, for example, the degradation of methylene blue. The experimental results unveil that the tornado-like microswarm can enhance the overall degradation while holding the reactant nearby and inside it because of the flow difference between near and far regions of the microswarm tornado. Furthermore, by applying an oscillating magnetic field, the 3D microswarm can process the trapped methylene blue for on-demand degradation. The microswarm tornado is demonstrated to provide a method for collective vertical transportation and inspire ideas for mimicking 3D swarm behaviors in order to apply the functional performance to biomedical, catalytic, and micro-/nanoengineering applications.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Dongdong Jin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Ben Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China
| |
Collapse
|
28
|
Liu X, Jiang H, Hou Z. Non-monotonic dependence of polymer chain dynamics on active crowder size. J Chem Phys 2020; 152:204906. [PMID: 32486672 DOI: 10.1063/5.0007570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Configuration dynamics of flexible polymer chains is of ubiquitous importance in many biological processes. Here, we investigate a polymer chain immersed in a bath of size-changed active particles in two dimensional space using Langevin dynamics simulations. Particular attention is paid to how the radius of gyration Rg of the polymer chain depends on the size σc of active crowders. We find that Rg shows nontrivial non-monotonic dependence on σc: The chain first swells upon increasing σc, reaching a fully expanded state with maximum Rg, and then, Rg decreases until the chain collapses to a compact coil state if the crowder is large enough. Interestingly, the chain may oscillate between a collapse state and a stretched state at moderate crowder size. Analysis shows that it is the competition between two effects of active particles, one stretching the chain from inside due to persistence motion and the other compressing the chain from outside, that leads to the non-monotonic dependence. Besides, the diffusion of the polymer chain also shows nontrivial non-monotonic dependence on σc. Our results demonstrate the important interplay between particle activity and size associated with polymer configurations in active crowding environments.
Collapse
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
29
|
Abstract
Due to its inherent out-of-equilibrium nature, active matter in confinement may exhibit collective behavior absent in unconfined systems. Extensive studies have indicated that hydrodynamic or steric interactions between active particles and boundary play an important role in the emergence of collective behavior. However, besides introducing external couplings at the single-particle level, the confinement also induces an inhomogeneous density distribution due to particle-position correlations, whose effect on collective behavior remains unclear. Here, we investigate this effect in a minimal chiral active matter composed of self-spinning rotors through simulation, experiment, and theory. We find that the density inhomogeneity leads to a position-dependent frictional stress that results from interrotor friction and couples the spin to the translation of the particles, which can then drive a striking spatially oscillating collective motion of the chiral active matter along the confinement boundary. Moreover, depending on the oscillation properties, the collective behavior has three different modes as the packing fraction varies. The structural origins of the transitions between the different modes are well identified by the percolation of solid-like regions or the occurrence of defect-induced particle rearrangement. Our results thus show that the confinement-induced inhomogeneity, dynamic structure, and compressibility have significant influences on collective behavior of active matter and should be properly taken into account.
Collapse
|
30
|
Nasouri B, Golestanian R. Exact Phoretic Interaction of Two Chemically Active Particles. PHYSICAL REVIEW LETTERS 2020; 124:168003. [PMID: 32383912 DOI: 10.1103/physrevlett.124.168003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
We study the nonequilibrium interaction of two isotropic chemically active particles taking into account the exact near-field chemical interactions as well as hydrodynamic interactions. We identify regions in the parameter space wherein the dynamical system describing the two particles can have a fixed point-a phenomenon that cannot be captured under the far-field approximation. We find that, due to near-field effects, the particles may reach a stable equilibrium at a nonzero gap size or make a complex that can dissociate in the presence of sufficiently strong noise. We explicitly show that the near-field effects originate from a self-generated neighbor-reflected chemical gradient, similar to interactions of a self-propelling phoretic particle and a flat substrate.
Collapse
Affiliation(s)
- Babak Nasouri
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Goettingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Goettingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
31
|
Liu X, Jiang H, Hou Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J Chem Phys 2019; 151:174904. [DOI: 10.1063/1.5125607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinshuang Liu
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Du Y, Jiang H, Hou Z. Self-assembly of active core corona particles into highly ordered and self-healing structures. J Chem Phys 2019; 151:154904. [DOI: 10.1063/1.5121802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yunfei Du
- Hefei National Laboratory for Physical Sciences at Microscales and Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Hefei National Laboratory for Physical Sciences at Microscales and Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at Microscales and Department of Chemical Physics, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Popescu MN, Domínguez A, Uspal WE, Tasinkevych M, Dietrich S. Comment on “Which interactions dominate in active colloids?” [J. Chem. Phys. 150, 061102 (2019)]. J Chem Phys 2019. [DOI: 10.1063/1.5095716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- M. N. Popescu
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
| | - A. Domínguez
- Física Teórica, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla, Spain
| | - W. E. Uspal
- Department of Mechanical Engineering, University of Hawai’i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, Hawaii 96822, USA
| | - M. Tasinkevych
- Centro de Física Teórica e Computacional, Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Campo Grande P-1749-016, Lisboa, Portugal
| | - S. Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
34
|
Kuhr JT, Rühle F, Stark H. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. SOFT MATTER 2019; 15:5685-5694. [PMID: 31246219 DOI: 10.1039/c9sm00889f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a hydrodynamic study of a monolayer of squirmer model microswimmers confined to a boundary by strong gravity using the simulation method of multi-particle collision dynamics. The squirmers interact with each other via their self-generated hydrodynamic flow fields and thereby form a variety of fascinating dynamic states when density and squirmer type are varied. Weak pushers, neutral squirmers, and pullers have an upright orientation. With their flow fields they push neighbors away and thereby form a hydrodynamic Wigner fluid at lower densities. Furthermore, states of fluctuating chains and trimers, of kissing, and at large densities a global cluster exist. Finally, pushers at all densities can tilt against the wall normal and their in-plane velocities align to show swarming. It turns into chaotic swarming for strong pushers at high densities. We characterize all these states quantitatively.
Collapse
Affiliation(s)
- Jan-Timm Kuhr
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Felix Rühle
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
35
|
Agudo-Canalejo J, Golestanian R. Active Phase Separation in Mixtures of Chemically Interacting Particles. PHYSICAL REVIEW LETTERS 2019; 123:018101. [PMID: 31386420 DOI: 10.1103/physrevlett.123.018101] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 05/27/2023]
Abstract
We theoretically study mixtures of chemically interacting particles, which produce or consume a chemical to which they are attracted or repelled, in the most general case of many coexisting species. We find a new class of active phase separation phenomena in which the nonequilibrium chemical interactions between particles, which break action-reaction symmetry, can lead to separation into phases with distinct density and stoichiometry. Because of the generic nature of our minimal model, our results shed light on the underlying fundamental principles behind nonequilibrium self-organization of cells and bacteria, catalytic enzymes, or phoretic colloids.
Collapse
Affiliation(s)
- Jaime Agudo-Canalejo
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), D-37077 Göttingen, Germany
| |
Collapse
|
36
|
Lozano C, Bechinger C. Diffusing wave paradox of phototactic particles in traveling light pulses. Nat Commun 2019; 10:2495. [PMID: 31175288 PMCID: PMC6555803 DOI: 10.1038/s41467-019-10535-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Cells navigate through complex surroundings by following cues from their environment. A prominent example is Dictyostelium, which is directed by chemotaxis towards regions with higher concentrations. In the presence of traveling chemical waves, however, amoebae migrate counter to the running wave. Such behavior, referred to as diffusing wave paradox, suggests the existence of adaptation and directional memory. Here we experimentally investigate the response of phototactic self-propelled microparticles to traveling light-pulses. Despite their entirely memory-less (i.e., strictly local) response to the environment, we observe the same phenomenological behavior, i.e., particle motion counter to the pulse direction. Our findings are supported by a minimal model which considers active particle reorientations within local light gradients. The complex and robust behavior of synthetic active particles to spatially and temporally varying stimuli enables new strategies for achieving collective behavior and can be used for the design of micro-robotic systems with limited signal-processing capabilities.
Collapse
Affiliation(s)
- Celia Lozano
- Fachbereich Physik, Universität Konstanz, D-78457, Konstanz, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, D-78457, Konstanz, Germany.
| |
Collapse
|
37
|
Abstract
We study the dynamics of active Janus particles that self-propel in solution by light-activated catalytic decomposition of chemical "fuel." We develop an analytical model of a photo-active self-phoretic particle that accounts for "self-shadowing" of the light by the opaque catalytic face of the particle. We find that self-shadowing can drive "phototaxis" (rotation of the catalytic cap toward the light source) or "anti-phototaxis," depending on the properties of the particle. Incorporating the effect of thermal noise, we show that the distribution of particle orientations is captured by a Boltzmann distribution with a nonequilibrium effective potential. Furthermore, the mean vertical velocity of phototactic (anti-phototactic) particles exhibits a superlinear (sublinear) dependence on intensity. Overall, our findings show that photo-active particles exhibit a rich "tactic" response to light, which could be harnessed to program complex three-dimensional trajectories.
Collapse
Affiliation(s)
- W E Uspal
- Department of Mechanical Engineering, University of Hawai'i at Manoa, 2540 Dole Street, Holmes 302, Honolulu, Hawaii 96822, USA
| |
Collapse
|
38
|
Du Y, Jiang H, Hou Z. Study of active Brownian particle diffusion in polymer solutions. SOFT MATTER 2019; 15:2020-2031. [PMID: 30724318 DOI: 10.1039/c8sm02292e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The diffusion behavior of an active Brownian particle (ABP) in polymer solutions is studied using Langevin dynamics simulations. We find that the long time diffusion coefficient D can show a non-monotonic dependence on the particle size R if the active force Fa is large enough, wherein a bigger particle would diffuse faster than a smaller one which is quite counterintuitive. By analyzing the short time dynamics in comparison to the passive one, we find that such non-trivial dependence results from the competition between persistent motion of the ABP and the length-scale dependent effective viscosity that the particle experiences in the polymer solution. We have also introduced an effective viscosity ηeff experienced by the ABP phenomenologically. Such an active ηeff is found to be larger than a passive one and strongly depends on R and Fa. In addition, we find that the dependence of D on propelling force Fa presents a good power-law scaling at a fixed R and the scaling factor changes non-monotonically with R. Such results demonstrate that the active process plays rather subtle roles in the diffusion of nano-particles in complex solutions.
Collapse
Affiliation(s)
- Yunfei Du
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | |
Collapse
|
39
|
Yu N, Lou X, Chen K, Yang M. Phototaxis of active colloids by self-thermophoresis. SOFT MATTER 2019; 15:408-414. [PMID: 30565640 DOI: 10.1039/c8sm01871e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phototaxis usually refers to the ability of a motile micoorganism to move directionally within a light gradient, which is important for microorganisms to gain energy or avoid damage. Here, we show that an active Janus particle driven by self-thermophoresis from light heating is able to exhibit significant phototactic motion by means of mesoscale dynamics simulation. Depending on the particle-fluid interactions, the active particle can move along or against the light gradient, corresponding to positive or negative phototaxis, respectively. We find that the phototaxis of the active colloid is determined by various mechanisms, including alignment (polarization) of the particle to the light gradient, orientation-dependent motility and spatially inhomogeneous motility. Our results shed light on the phototactic behavior of artificial active colloids and open up a new possibility to design photo-responsive micromachines.
Collapse
Affiliation(s)
- Nan Yu
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Abstract
The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond themselves and use chemotaxis for signaling, which can be seen as a basic form of communication, allowing ensembles of microorganisms to coordinate their behavior, for example, during embryogenesis, biofilm formation, or cellular aggregation. For example, Dictyostelium cells use signaling as a survival strategy: when starving, they produce certain chemicals toward which other cells show taxis. This leads to aggregation of the cells resulting in a multicellular aggregate that can sustain long starvation periods. Remarkably, the past decade has led to the development of synthetic microswimmers, which can self-propel through a solvent, analogously to bacteria and other microorganisms. The mechanism underlying the self-propulsion of synthetic microswimmers like camphor boats, droplet swimmers, and in particular autophoretic Janus colloids involves the production of certain chemicals. As we will discuss in this Account, the same chemicals (phoretic fields) involved in the self-propulsion of a (Janus) microswimmer also act on other ones and bias their swimming direction toward (or away from) the producing microswimmer. Synthetic microswimmers therefore provide a synthetic analogue to motile microorganisms interacting by taxis toward (or away from) self-produced chemical fields. In this Account, we review recent progress in the theoretical description of synthetic chemotaxis mainly based on simulations and field theoretical descriptions. We will begin with single motile particles leaving chemical trails behind with which they interact themselves, leading to effects like self-trapping or self-avoidance. Besides these self-interactions, in ensembles of synthetic motile particles each particle also responds to the chemicals produced by other particles, inducing chemical (or phoretic) cross-interactions. When these interactions are attractive, they commonly lead to clusters, even at low particle density. These clusters may either proceed toward macrophase separation, resembling Dictyostelium aggregation, or, as shown very recently, lead to dynamic clusters of self-limited size (dynamic clustering) as seen in experiments in autophoretic Janus colloids. Besides the classical case where chemical interactions are attractive, this Account discusses, as its main focus, repulsive chemical interactions, which can create a new and less known avenue to pattern formation in active systems leading to a variety of pattern, including clusters which are surrounded by shells of chemicals, traveling waves and more complex continuously reshaping patterns. In all these cases "synthetic signalling" can crucially determine the collective behavior of synthetic microswimmer ensembles and can be used as a design principle to create patterns in motile active particles.
Collapse
Affiliation(s)
- Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
41
|
Abstract
Microorganisms use chemotaxis, regulated by internal complex chemical pathways, to swim along chemical gradients to find better living conditions. Artificial microswimmers can mimic such a strategy by a pure physical process called diffusiophoresis, where they drift and orient along the gradient in a chemical density field. Similarly, for other forms of taxis in nature such as photo- or thermotaxis the phoretic counterpart exists. In this Account, we concentrate on the chemotaxis of self-phoretic active colloids. They are driven by self-electro- and diffusiophoresis at the particle surface and thereby acquire a swimming speed. During this process, they also produce nonuniform chemical fields in their surroundings through which they interact with other colloids by translational and rotational diffusiophoresis. In combination with active motion, this gives rise to effective phoretic attraction and repulsion and thereby to diverse emergent collective behavior. A particular appealing example is dynamic clustering in dilute suspensions first reported by a group from Lyon. A subtle balance of attraction and repulsion causes very dynamic clusters, which form and resolve again. This is in stark contrast to the relatively static clusters of motility-induced phase separation at larger densities. To treat chemotaxis in active colloids confined to a plane, we formulate two Langevin equations for position and orientation, which include translational and rotational diffusiophoretic drift velocities. The colloids are chemical sinks and develop their long-range chemical profiles instantaneously. For dense packings, we include screening of the chemical fields. We present a state diagram in the two diffusiophoretic parameters governing translational, as well as rotational, drift and, thereby, explore the full range of phoretic attraction and repulsion. The identified states range from a gaslike phase over dynamic clustering states 1 and 2, which we distinguish through their cluster size distributions, to different types of collapsed states. The latter include a full chemotactic collapse for translational phoretic attraction. Turning it into an effective repulsion, with increasing strength first the collapsed cluster starts to fluctuate at the rim, then oscillates, and ultimately becomes a static collapsed cloud. We also present a state diagram without screening. Finally, we summarize how the famous Keller-Segel model derives from our Langevin equations through a multipole expansion of the full one-particle distribution function in position and orientation. The Keller-Segel model gives a continuum equation for treating chemotaxis of microorganisms on the level of their spatial density. Our theory is extensible to mixtures of active and passive particles and allows to include a dipolar correction to the chemical field resulting from the dipolar symmetry of Janus colloids.
Collapse
Affiliation(s)
- Holger Stark
- Technische Universität Berlin, Institute of Theoretical Physics, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
42
|
Varma A, Montenegro-Johnson TD, Michelin S. Clustering-induced self-propulsion of isotropic autophoretic particles. SOFT MATTER 2018; 14:7155-7173. [PMID: 30058650 PMCID: PMC6136269 DOI: 10.1039/c8sm00690c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/07/2018] [Indexed: 05/25/2023]
Abstract
Self-diffusiophoretic particles exploit local concentration gradients of a solute species in order to self-propel at the micron scale. While an isolated chemically- and geometrically-isotropic particle cannot swim, we show that it can achieve self-propulsion through interactions with other individually-non-motile particles by forming geometrically-anisotropic clusters via phoretic and hydrodynamic interactions. This result identifies a new route to symmetry-breaking for the concentration field and to self-propulsion, that is not based on an anisotropic design, but on the collective dynamics of identical and homogeneous active particles. Using full numerical simulations as well as theoretical modelling of the clustering process, the statistics of the propulsion properties are obtained for arbitrary initial arrangement of the particles. The robustness of these results to thermal noise, and more generally the effect of Brownian motion of the particles, is also discussed.
Collapse
Affiliation(s)
- Akhil Varma
- LadHyX – Département de Mécanique
, Ecole Polytechnique – CNRS
,
91128 Palaiseau
, France
.
;
| | | | - Sébastien Michelin
- LadHyX – Département de Mécanique
, Ecole Polytechnique – CNRS
,
91128 Palaiseau
, France
.
;
| |
Collapse
|
43
|
Self-organization of active particles by quorum sensing rules. Nat Commun 2018; 9:3232. [PMID: 30104679 PMCID: PMC6089911 DOI: 10.1038/s41467-018-05675-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022] Open
Abstract
Many microorganisms regulate their behaviour according to the density of neighbours. Such quorum sensing is important for the communication and organisation within bacterial populations. In contrast to living systems, where quorum sensing is determined by biochemical processes, the behaviour of synthetic active particles can be controlled by external fields. Accordingly they allow to investigate how variations of a density-dependent particle response affect their self-organisation. Here we experimentally and numerically demonstrate this concept using a suspension of light-activated active particles whose motility is individually controlled by an external feedback-loop, realised by a particle detection algorithm and a scanning laser system. Depending on how the particles’ motility varies with the density of neighbours, the system self-organises into aggregates with different size, density and shape. Since the individual particles’ response to their environment is almost freely programmable, this allows for detailed insights on how communication between motile particles affects their collective properties. Bacteria communicate and organize via quorum sensing which is determined by biochemical processes. Here the authors aim to reproduce this behaviour in a system of synthetic active particles whose motion is induced by an external beam which is in turn controlled by a feedback-loop which mimics quorum sensing.
Collapse
|
44
|
Meng F, Matsunaga D, Golestanian R. Clustering of Magnetic Swimmers in a Poiseuille Flow. PHYSICAL REVIEW LETTERS 2018; 120:188101. [PMID: 29775341 DOI: 10.1103/physrevlett.120.188101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/31/2018] [Indexed: 06/08/2023]
Abstract
We investigate the collective behavior of magnetic swimmers, which are suspended in a Poiseuille flow and placed under an external magnetic field, using analytical techniques and Brownian dynamics simulations. We find that the interplay between intrinsic activity, external alignment, and magnetic dipole-dipole interactions leads to longitudinal structure formation. Our work sheds light on a recent experimental observation of a clustering instability in this system.
Collapse
Affiliation(s)
- Fanlong Meng
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Daiki Matsunaga
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
45
|
Light-Controlled Swarming and Assembly of Colloidal Particles. MICROMACHINES 2018; 9:mi9020088. [PMID: 30393364 PMCID: PMC6187466 DOI: 10.3390/mi9020088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/04/2018] [Accepted: 02/11/2018] [Indexed: 12/02/2022]
Abstract
Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs), including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering.
Collapse
|
46
|
Chen J, Hua Y, Jiang Y, Zhou X, Zhang L. Rotational Diffusion of Soft Vesicles Filled by Chiral Active Particles. Sci Rep 2017; 7:15006. [PMID: 29101398 PMCID: PMC5670181 DOI: 10.1038/s41598-017-15095-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022] Open
Abstract
We investigate the dynamics of two-dimensional soft vesicles filled with chiral active particles by employing the overdamped Langevin dynamics simulation. The unidirectional rotation is observed for soft vesicles, and the rotational angular velocity of vesicles depends mainly on the area fraction (ρ) and angular velocity (ω) of chiral active particles. There exists an optimal parameter for ω at which the rotational angular velocity of vesicle takes its maximal value. Meanwhile, at low concentration the continuity of curvature is destroyed seriously by chiral active particles, especially for large ω, and at high concentration the chiral active particles cover the vesicle almost uniformly. In addition, the center-of-mass mean square displacement for vesicles is accompanied by oscillations at short timescales, and the oscillation period of diffusion for vesicles is consistent with the rotation period of chiral active particles. The diffusion coefficient of vesicle decreases monotonously with increasing the angular velocity ω of chiral active particles. Our investigation can provide a few designs for nanofabricated devices that can be driven in a unidirectional rotation by chiral active particles or could be used as drug-delivery agent.
Collapse
Affiliation(s)
- Jiamin Chen
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yunfeng Hua
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Yangwei Jiang
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Zhou
- Department of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Linxi Zhang
- Department of Physics, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
47
|
Altemose A, Sánchez‐Farrán MA, Duan W, Schulz S, Borhan A, Crespi VH, Sen A. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angew Chem Int Ed Engl 2017; 56:7817-7821. [DOI: 10.1002/anie.201703239] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alicia Altemose
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Wentao Duan
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Steve Schulz
- Manheim Township High School Lancaster PA 17606 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University University Park PA 16802 USA
| | - Vincent H. Crespi
- Departments of Physics, Chemistry, and Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Ayusman Sen
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
48
|
Altemose A, Sánchez‐Farrán MA, Duan W, Schulz S, Borhan A, Crespi VH, Sen A. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alicia Altemose
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Wentao Duan
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Steve Schulz
- Manheim Township High School Lancaster PA 17606 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University University Park PA 16802 USA
| | - Vincent H. Crespi
- Departments of Physics, Chemistry, and Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Ayusman Sen
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
49
|
Illien P, Golestanian R, Sen A. ‘Fuelled’ motion: phoretic motility and collective behaviour of active colloids. Chem Soc Rev 2017; 46:5508-5518. [DOI: 10.1039/c7cs00087a] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phoretic motility is a propulsion mechanism used to design active particles which display complex collective behaviours, characterised experimentally and theoretically.
Collapse
Affiliation(s)
- Pierre Illien
- Rudolf Peierls Centre for Theoretical Physics
- University of Oxford
- Oxford OX1 3NP
- UK
- Department of Chemistry
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics
- University of Oxford
- Oxford OX1 3NP
- UK
| | - Ayusman Sen
- Department of Chemistry
- The Pennsylvania State University
- University Park
- USA
| |
Collapse
|
50
|
Gelimson A, Zhao K, Lee CK, Kranz WT, Wong GCL, Golestanian R. Multicellular Self-Organization of P. aeruginosa due to Interactions with Secreted Trails. PHYSICAL REVIEW LETTERS 2016; 117:178102. [PMID: 27824438 DOI: 10.1103/physrevlett.117.178102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Indexed: 06/06/2023]
Abstract
Guided movement in response to slowly diffusing polymeric trails provides a unique mechanism for self-organization of some microorganisms. To elucidate how this signaling route leads to microcolony formation, we experimentally probe the trajectory and orientation of Pseudomonas aeruginosa that propel themselves on a surface using type IV pili motility appendages, which preferentially attach to deposited exopolysaccharides. We construct a stochastic model by analyzing single-bacterium trajectories and show that the resulting theoretical prediction for the many-body behavior of the bacteria is in quantitative agreement with our experimental characterization of how cells explore the surface via a power-law strategy.
Collapse
Affiliation(s)
- Anatolij Gelimson
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Kun Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, UCLA, Los Angeles, California 90095-1600, USA
| | - Calvin K Lee
- Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, UCLA, Los Angeles, California 90095-1600, USA
| | - W Till Kranz
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| | - Gerard C L Wong
- Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, UCLA, Los Angeles, California 90095-1600, USA
| | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
| |
Collapse
|