1
|
Fouda AEA, Southworth SH, Ho PJ. Quantum Molecular Charge-Transfer Model for Multistep Auger-Meitner Decay Cascade Dynamics. J Chem Theory Comput 2024; 20:8782-8794. [PMID: 39393809 DOI: 10.1021/acs.jctc.4c00778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The fragmentation of molecular cations following inner-shell decay processes in molecules containing heavy elements underpins the X-ray damage effects observed in X-ray scattering measurements of biological and chemical materials, as well as in medical applications involving Auger electron-emitting radionuclides. Traditionally, these processes are modeled using simulations that describe the electronic structure at an atomic level, thereby omitting molecular bonding effects. This work addresses the gap by introducing a novel approach that couples Auger-Meitner decay to nuclear dynamics across multiple decay steps, by developing a decay spawning dynamics algorithm and applying it to potential energy surfaces characterized with ab initio molecular dynamics simulations. We showcase the approach on a model decay cascade following K-shell ionization of IBr and subsequent Kβ fluorescence decay. We examine two competing channels that undergo two decay steps, resulting in ion pairs with a total 3+ charge state. This approach provides a continuous description of the electron transfer dynamics occurring during the multistep decay cascade and molecular fragmentation, revealing the combined inner-shell decay and charge transfer time scale to be approximately 75 fs. Our computed kinetic energies of ion fragments show good agreement with experimental data.
Collapse
Affiliation(s)
- Adam E A Fouda
- Department of Physics, The University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Phay J Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Wang E, Kling NG, LaForge AC, Obaid R, Pathak S, Bhattacharyya S, Meister S, Trost F, Lindenblatt H, Schoch P, Kübel M, Pfeifer T, Rudenko A, Díaz-Tendero S, Martín F, Moshammer R, Rolles D, Berrah N. Ultrafast Roaming Mechanisms in Ethanol Probed by Intense Extreme Ultraviolet Free-Electron Laser Radiation: Electron Transfer versus Proton Transfer. J Phys Chem Lett 2023; 14:4372-4380. [PMID: 37140167 DOI: 10.1021/acs.jpclett.2c03764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrafast H2+ and H3+ formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H2 roaming that leads to H2+ and H3+ formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H2+ to H3+ increases with time delay, while it is flat at a photon energy of 70 eV. The delay-dependent effect is ascribed to a competition between electron and proton transfer. High-level quantum chemistry calculations show a flat potential energy surface for H2 formation, indicating that the intermediate state may have a long lifetime. The ab initio molecular dynamics simulation confirms that, in addition to the direct emission, a small portion of H2 undergoes a roaming mechanism that leads to two competing pathways: electron transfer from H2 to C2H4O2+ and proton transfer from C2H4O2+ to H2.
Collapse
Affiliation(s)
- Enliang Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Nora G Kling
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Aaron C LaForge
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Razib Obaid
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Shashank Pathak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Surjendu Bhattacharyya
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Severin Meister
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Florian Trost
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Hannes Lindenblatt
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Patrizia Schoch
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Matthias Kübel
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Thomas Pfeifer
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Robert Moshammer
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Nora Berrah
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| |
Collapse
|
3
|
Ho PJ, Ray D, Lehmann CS, Fouda AEA, Dunford RW, Kanter EP, Doumy G, Young L, Walko DA, Zheng X, Cheng L, Southworth SH. X-ray induced electron and ion fragmentation dynamics in IBr. J Chem Phys 2023; 158:134304. [PMID: 37031139 DOI: 10.1063/5.0145215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion’s charge state until the final state is reached. In molecules, the charge is spread across the atomic sites, resulting in dissociation to energetic atomic ions. We have used x-ray/ion coincidence spectroscopy to measure charge states and energies of I q+ and Br q′+ atomic ions following 1s ionization at the I and Br K-edges of IBr. We present the charge states and kinetic energies of the two correlated fragment ions associated with core-excited states produced during the various steps of the cascades. To understand the dynamics leading to the ion data, we develop a computational model that combines Monte-Carlo/Molecular-Dynamics (MC/MD) simulations with a classical over-the-barrier model to track inner-shell cascades and redistribution of electrons in valence orbitals and nuclear motion of fragments.
Collapse
Affiliation(s)
- Phay J. Ho
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Dipanwita Ray
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - C. Stefan Lehmann
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Adam E. A. Fouda
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Robert W. Dunford
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Elliot P. Kanter
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Donald A. Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xuechen Zheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lan Cheng
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Stephen H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
4
|
Folorunso AS, Mauger F, Hamer KA, Jayasinghe DD, Wahyutama IS, Ragains JR, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Attochemistry Regulation of Charge Migration. J Phys Chem A 2023; 127:1894-1900. [PMID: 36791088 PMCID: PMC9986869 DOI: 10.1021/acs.jpca.3c00568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Charge migration (CM) is a coherent attosecond process that involves the movement of localized holes across a molecule. To determine the relationship between a molecule's structure and the CM dynamics it exhibits, we perform systematic studies of para-functionalized bromobenzene molecules (X-C6H4-R) using real-time time-dependent density functional theory. We initiate valence-electron dynamics by emulating rapid strong-field ionization leading to a localized hole on the bromine atom. The resulting CM, which takes on the order of 1 fs, occurs via an X localized → C6H4 delocalized → R localized mechanism. Interestingly, the hole contrast on the acceptor functional group increases with increasing electron-donating strength. This trend is well-described by the Hammett σ value of the group, which is a commonly used metric for quantifying the effect of functionalization on the chemical reactivity of benzene derivatives. These results suggest that simple attochemistry principles and a density-based picture can be used to predict and understand CM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | |
Collapse
|
5
|
Dreimann M, Wahlert F, Eckermann D, Rosenthal F, Roling S, Reiker T, Kuhlmann M, Toleikis S, Brachmanski M, Treusch R, Plönjes E, Siemer B, Zacharias H. The soft X-ray and XUV split-and-delay unit at beamlines FL23/24 at FLASH2. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:479-489. [PMID: 36891862 PMCID: PMC10000806 DOI: 10.1107/s1600577523000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A split-and-delay unit for the extreme ultraviolet and soft X-ray spectral regions has been built which enables time-resolved experiments at beamlines FL23 and FL24 at the Free-electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X-ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 < T < 0.84 for hν < 100 eV and T > 0.50 for 100 eV < hν < 650 eV with the Ni coating, and T > 0.06 for hν < 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T > 0.61 with the Ni coating and T > 0.23 with a Pt coating is achieved. Soft X-ray pump/soft X-ray probe experiments are possible within a delay range of -5 ps < Δt < +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split-and-delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free-electron laser.
Collapse
Affiliation(s)
- Matthias Dreimann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Frank Wahlert
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Dennis Eckermann
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Felix Rosenthal
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Sebastian Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Tobias Reiker
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| | - Marion Kuhlmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Maciej Brachmanski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Elke Plönjes
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Björn Siemer
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149 Münster, Germany
| |
Collapse
|
6
|
Perspectives of Gas Phase Ion Chemistry: Spectroscopy and Modeling. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study of ions in the gas phase has a long history and has involved both chemists and physicists. The interplay of their competences with the use of very sophisticated commercial and/or homemade instrumentations and theoretical models has improved the knowledge of thermodynamics and kinetics of many chemical reactions, even if still many stages of these processes need to be fully understood. The new technologies and the novel free-electron laser facilities based on plasma acceleration open new opportunities to investigate the chemical reactions in some unrevealed fundamental aspects. The synchrotron light source can be put beside the FELs, and by mass spectrometric techniques and spectroscopies coupled with versatile ion sources it is possible to really change the state of the art of the ion chemistry in different areas such as atmospheric and astro chemistry, plasma chemistry, biophysics, and interstellar medium (ISM). In this manuscript we review the works performed by a joint combination of the experimental studies of ion–molecule reactions with synchrotron radiation and theoretical models adapted and developed to the experimental evidence. The review concludes with the perspectives of ion–molecule reactions by using FEL instrumentations as well as pump probe measurements and the initial attempt in the development of more realistic theoretical models for the prospective improvement of our predictive capability.
Collapse
|
7
|
Allum F, Music V, Inhester L, Boll R, Erk B, Schmidt P, Baumann TM, Brenner G, Burt M, Demekhin PV, Dörner S, Ehresmann A, Galler A, Grychtol P, Heathcote D, Kargin D, Larsson M, Lee JWL, Li Z, Manschwetus B, Marder L, Mason R, Meyer M, Otto H, Passow C, Pietschnig R, Ramm D, Schubert K, Schwob L, Thomas RD, Vallance C, Vidanović I, von Korff Schmising C, Wagner R, Walter P, Zhaunerchyk V, Rolles D, Bari S, Brouard M, Ilchen M. A localized view on molecular dissociation via electron-ion partial covariance. Commun Chem 2022; 5:42. [PMID: 36697752 PMCID: PMC9814695 DOI: 10.1038/s42004-022-00656-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d3/2 and 4d5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.
Collapse
Affiliation(s)
- Felix Allum
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA.
| | - Valerija Music
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Ludger Inhester
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Rebecca Boll
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Philipp Schmidt
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Günter Brenner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Philipp V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Arno Ehresmann
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | | | - David Heathcote
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Denis Kargin
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Mats Larsson
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Jason W L Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Zheng Li
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Bastian Manschwetus
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lutz Marder
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Robert Mason
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Michael Meyer
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Huda Otto
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Christopher Passow
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Rudolf Pietschnig
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | - Daniel Ramm
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Richard D Thomas
- Stockholm University, AlbaNova University Center, 114 21, Stockholm, Sweden
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Igor Vidanović
- Institut für Chemie, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany
| | | | - René Wagner
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, 1228 Martin Luther King Jr. Dr., Manhattan, KS, 66506, USA
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Markus Ilchen
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, D-34132, Kassel, Germany.
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany.
| |
Collapse
|
8
|
Rebholz M, Ding T, Aufleger L, Hartmann M, Meyer K, Stooß V, Magunia A, Wachs D, Birk P, Mi Y, Borisova GD, da Costa Castanheira C, Rupprecht P, Magrakvelidze M, Thumm U, Roling S, Butz M, Zacharias H, Düsterer S, Treusch R, Brenner G, Ott C, Pfeifer T. XUV-Initiated Dissociation Dynamics of Molecular Oxygen (O 2). J Phys Chem A 2021; 125:10138-10143. [PMID: 34788037 PMCID: PMC8647076 DOI: 10.1021/acs.jpca.1c06033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
performed a time-resolved spectroscopy experiment on the dissociation
of oxygen molecules after the interaction with intense extreme-ultraviolet
(XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron.
Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay
unit, we observe the onset of electronic transitions in the O2+ cation near 50 eV photon energy, marking the end of
the progression from a molecule to two isolated atoms. We observe
two different time scales of 290 ± 53 and 180 ± 76 fs
for the emergence of different ionic transitions, indicating different
dissociation pathways taken by the departing oxygen atoms. With regard
to the emerging opportunities of tuning the central frequencies of
pump and probe pulses and of increasing the probe–pulse bandwidth,
future pump–probe transient-absorption experiments are expected
to provide a detailed view of the coupled nuclear and electronic dynamics
during molecular dissociation.
Collapse
Affiliation(s)
- Marc Rebholz
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Thomas Ding
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Lennart Aufleger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Maximilian Hartmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Kristina Meyer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Veit Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Alexander Magunia
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - David Wachs
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Paul Birk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Yonghao Mi
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | | | | | - Patrick Rupprecht
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Maia Magrakvelidze
- Cabrini University, 610 King Of Prussia Road, Radnor, Pennsylvania 19087, United States
| | - Uwe Thumm
- Kansas State University, 212 Cardwell Hall, Manhattan, Kansas 66506, United States
| | - Sebastian Roling
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Marco Butz
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Helmut Zacharias
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg 22607, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg 22607, Germany
| | - Günter Brenner
- Deutsches Elektronen-Synchrotron, Notkestraße 85, Hamburg 22607, Germany
| | - Christian Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| |
Collapse
|
9
|
Ilchen M, Schmidt P, Novikovskiy NM, Hartmann G, Rupprecht P, Coffee RN, Ehresmann A, Galler A, Hartmann N, Helml W, Huang Z, Inhester L, Lutman AA, MacArthur JP, Maxwell T, Meyer M, Music V, Nuhn HD, Osipov T, Ray D, Wolf TJA, Bari S, Walter P, Li Z, Moeller S, Knie A, Demekhin PV. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun Chem 2021; 4:119. [PMID: 36697819 PMCID: PMC9814667 DOI: 10.1038/s42004-021-00555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.
Collapse
Affiliation(s)
- Markus Ilchen
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany ,Stanford PULSE Institute, Menlo Park, CA USA
| | - Philipp Schmidt
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nikolay M. Novikovskiy
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.182798.d0000 0001 2172 8170Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
| | - Gregor Hartmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Patrick Rupprecht
- grid.419604.e0000 0001 2288 6103Max-Planck-Institut für Kernphysik Heidelberg, Heidelberg, Germany
| | - Ryan N. Coffee
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Andreas Galler
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nick Hartmann
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Wolfram Helml
- grid.5675.10000 0001 0416 9637Fakultät für Physik, Technische Universität Dortmund, Dortmund, Germany
| | - Zhirong Huang
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Ludger Inhester
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alberto A. Lutman
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - James P. MacArthur
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timothy Maxwell
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Meyer
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Valerija Music
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Heinz-Dieter Nuhn
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timur Osipov
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Dipanwita Ray
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, Menlo Park, CA USA ,grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Sadia Bari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Peter Walter
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Zheng Li
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Stefan Moeller
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - André Knie
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Philipp V. Demekhin
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| |
Collapse
|
10
|
Huang N, Deng H, Liu B, Wang D, Zhao Z. Features and futures of X-ray free-electron lasers. Innovation (N Y) 2021; 2:100097. [PMID: 34557749 PMCID: PMC8454599 DOI: 10.1016/j.xinn.2021.100097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/14/2021] [Indexed: 11/18/2022] Open
Abstract
Linear accelerator-based free-electron lasers (FELs) are the leading source of fully coherent X-rays with ultra-high peak powers and ultra-short pulse lengths. Current X-ray FEL facilities have proved their worth as useful tools for diverse scientific applications. In this paper, we present an overview of the features and future prospects of X-ray FELs, including the working principles and properties of X-ray FELs, the operational status of different FEL facilities worldwide, the applications supported by such facilities, and the current developments and outlook for X-ray FEL-based research.
Collapse
Affiliation(s)
- Nanshun Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixiao Deng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Dong Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhentang Zhao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
11
|
Folorunso AS, Bruner A, Mauger F, Hamer KA, Hernandez S, Jones RR, DiMauro LF, Gaarde MB, Schafer KJ, Lopata K. Molecular Modes of Attosecond Charge Migration. PHYSICAL REVIEW LETTERS 2021; 126:133002. [PMID: 33861123 DOI: 10.1103/physrevlett.126.133002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
First-principles calculations are employed to elucidate the modes of attosecond charge migration (CM) in halogenated hydrocarbon chains. We use constrained density functional theory (DFT) to emulate the creation of a localized hole on the halogen and follow the subsequent dynamics via time-dependent DFT. We find low-frequency CM modes (∼1 eV) that propagate across the molecule and study their dependence on length, bond order, and halogenation. We observe that the CM speed (∼4 Å/fs) is largely independent of molecule length, but is lower for triple-bonded versus double-bonded molecules. Additionally, as the halogen mass increases, the hole travels in a more particlelike manner as it moves across the molecule. These heuristics will be useful in identifying molecules and optimal CM detection methods for future experiments, especially for halogenated hydrocarbons which are promising targets for ionization-triggered CM.
Collapse
Affiliation(s)
- Aderonke S Folorunso
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Adam Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kyle A Hamer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Samuel Hernandez
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert R Jones
- Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
12
|
Allum F, Anders N, Brouard M, Bucksbaum P, Burt M, Downes-Ward B, Grundmann S, Harries J, Ishimura Y, Iwayama H, Kaiser L, Kukk E, Lee J, Liu X, Minns RS, Nagaya K, Niozu A, Niskanen J, O'Neal J, Owada S, Pickering J, Rolles D, Rudenko A, Saito S, Ueda K, Vallance C, Werby N, Woodhouse J, You D, Ziaee F, Driver T, Forbes R. Multi-channel photodissociation and XUV-induced charge transfer dynamics in strong-field-ionized methyl iodide studied with time-resolved recoil-frame covariance imaging. Faraday Discuss 2021; 228:571-596. [PMID: 33629700 DOI: 10.1039/d0fd00115e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photodissociation dynamics of strong-field ionized methyl iodide (CH3I) were probed using intense extreme ultraviolet (XUV) radiation produced by the SPring-8 Angstrom Compact free electron LAser (SACLA). Strong-field ionization and subsequent fragmentation of CH3I was initiated by an intense femtosecond infrared (IR) pulse. The ensuing fragmentation and charge transfer processes following multiple ionization by the XUV pulse at a range of pump-probe delays were followed in a multi-mass ion velocity-map imaging (VMI) experiment. Simultaneous imaging of a wide range of resultant ions allowed for additional insight into the complex dynamics by elucidating correlations between the momenta of different fragment ions using time-resolved recoil-frame covariance imaging analysis. The comprehensive picture of the photodynamics that can be extracted provides promising evidence that the techniques described here could be applied to study ultrafast photochemistry in a range of molecular systems at high count rates using state-of-the-art advanced light sources.
Collapse
Affiliation(s)
- Felix Allum
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nils Anders
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Mark Brouard
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Philip Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Michael Burt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Briony Downes-Ward
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - James Harries
- QST, SPring-8, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | - Yudai Ishimura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Iwayama
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Leon Kaiser
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
| | - Edwin Kukk
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jason Lee
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Xiaojing Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Russell S Minns
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jordan O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | | | - James Pickering
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Claire Vallance
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Nicholas Werby
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Joanne Woodhouse
- Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, 980-8577, Japan
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506, USA
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Ruaridh Forbes
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| |
Collapse
|
13
|
Atomic, Molecular and Cluster Science with the Reaction Microscope Endstation at FLASH2. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reaction microscope (REMI) endstation for atomic and molecular science at the free-electron laser FLASH2 at DESY in Hamburg is presented together with a brief overview of results recently obtained. The REMI allows coincident detection of electrons and ions that emerge from atomic or molecular fragmentation reactions in the focus of the extreme-ultraviolet (XUV) free-electron laser (FEL) beam. A large variety of target species ranging from atoms and molecules to small clusters can be injected with a supersonic gas-jet into the FEL focus. Their ionization and fragmentation dynamics can be studied either under single pulse conditions, or for double pulses as a function of their time delay by means of FEL-pump–FEL-probe schemes and also in combination with a femtosecond infrared (IR) laser. In a recent upgrade, the endstation was further extended by a light source based on high harmonic generation (HHG), which is now available for upcoming FEL/HHG pump–probe experiments.
Collapse
|
14
|
Wallner M, Eland JHD, Squibb RJ, Andersson J, Roos AH, Singh R, Talaee O, Koulentianos D, Piancastelli MN, Simon M, Feifel R. Coulomb explosion of CD 3I induced by single photon deep inner-shell ionisation. Sci Rep 2020; 10:1246. [PMID: 31988321 PMCID: PMC6985119 DOI: 10.1038/s41598-020-58251-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/13/2020] [Indexed: 12/05/2022] Open
Abstract
L-shell ionisation and subsequent Coulomb explosion of fully deuterated methyl iodide, CD3I, irradiated with hard X-rays has been examined by a time-of-flight multi-ion coincidence technique. The core vacancies relax efficiently by Auger cascades, leading to charge states up to 16+. The dynamics of the Coulomb explosion process are investigated by calculating the ions’ flight times numerically based on a geometric model of the experimental apparatus, for comparison with the experimental data. A parametric model of the explosion, previously introduced for multi-photon induced Coulomb explosion, is applied in numerical simulations, giving good agreement with the experimental results for medium charge states. Deviations for higher charges suggest the need to include nuclear motion in a putatively more complete model. Detection efficiency corrections from the simulations are used to determine the true distributions of molecular charge states produced by initial L1, L2 and L3 ionisation.
Collapse
Affiliation(s)
- M Wallner
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden
| | - J H D Eland
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden.,Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - R J Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden
| | - J Andersson
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden
| | - A Hult Roos
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden
| | - R Singh
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden
| | - O Talaee
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden.,Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, FI-90014, Oulu, Finland
| | - D Koulentianos
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden.,Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris, Cedex 05, France
| | - M N Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris, Cedex 05, France.,Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - M Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005, Paris, Cedex 05, France.,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192, Gif-sur-Yvette, Cedex, France
| | - R Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, 412 58, Gothenburg, Sweden.
| |
Collapse
|
15
|
Yamazaki K, Niitsu N, Kanno M, Ueda K, Kono H. Capturing the photo-induced dynamics of nano-molecules by X-ray free electron laser induced Coulomb explosion. J Chem Phys 2019; 151:124305. [PMID: 31575189 DOI: 10.1063/1.5115072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We performed reaction dynamics simulations to demonstrate that the vibrational dynamics of C60 induced by infrared (IR) pulses can be traced by triggering Coulomb explosion with intense femtosecond X-ray free electron laser (XFEL) probe pulses. The time series of the angular anisotropy β(t) of fast C+ and C2+ fragments of C60 60+ produced by such an XFEL pulse reflects the instantaneous structure of C60 vibrationally excited by IR pulses. The phases and amplitudes of excited vibrational modes and the coupling between excited modes can be successfully extracted from the expansion of β(t) in terms of vibrational modes. This proof-of-principle simulation clearly demonstrates that various information of the structures and reaction dynamics of large clusters or biomolecules can be retrieved by decomposing the experimentally determined β(t) into vibrational modes.
Collapse
Affiliation(s)
- Kaoru Yamazaki
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Naoyuki Niitsu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-9578, Japan
| | - Manabu Kanno
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-9578, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hirohiko Kono
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-9578, Japan
| |
Collapse
|
16
|
Schmid G, Schnorr K, Augustin S, Meister S, Lindenblatt H, Trost F, Liu Y, Braune M, Treusch R, Schröter CD, Pfeifer T, Moshammer R. Reaction microscope endstation at FLASH2. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:854-867. [PMID: 31074450 DOI: 10.1107/s1600577519002236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
A reaction microscope dedicated to multi-particle coincidence spectroscopy on gas-phase samples is installed at beamline FL26 of the free-electron laser FLASH2 in Hamburg. The main goals of the instrument are to follow the dynamics of atoms, molecules and small clusters on their natural time-scale and to study non-linear light-matter interaction with such systems. To this end, the reaction microscope is combined with an in-line extreme-ultraviolet (XUV) split-delay and focusing optics, which allows time-resolved XUV-XUV pump-probe spectroscopy to be performed.
Collapse
Affiliation(s)
- Georg Schmid
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Kirsten Schnorr
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Sven Augustin
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Severin Meister
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Hannes Lindenblatt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Florian Trost
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Yifan Liu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Markus Braune
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Robert Moshammer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
17
|
Forbes R, De Fanis A, Bomme C, Rolles D, Pratt ST, Powis I, Besley NA, Simon M, Nandi S, Milosavljević AR, Nicolas C, Bozek JD, Underwood JG, Holland DMP. Photoionization of the iodine 3d, 4s, and 4p orbitals in methyl iodide. J Chem Phys 2018; 149:144302. [DOI: 10.1063/1.5035496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ruaridh Forbes
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | | | - Cédric Bomme
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Stephen T. Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Ivan Powis
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Nicholas A. Besley
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Marc Simon
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Saikat Nandi
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | | | - Christophe Nicolas
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - John D. Bozek
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Jonathan G. Underwood
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David M. P. Holland
- Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| |
Collapse
|
18
|
Amini K, Savelyev E, Brauße F, Berrah N, Bomme C, Brouard M, Burt M, Christensen L, Düsterer S, Erk B, Höppner H, Kierspel T, Krecinic F, Lauer A, Lee JWL, Müller M, Müller E, Mullins T, Redlin H, Schirmel N, Thøgersen J, Techert S, Toleikis S, Treusch R, Trippel S, Ulmer A, Vallance C, Wiese J, Johnsson P, Küpper J, Rudenko A, Rouzée A, Stapelfeldt H, Rolles D, Boll R. Photodissociation of aligned CH 3I and C 6H 3F 2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2018; 5:014301. [PMID: 29430482 PMCID: PMC5785297 DOI: 10.1063/1.4998648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
Collapse
Affiliation(s)
- Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Felix Brauße
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Faruk Krecinic
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - Alexandra Lauer
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jason W L Lee
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Maria Müller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Terence Mullins
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anatoli Ulmer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Joss Wiese
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Arnaud Rouzée
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | | | | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| |
Collapse
|
19
|
The Linac Coherent Light Source: Recent Developments and Future Plans. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of X-ray free-electron lasers (XFELs) has launched a new era in X-ray science by providing ultrafast coherent X-ray pulses with a peak brightness that is approximately one billion times higher than previous X-ray sources. The Linac Coherent Light Source (LCLS) facility at the SLAC National Accelerator Laboratory, the world’s first hard X-ray FEL, has already demonstrated a tremendous scientific impact across broad areas of science. Here, a few of the more recent representative highlights from LCLS are presented in the areas of atomic, molecular, and optical science; chemistry; condensed matter physics; matter in extreme conditions; and biology. This paper also outlines the near term upgrade (LCLS-II) and motivating science opportunities for ultrafast X-rays in the 0.25–5 keV range at repetition rates up to 1 MHz. Future plans to extend the X-ray energy reach to beyond 13 keV (<1 Å) at high repetition rate (LCLS-II-HE) are envisioned, motivated by compelling new science of structural dynamics at the atomic scale.
Collapse
|
20
|
Amini K, Boll R, Lauer A, Burt M, Lee JWL, Christensen L, Brauβe F, Mullins T, Savelyev E, Ablikim U, Berrah N, Bomme C, Düsterer S, Erk B, Höppner H, Johnsson P, Kierspel T, Krecinic F, Küpper J, Müller M, Müller E, Redlin H, Rouzée A, Schirmel N, Thøgersen J, Techert S, Toleikis S, Treusch R, Trippel S, Ulmer A, Wiese J, Vallance C, Rudenko A, Stapelfeldt H, Brouard M, Rolles D. Alignment, orientation, and Coulomb explosion of difluoroiodobenzene studied with the pixel imaging mass spectrometry (PImMS) camera. J Chem Phys 2017; 147:013933. [DOI: 10.1063/1.4982220] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kasra Amini
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Alexandra Lauer
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael Burt
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jason W. L. Lee
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | | | - Felix Brauβe
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Terence Mullins
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Evgeny Savelyev
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Utuq Ablikim
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Cédric Bomme
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Düsterer
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Hauke Höppner
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Physik, Carl von Ossietzky Universität, 26111 Oldenburg, Germany
| | - Per Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Thomas Kierspel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Faruk Krecinic
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - Maria Müller
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Erland Müller
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Harald Redlin
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Arnaud Rouzée
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 12489 Berlin, Germany
| | - Nora Schirmel
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jan Thøgersen
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Max Planck Institute for Biophysical Chemistry, 33077 Göttingen, Germany
- Institute for X-ray Physics, Göttingen University, 33077 Göttingen, Germany
| | - Sven Toleikis
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Sebastian Trippel
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
- Center for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Anatoli Ulmer
- Institut für Optik und Atomare Physik,
Technische Universität Berlin, 10623 Berlin,
Germany
| | - Joss Wiese
- Center for Free-Electron Laser Science (CFEL),
Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg,
Germany
| | - Claire Vallance
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| | | | - Mark Brouard
- The Chemistry Research Laboratory, Department of Chemistry,
University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Daniel Rolles
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- J. R. Macdonald Laboratory, Department of Physics,
Kansas State University, Manhattan, Kansas 66506,
USA
| |
Collapse
|
21
|
Boll R, Erk B, Coffee R, Trippel S, Kierspel T, Bomme C, Bozek JD, Burkett M, Carron S, Ferguson KR, Foucar L, Küpper J, Marchenko T, Miron C, Patanen M, Osipov T, Schorb S, Simon M, Swiggers M, Techert S, Ueda K, Bostedt C, Rolles D, Rudenko A. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:043207. [PMID: 27051675 PMCID: PMC4808069 DOI: 10.1063/1.4944344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 03/04/2016] [Indexed: 05/07/2023]
Abstract
Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I(21+). The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.
Collapse
Affiliation(s)
| | - Benjamin Erk
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg, Germany
| | - Ryan Coffee
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Sebastian Trippel
- Center for Free-Electron Laser Science, DESY , 22607 Hamburg, Germany
| | | | - Cédric Bomme
- Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg, Germany
| | - John D Bozek
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Mitchell Burkett
- J.R. Macdonald Laboratory, Kansas State University , Manhattan, Kansas 66506, USA
| | - Sebastian Carron
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Ken R Ferguson
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Lutz Foucar
- Max Planck Institute for Medical Research , 69120 Heidelberg, Germany
| | | | - Tatiana Marchenko
- Sorbonne Universités , UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, F-75005 Paris, France
| | | | | | - Timur Osipov
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Sebastian Schorb
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | - Marc Simon
- Sorbonne Universités , UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matiere et Rayonnement, F-75005 Paris, France
| | - Michelle Swiggers
- SLAC National Accelerator Laboratory , Menlo Park, California 94025, USA
| | | | - Kiyoshi Ueda
- IMRAM, Tohoku University , 980-8577 Sendai, Japan
| | | | | | - Artem Rudenko
- J.R. Macdonald Laboratory, Kansas State University , Manhattan, Kansas 66506, USA
| |
Collapse
|
22
|
Nagaya K, Motomura K, Kukk E, Takahashi Y, Yamazaki K, Ohmura S, Fukuzawa H, Wada S, Mondal S, Tachibana T, Ito Y, Koga R, Sakai T, Matsunami K, Nakamura K, Kanno M, Rudenko A, Nicolas C, Liu XJ, Miron C, Zhang Y, Jiang Y, Chen J, Anand M, Kim DE, Tono K, Yabashi M, Yao M, Kono H, Ueda K. Femtosecond charge and molecular dynamics of I-containing organic molecules induced by intense X-ray free-electron laser pulses. Faraday Discuss 2016; 194:537-562. [DOI: 10.1039/c6fd00085a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CH3I). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (C4H3IN2O2, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CH3I and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.
Collapse
|
23
|
Motomura K, Kukk E, Fukuzawa H, Wada SI, Nagaya K, Ohmura S, Mondal S, Tachibana T, Ito Y, Koga R, Sakai T, Matsunami K, Rudenko A, Nicolas C, Liu XJ, Miron C, Zhang Y, Jiang Y, Chen J, Anand M, Kim DE, Tono K, Yabashi M, Yao M, Ueda K. Charge and Nuclear Dynamics Induced by Deep Inner-Shell Multiphoton Ionization of CH3I Molecules by Intense X-ray Free-Electron Laser Pulses. J Phys Chem Lett 2015; 6:2944-9. [PMID: 26267186 DOI: 10.1021/acs.jpclett.5b01205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In recent years, free-electron lasers operating in the true X-ray regime have opened up access to the femtosecond-scale dynamics induced by deep inner-shell ionization. We have investigated charge creation and transfer dynamics in the context of molecular Coulomb explosion of a single molecule, exposed to sequential deep inner-shell ionization within an ultrashort (10 fs) X-ray pulse. The target molecule was CH3I, methane sensitized to X-rays by halogenization with a heavy element, iodine. Time-of-flight ion spectroscopy and coincident ion analysis was employed to investigate, via the properties of the atomic fragments, single-molecule charge states of up to +22. Experimental findings have been compared with a parametric model of simultaneous Coulomb explosion and charge transfer in the molecule. The study demonstrates that including realistic charge dynamics is imperative when molecular Coulomb explosion experiments using short-pulse facilities are performed.
Collapse
Affiliation(s)
- Koji Motomura
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Edwin Kukk
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- ‡Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Hironobu Fukuzawa
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- §RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Shin-ichi Wada
- §RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- ∥Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Kiyonobu Nagaya
- §RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- ⊥Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Ohmura
- ⊥Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Subhendu Mondal
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Tetsuya Tachibana
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yuta Ito
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Ryosuke Koga
- ∥Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Tsukasa Sakai
- ⊥Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Kenji Matsunami
- ⊥Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Artem Rudenko
- #J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christophe Nicolas
- ∇Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex, France
| | - Xiao-Jing Liu
- ∇Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex, France
| | - Catalin Miron
- ∇Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, FR-91192 Gif-sur-Yvette Cedex, France
- ○Extreme Light Infrastructure - Nuclear Physics (ELI-NP), "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov, Romania
| | - Yizhu Zhang
- ◆Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Yuhai Jiang
- ◆Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Jianhui Chen
- ¶Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - Mailam Anand
- ∫Department of Physics, CASTECH, MPC-AS, POSTECH, Pohang, Korea
| | - Dong Eon Kim
- ∫Department of Physics, CASTECH, MPC-AS, POSTECH, Pohang, Korea
| | - Kensuke Tono
- ⊗Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | | | - Makoto Yao
- ⊥Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Kiyoshi Ueda
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- §RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
24
|
Hao Y, Inhester L, Hanasaki K, Son SK, Santra R. Efficient electronic structure calculation for molecular ionization dynamics at high x-ray intensity. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:041707. [PMID: 26798806 PMCID: PMC4711638 DOI: 10.1063/1.4919794] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/24/2015] [Indexed: 05/16/2023]
Abstract
We present the implementation of an electronic-structure approach dedicated to ionization dynamics of molecules interacting with x-ray free-electron laser (XFEL) pulses. In our scheme, molecular orbitals for molecular core-hole states are represented by linear combination of numerical atomic orbitals that are solutions of corresponding atomic core-hole states. We demonstrate that our scheme efficiently calculates all possible multiple-hole configurations of molecules formed during XFEL pulses. The present method is suitable to investigate x-ray multiphoton multiple ionization dynamics and accompanying nuclear dynamics, providing essential information on the chemical dynamics relevant for high-intensity x-ray imaging.
Collapse
|