1
|
Roth R, Petri M. Electromagnetic properties of nuclei from first principles: a case for synergies between experiment and theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230119. [PMID: 38910404 DOI: 10.1098/rsta.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
One of the overarching goals in nuclear science is to understand how the nuclear chart emerges from the underlying fundamental interactions. The description of the structure of nuclei from first principles, using ab initio methods for the solution of the many-nucleon problem with inputs from chiral effective field theory, has advanced dramatically over the past two decades. We present an overview over the available ab initio tools with a specific emphasis on electromagnetic observables, such as multipole moments and transition strengths. These observables still pose a challenge for ab initio theory and are one of the most exciting domains to exploit synergies with modern experiments. Precise experimental data are vital for the validation of the theory predictions and the refinement of ab initio methods. We discuss some of the past and future experimental efforts highlighting these synergies. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
Collapse
Affiliation(s)
- R Roth
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - M Petri
- School of Physics, Engineering and Technology, University of York , York YO10 5DD, UK
| |
Collapse
|
2
|
Miyagi T, Cao X, Seutin R, Bacca S, Ruiz RFG, Hebeler K, Holt JD, Schwenk A. Impact of Two-Body Currents on Magnetic Dipole Moments of Nuclei. PHYSICAL REVIEW LETTERS 2024; 132:232503. [PMID: 38905650 DOI: 10.1103/physrevlett.132.232503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy nuclei using the valence-space in-medium similarity renormalization group with chiral effective field theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have found that the leading two-body currents globally improve the agreement with experimental magnetic moments. Moreover, our results show the importance of multishell effects for ^{41}Ca, which suggest that the Z=N=20 gap in ^{40}Ca is not as robust as in ^{48}Ca. The increasing contribution of two-body currents in heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.
Collapse
Affiliation(s)
- T Miyagi
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X Cao
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | - R Seutin
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Bacca
- Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - R F Garcia Ruiz
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K Hebeler
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, Montréal, Quebec City H3A 2T8, Canada
| | - A Schwenk
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
3
|
Belley A, Yao JM, Bally B, Pitcher J, Engel J, Hergert H, Holt JD, Miyagi T, Rodríguez TR, Romero AM, Stroberg SR, Zhang X. Ab Initio Uncertainty Quantification of Neutrinoless Double-Beta Decay in ^{76}Ge. PHYSICAL REVIEW LETTERS 2024; 132:182502. [PMID: 38759198 DOI: 10.1103/physrevlett.132.182502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 05/19/2024]
Abstract
The observation of neutrinoless double-beta (0νββ) decay would offer proof of lepton number violation, demonstrating that neutrinos are Majorana particles, while also helping us understand why there is more matter than antimatter in the Universe. If the decay is driven by the exchange of the three known light neutrinos, a discovery would, in addition, link the observed decay rate to the neutrino mass scale through a theoretical quantity known as the nuclear matrix element (NME). Accurate values of the NMEs for all nuclei considered for use in 0νββ experiments are therefore crucial for designing and interpreting those experiments. Here, we report the first comprehensive ab initio uncertainty quantification of the 0νββ-decay NME, in the key nucleus ^{76}Ge. Our method employs nuclear strong and weak interactions derived within chiral effective field theory and recently developed many-body emulators. Our result, with a conservative treatment of uncertainty, is an NME of 2.60_{-1.36}^{+1.28}, which, together with the best-existing half-life sensitivity and phase-space factor, sets an upper limit for effective neutrino mass of 187_{-62}^{+205} meV. The result is important for designing next-generation germanium detectors aiming to cover the entire inverted hierarchy region of neutrino masses.
Collapse
Affiliation(s)
- A Belley
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J M Yao
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| | - B Bally
- ESNT, IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - J Pitcher
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - H Hergert
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
- Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - J D Holt
- TRIUMF, Vancouver, British Columbia, Canada
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - T Miyagi
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T R Rodríguez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, E-28040 Madrid, Spain
- Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Centro de Investigación Avanzada en Física Fundamental-CIAFF-UAM, E-28049 Madrid, Spain
| | - A M Romero
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028 Barcelona, Spain
| | - S R Stroberg
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - X Zhang
- School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
| |
Collapse
|
4
|
Kondo Y, Achouri NL, Falou HA, Atar L, Aumann T, Baba H, Boretzky K, Caesar C, Calvet D, Chae H, Chiga N, Corsi A, Delaunay F, Delbart A, Deshayes Q, Dombrádi Z, Douma CA, Ekström A, Elekes Z, Forssén C, Gašparić I, Gheller JM, Gibelin J, Gillibert A, Hagen G, Harakeh MN, Hirayama A, Hoffman CR, Holl M, Horvat A, Horváth Á, Hwang JW, Isobe T, Jiang WG, Kahlbow J, Kalantar-Nayestanaki N, Kawase S, Kim S, Kisamori K, Kobayashi T, Körper D, Koyama S, Kuti I, Lapoux V, Lindberg S, Marqués FM, Masuoka S, Mayer J, Miki K, Murakami T, Najafi M, Nakamura T, Nakano K, Nakatsuka N, Nilsson T, Obertelli A, Ogata K, de Oliveira Santos F, Orr NA, Otsu H, Otsuka T, Ozaki T, Panin V, Papenbrock T, Paschalis S, Revel A, Rossi D, Saito AT, Saito TY, Sasano M, Sato H, Satou Y, Scheit H, Schindler F, Schrock P, Shikata M, Shimizu N, Shimizu Y, Simon H, Sohler D, Sorlin O, Stuhl L, Sun ZH, Takeuchi S, Tanaka M, Thoennessen M, Törnqvist H, Togano Y, Tomai T, Tscheuschner J, Tsubota J, Tsunoda N, Uesaka T, Utsuno Y, Vernon I, Wang H, Yang Z, Yasuda M, Yoneda K, Yoshida S. First observation of 28O. Nature 2023; 620:965-970. [PMID: 37648757 PMCID: PMC10630140 DOI: 10.1038/s41586-023-06352-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/21/2023] [Indexed: 09/01/2023]
Abstract
Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10-21 s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called 'doubly magic' nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.
Collapse
Affiliation(s)
- Y Kondo
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan.
- RIKEN Nishina Center, Saitama, Japan.
| | - N L Achouri
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | - H Al Falou
- Lebanese University, Beirut, Lebanon
- Lebanese-French University of Technology and Applied Sciences, Deddeh, Lebanon
| | - L Atar
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - T Aumann
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Helmholtz Research Academy Hesse for FAIR, Darmstadt, Germany
| | - H Baba
- RIKEN Nishina Center, Saitama, Japan
| | - K Boretzky
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - C Caesar
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - D Calvet
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - H Chae
- Institute for Basic Science, Daejeon, Republic of Korea
| | - N Chiga
- RIKEN Nishina Center, Saitama, Japan
| | - A Corsi
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - F Delaunay
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | - A Delbart
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Q Deshayes
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | | | - C A Douma
- ESRIG, University of Groningen, Groningen, The Netherlands
| | - A Ekström
- Institutionen för Fysik, Chalmers Tekniska Högskola, Göteborg, Sweden
| | | | - C Forssén
- Institutionen för Fysik, Chalmers Tekniska Högskola, Göteborg, Sweden
| | - I Gašparić
- RIKEN Nishina Center, Saitama, Japan
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- Ruđer Bošković Institute, Zagreb, Croatia
| | - J-M Gheller
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - J Gibelin
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | - A Gillibert
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - M N Harakeh
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- ESRIG, University of Groningen, Groningen, The Netherlands
| | - A Hirayama
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - C R Hoffman
- Physics Division, Argonne National Laboratory, Argonne, IL, USA
| | - M Holl
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - A Horvat
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Á Horváth
- Eötvös Loránd University, Budapest, Hungary
| | - J W Hwang
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - T Isobe
- RIKEN Nishina Center, Saitama, Japan
| | - W G Jiang
- Institutionen för Fysik, Chalmers Tekniska Högskola, Göteborg, Sweden
| | - J Kahlbow
- RIKEN Nishina Center, Saitama, Japan
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - S Kawase
- Department of Advanced Energy Engineering Science, Kyushu University, Fukuoka, Japan
| | - S Kim
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | | | - T Kobayashi
- Department of Physics, Tohoku University, Miyagi, Japan
| | - D Körper
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - S Koyama
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - I Kuti
- Atomki, Debrecen, Hungary
| | - V Lapoux
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - S Lindberg
- Institutionen för Fysik, Chalmers Tekniska Högskola, Göteborg, Sweden
| | - F M Marqués
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | - S Masuoka
- Center for Nuclear Study, The University of Tokyo, Saitama, Japan
| | - J Mayer
- Institut für Kernphysik, Universität zu Köln, Köln, Germany
| | - K Miki
- Department of Physics, Tohoku University, Miyagi, Japan
| | - T Murakami
- Department of Physics, Kyoto University, Kyoto, Japan
| | - M Najafi
- ESRIG, University of Groningen, Groningen, The Netherlands
| | - T Nakamura
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- RIKEN Nishina Center, Saitama, Japan
| | - K Nakano
- Department of Advanced Energy Engineering Science, Kyushu University, Fukuoka, Japan
| | - N Nakatsuka
- Department of Physics, Kyoto University, Kyoto, Japan
| | - T Nilsson
- Institutionen för Fysik, Chalmers Tekniska Högskola, Göteborg, Sweden
| | - A Obertelli
- Irfu, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - K Ogata
- Department of Physics, Kyushu University, Fukuoka, Japan
- Research Center for Nuclear Physics, Osaka University, Osaka, Japan
- Department of Physics, Osaka City University, Osaka, Japan
| | - F de Oliveira Santos
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - N A Orr
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
| | - H Otsu
- RIKEN Nishina Center, Saitama, Japan
| | - T Otsuka
- RIKEN Nishina Center, Saitama, Japan
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - T Ozaki
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - V Panin
- RIKEN Nishina Center, Saitama, Japan
| | - T Papenbrock
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - S Paschalis
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - A Revel
- LPC Caen UMR6534, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, Caen, France
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - D Rossi
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - A T Saito
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - T Y Saito
- Department of Physics, The University of Tokyo, Tokyo, Japan
| | - M Sasano
- RIKEN Nishina Center, Saitama, Japan
| | - H Sato
- RIKEN Nishina Center, Saitama, Japan
| | - Y Satou
- Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - H Scheit
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - F Schindler
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - P Schrock
- Center for Nuclear Study, The University of Tokyo, Saitama, Japan
| | - M Shikata
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - N Shimizu
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | - Y Shimizu
- RIKEN Nishina Center, Saitama, Japan
| | - H Simon
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - O Sorlin
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Caen, France
| | - L Stuhl
- RIKEN Nishina Center, Saitama, Japan
- Center for Exotic Nuclear Studies, Institute for Basic Science, Daejeon, Republic of Korea
| | - Z H Sun
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - S Takeuchi
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - M Tanaka
- Department of Physics, Osaka University, Osaka, Japan
| | - M Thoennessen
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI, USA
| | - H Törnqvist
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Y Togano
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
- Department of Physics, Rikkyo University, Tokyo, Japan
| | - T Tomai
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - J Tscheuschner
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt, Germany
| | - J Tsubota
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - N Tsunoda
- Center for Nuclear Study, The University of Tokyo, Saitama, Japan
| | - T Uesaka
- RIKEN Nishina Center, Saitama, Japan
| | - Y Utsuno
- Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki, Japan
| | - I Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| | - H Wang
- RIKEN Nishina Center, Saitama, Japan
| | - Z Yang
- RIKEN Nishina Center, Saitama, Japan
| | - M Yasuda
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - K Yoneda
- RIKEN Nishina Center, Saitama, Japan
| | - S Yoshida
- Liberal and General Education Center, Institute for Promotion of Higher Academic Education, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
5
|
Zhang S, Cheng Z, Li J, Xu Z, Xu F. 含手征三体力的第一性原理Gamow壳模型计算<sup>14</sup>O同中子素. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Hu BS, Padua-Argüelles J, Leutheusser S, Miyagi T, Stroberg SR, Holt JD. Ab Initio Structure Factors for Spin-Dependent Dark Matter Direct Detection. PHYSICAL REVIEW LETTERS 2022; 128:072502. [PMID: 35244439 DOI: 10.1103/physrevlett.128.072502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We present converged ab initio calculations of structure factors for elastic spin-dependent WIMP scattering off all nuclei used in dark matter direct-detection searches: ^{19}F, ^{23}Na, ^{27}Al, ^{29}Si, ^{73}Ge, ^{127}I, and ^{129,131}Xe. From a set of established two- and three-nucleon interactions derived within chiral effective field theory, we construct consistent WIMP-nucleon currents at the one-body level, including effects from axial-vector two-body currents. We then apply the in-medium similarity renormalization group to construct effective valence-space Hamiltonians and consistently transformed operators of nuclear responses. Combining the recent advances of natural orbitals with three-nucleon forces expressed in large spaces, we obtain basis-space converged structure factors even in heavy nuclei. Generally results are consistent with previous calculations but large uncertainties in ^{127}I highlight the need for further study.
Collapse
Affiliation(s)
- B S Hu
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J Padua-Argüelles
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Perimeter Institute, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
| | - S Leutheusser
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Miyagi
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, Montréal, Quebec City H3A 2T8, Canada
| |
Collapse
|
7
|
Malbrunot-Ettenauer S, Kaufmann S, Bacca S, Barbieri C, Billowes J, Bissell ML, Blaum K, Cheal B, Duguet T, Ruiz RFG, Gins W, Gorges C, Hagen G, Heylen H, Holt JD, Jansen GR, Kanellakopoulos A, Kortelainen M, Miyagi T, Navrátil P, Nazarewicz W, Neugart R, Neyens G, Nörtershäuser W, Novario SJ, Papenbrock T, Ratajczyk T, Reinhard PG, Rodríguez LV, Sánchez R, Sailer S, Schwenk A, Simonis J, Somà V, Stroberg SR, Wehner L, Wraith C, Xie L, Xu ZY, Yang XF, Yordanov DT. Nuclear Charge Radii of the Nickel Isotopes ^{58-68,70}Ni. PHYSICAL REVIEW LETTERS 2022; 128:022502. [PMID: 35089728 DOI: 10.1103/physrevlett.128.022502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).
Collapse
Affiliation(s)
| | - S Kaufmann
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - S Bacca
- Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - C Barbieri
- Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - J Billowes
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - M L Bissell
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - K Blaum
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - B Cheal
- Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - T Duguet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - R F Garcia Ruiz
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - W Gins
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - C Gorges
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - H Heylen
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, Montréal, Quebec H3A 2T8, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A Kanellakopoulos
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - M Kortelainen
- Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| | - T Miyagi
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - P Navrátil
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - W Nazarewicz
- Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - R Neugart
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - G Neyens
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - W Nörtershäuser
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - S J Novario
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - T Papenbrock
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - T Ratajczyk
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - P-G Reinhard
- Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - L V Rodríguez
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
| | - R Sánchez
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - S Sailer
- Technische Universität München, D-80333 München, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - J Simonis
- Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - V Somà
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington, D.C. 98195, USA
| | - L Wehner
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - C Wraith
- Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - L Xie
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Z Y Xu
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - X F Yang
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - D T Yordanov
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
| |
Collapse
|
8
|
Abstract
The Gamow shell model (GSM) is a powerful method for the description of the exotic properties of drip line nuclei. Internucleon correlations are included via a configuration interaction framework. Continuum coupling is directly included at basis level by using the Berggren basis, in which, bound, resonance, and continuum single-particle states are treated on an equal footing in the complex momentum plane. Two different types of Gamow shell models have been developed: its first embodiment is that of the GSM defined with phenomenological nuclear interactions, whereas the GSM using realistic nuclear interactions, called the realistic Gamow shell model, was introduced later. The present review focuses on the recent applications of the GSM to drip line nuclei.
Collapse
|
9
|
Belley A, Payne CG, Stroberg SR, Miyagi T, Holt JD. Ab Initio Neutrinoless Double-Beta Decay Matrix Elements for ^{48}Ca, ^{76}Ge, and ^{82}Se. PHYSICAL REVIEW LETTERS 2021; 126:042502. [PMID: 33576665 DOI: 10.1103/physrevlett.126.042502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We calculate basis-space converged neutrinoless ββ-decay nuclear matrix elements for the lightest candidates: ^{48}Ca, ^{76}Ge, and ^{82}Se. Starting from initial two- and three-nucleon forces, we apply the ab initio in-medium similarity renormalization group to construct valence-space Hamiltonians and consistently transformed ββ-decay operators. We find that the tensor component is non-negligible in ^{76}Ge and ^{82}Se, and the resulting nuclear matrix elements are overall 25%-45% smaller than those obtained from the phenomenological shell model. While a final matrix element with uncertainties still requires substantial developments, this work nevertheless opens a path toward a true first-principles calculation of neutrinoless ββ decay in all nuclei relevant for ongoing large-scale searches.
Collapse
Affiliation(s)
- A Belley
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - C G Payne
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - T Miyagi
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
| |
Collapse
|
10
|
Stroberg SR, Holt JD, Schwenk A, Simonis J. Ab Initio Limits of Atomic Nuclei. PHYSICAL REVIEW LETTERS 2021; 126:022501. [PMID: 33512176 DOI: 10.1103/physrevlett.126.022501] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
We predict the limits of existence of atomic nuclei, the proton and neutron drip lines, from the light through medium-mass regions. Starting from a chiral two- and three-nucleon interaction with good saturation properties, we use the valence-space in-medium similarity renormalization group to calculate ground-state and separation energies from helium to iron, nearly 700 isotopes in total. We use the available experimental data to quantify the theoretical uncertainties for our ab initio calculations towards the drip lines. Where the drip lines are known experimentally, our predictions are consistent within the estimated uncertainty. For the neutron-rich sodium to chromium isotopes, we provide predictions to be tested at rare-isotope beam facilities.
Collapse
Affiliation(s)
- S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec H3A 2T8, Canada
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Simonis
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| |
Collapse
|
11
|
The impact of nuclear shape on the emergence of the neutron dripline. Nature 2020; 587:66-71. [PMID: 33149291 DOI: 10.1038/s41586-020-2848-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/03/2020] [Indexed: 11/08/2022]
Abstract
Atomic nuclei are composed of a certain number of protons Z and neutrons N. A natural question is how large Z and N can be. The study of superheavy elements explores the large Z limit1,2, and we are still looking for a comprehensive theoretical explanation of the largest possible N for a given Z-the existence limit for the neutron-rich isotopes of a given atomic species, known as the neutron dripline3. The neutron dripline of oxygen (Z = 8) can be understood theoretically as the result of single nucleons filling single-particle orbits confined by a mean potential, and experiments confirm this interpretation. However, recent experiments on heavier elements are at odds with this description. Here we show that the neutron dripline from fluorine (Z = 9) to magnesium (Z = 12) can be predicted using a mechanism that goes beyond the single-particle picture: as the number of neutrons increases, the nuclear shape assumes an increasingly ellipsoidal deformation, leading to a higher binding energy. The saturation of this effect (when the nucleus cannot be further deformed) yields the neutron dripline: beyond this maximum N, the isotope is unbound and further neutrons 'drip' out when added. Our calculations are based on a recently developed effective nucleon-nucleon interaction4, for which large-scale eigenvalue problems are solved using configuration-interaction simulations. The results obtained show good agreement with experiments, even for excitation energies of low-lying states, up to the nucleus of magnesium-40 (which has 28 neutrons). The proposed mechanism for the formation of the neutron dripline has the potential to stimulate further thinking in the field towards explaining nucleosynthesis with neutron-rich nuclei.
Collapse
|
12
|
Zhang X, Stroberg SR, Navrátil P, Gwak C, Melendez JA, Furnstahl RJ, Holt JD. Ab Initio Calculations of Low-Energy Nuclear Scattering Using Confining Potential Traps. PHYSICAL REVIEW LETTERS 2020; 125:112503. [PMID: 32975962 DOI: 10.1103/physrevlett.125.112503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
A recently modified method to enable low-energy nuclear scattering results to be extracted from the discrete energy levels of the target-projectile clusters confined by harmonic potential traps is tested. We report encouraging results for neutron-α and neutron-^{24}O elastic scattering from analyzing the trapped levels computed using two different ab initio nuclear structure methods. The n-α results have also been checked against a direct ab initio reaction calculation. The n-^{24}O results demonstrate the approach's applicability for a large range of systems provided their spectra in traps can be computed by ab initio methods. A key ingredient is a rigorous understanding of the errors in the calculated energy levels caused by inevitable Hilbert-space truncations in the ab initio methods.
Collapse
Affiliation(s)
- Xilin Zhang
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - S R Stroberg
- Physics Department, University of Washington, Seattle, Washington 98195, USA
| | - P Navrátil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - Chan Gwak
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - J A Melendez
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - R J Furnstahl
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, 3600 Rue University, Montréal, Quebec City H3A 2T8, Canada
| |
Collapse
|
13
|
Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios TE, Eliseev S, Herlert A, Holt JD, Huang WJ, Litvinov YA, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K. First Glimpse of the N=82 Shell Closure below Z=50 from Masses of Neutron-Rich Cadmium Isotopes and Isomers. PHYSICAL REVIEW LETTERS 2020; 124:092502. [PMID: 32202869 DOI: 10.1103/physrevlett.124.092502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
We probe the N=82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of ^{132}Cd offers the first value of the N=82, two-neutron shell gap below Z=50 and confirms the phenomenon of mutually enhanced magicity at ^{132}Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the ordering of the low-lying isomers in ^{129}Cd and their energies are determined. The new experimental findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as the ab initio valence-space in-medium similarity renormalization group.
Collapse
Affiliation(s)
- V Manea
- CERN, 1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- Instituut voor Kern-en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - J Karthein
- CERN, 1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - D Atanasov
- Technische Universität Dresden, 01069 Dresden, Germany
| | - M Bender
- IP2I Lyon, CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | - K Blaum
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - T E Cocolios
- Instituut voor Kern-en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
| | - S Eliseev
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | | | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - W J Huang
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91406 Orsay, France
| | - Yu A Litvinov
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - D Lunney
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91406 Orsay, France
| | - J Menéndez
- Center for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
- Department de Física Quàntica i Astrofísica, Universitat de Barcelona, 08028 Barcelona, Spain
| | - M Mougeot
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91406 Orsay, France
| | - D Neidherr
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - L Schweikhard
- Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
| | - A Schwenk
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - J Simonis
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - A Welker
- CERN, 1211 Geneva 23, Switzerland
- Technische Universität Dresden, 01069 Dresden, Germany
| | - F Wienholtz
- CERN, 1211 Geneva 23, Switzerland
- Institut für Physik, Universität Greifswald, 17487 Greifswald, Germany
| | - K Zuber
- Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
14
|
Ahn DS, Fukuda N, Geissel H, Inabe N, Iwasa N, Kubo T, Kusaka K, Morrissey DJ, Murai D, Nakamura T, Ohtake M, Otsu H, Sato H, Sherrill BM, Shimizu Y, Suzuki H, Takeda H, Tarasov OB, Ueno H, Yanagisawa Y, Yoshida K. Location of the Neutron Dripline at Fluorine and Neon. PHYSICAL REVIEW LETTERS 2019; 123:212501. [PMID: 31809143 DOI: 10.1103/physrevlett.123.212501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 06/10/2023]
Abstract
A search for the heaviest isotopes of fluorine, neon, and sodium was conducted by fragmentation of an intense ^{48}Ca beam at 345 MeV/nucleon with a 20-mm-thick beryllium target and identification of isotopes in the large-acceptance separator BigRIPS at the RIKEN Radioactive Isotope Beam Factory. No events were observed for ^{32,33}F, ^{35,36}Ne, and ^{38}Na and only one event for ^{39}Na after extensive running. Comparison with predicted yields excludes the existence of bound states of these unobserved isotopes with high confidence levels. The present work indicates that ^{31}F and ^{34}Ne are the heaviest bound isotopes of fluorine and neon, respectively. The neutron dripline has thus been experimentally confirmed up to neon for the first time since ^{24}O was confirmed to be the dripline nucleus nearly 20 years ago. These data provide new keys to understanding the nuclear stability at extremely neutron-rich conditions.
Collapse
Affiliation(s)
- D S Ahn
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - N Fukuda
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Geissel
- GSI, Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - N Inabe
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - N Iwasa
- Department of Physics, Tohoku University, 6-3, Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - T Kubo
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Kusaka
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - D J Morrissey
- National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - D Murai
- Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - T Nakamura
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - M Ohtake
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Otsu
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Sato
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - B M Sherrill
- National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - Y Shimizu
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Suzuki
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - H Takeda
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - O B Tarasov
- National Superconducting Cyclotron Laboratory, Michigan State University, 640 South Shaw Lane, East Lansing, Michigan 48824, USA
| | - H Ueno
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Y Yanagisawa
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - K Yoshida
- RIKEN Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
78Ni revealed as a doubly magic stronghold against nuclear deformation. Nature 2019; 569:53-58. [PMID: 31043730 DOI: 10.1038/s41586-019-1155-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Nuclear magic numbers correspond to fully occupied energy shells of protons or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. Although the sequence of magic numbers is well established for stable nuclei, experimental evidence has revealed modifications for nuclei with a large asymmetry between proton and neutron numbers. Here we provide a spectroscopic study of the doubly magic nucleus 78Ni, which contains fourteen neutrons more than the heaviest stable nickel isotope. We provide direct evidence of its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective-field theory interactions and the quasi-particle random-phase approximation. Our results also indicate the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting a rapid transition from spherical to deformed ground states, with 78Ni as the turning point.
Collapse
|
16
|
Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre TD, Fedorov D, Fedosseev V, George S, Herfurth F, Holt JD, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg SR, Welker A, Wienholtz F, Wolf RN, Zuber K. Precision Mass Measurements of ^{58-63}Cr: Nuclear Collectivity Towards the N=40 Island of Inversion. PHYSICAL REVIEW LETTERS 2018; 120:232501. [PMID: 29932682 DOI: 10.1103/physrevlett.120.232501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The neutron-rich isotopes ^{58-63}Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.
Collapse
Affiliation(s)
- M Mougeot
- CSNSM-IN2P3-CNRS, Université Paris-Sud, Orsay 91405, France
| | - D Atanasov
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - K Chrysalidis
- CERN, Geneva 1211, Switzerland
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
| | - T Day Goodacre
- CERN, Geneva 1211, Switzerland
- School of Physics Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - D Fedorov
- Petersburg Nuclear Physics Institute, Gatchina 188300, Russia
| | | | - S George
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - F Herfurth
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - D Lunney
- CSNSM-IN2P3-CNRS, Université Paris-Sud, Orsay 91405, France
| | - V Manea
- CERN, Geneva 1211, Switzerland
| | - B Marsh
- CERN, Geneva 1211, Switzerland
| | - D Neidherr
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany
| | - M Rosenbusch
- Universität Greifswald, Institut für Physik, Greifswald 17487, Germany
| | - S Rothe
- CERN, Geneva 1211, Switzerland
| | - L Schweikhard
- Universität Greifswald, Institut für Physik, Greifswald 17487, Germany
| | - A Schwenk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt 64289, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany
| | | | - J Simonis
- Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt 64289, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt 64291, Germany
- Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz 55099, Germany
| | - S R Stroberg
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - A Welker
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden 01069, Germany
| | - F Wienholtz
- Universität Greifswald, Institut für Physik, Greifswald 17487, Germany
| | - R N Wolf
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - K Zuber
- Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
17
|
Morris TD, Simonis J, Stroberg SR, Stumpf C, Hagen G, Holt JD, Jansen GR, Papenbrock T, Roth R, Schwenk A. Structure of the Lightest Tin Isotopes. PHYSICAL REVIEW LETTERS 2018; 120:152503. [PMID: 29756897 DOI: 10.1103/physrevlett.120.152503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/12/2018] [Indexed: 06/08/2023]
Abstract
We link the structure of nuclei around ^{100}Sn, the heaviest doubly magic nucleus with equal neutron and proton numbers (N=Z=50), to nucleon-nucleon (NN) and three-nucleon (NNN) forces constrained by data of few-nucleon systems. Our results indicate that ^{100}Sn is doubly magic, and we predict its quadrupole collectivity. We present precise computations of ^{101}Sn based on three-particle-two-hole excitations of ^{100}Sn, and we find that one interaction accurately reproduces the small splitting between the lowest J^{π}=7/2^{+} and 5/2^{+} states.
Collapse
Affiliation(s)
- T D Morris
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J Simonis
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - S R Stroberg
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Physics Department, Reed College, Portland, Oregon 97202, USA
| | - C Stumpf
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
| | - G Hagen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - T Papenbrock
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R Roth
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, TU Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
18
|
Leistenschneider E, Reiter MP, Ayet San Andrés S, Kootte B, Holt JD, Navrátil P, Babcock C, Barbieri C, Barquest BR, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach KG, Lippert W, McKay JE, Paul SF, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg SR, Thompson R, Wieser ME, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß WR, Scheidenberger C, Kwiatkowski AA, Dilling J. Dawning of the N=32 Shell Closure Seen through Precision Mass Measurements of Neutron-Rich Titanium Isotopes. PHYSICAL REVIEW LETTERS 2018; 120:062503. [PMID: 29481255 DOI: 10.1103/physrevlett.120.062503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/11/2017] [Indexed: 06/08/2023]
Abstract
A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.
Collapse
Affiliation(s)
- E Leistenschneider
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - M P Reiter
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - S Ayet San Andrés
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - B Kootte
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - P Navrátil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - C Babcock
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - C Barbieri
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - B R Barquest
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - J Bergmann
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - J Bollig
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Ruprecht-Karls-Universität Heidelberg, D-69117 Heidelberg, Germany
| | - T Brunner
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Physics Department, McGill University, H3A 2T8 Montréal, Québec, Canada
| | - E Dunling
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, University of York, York YO10 5DD, United Kingdom
| | - A Finlay
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - H Geissel
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - L Graham
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - F Greiner
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - H Hergert
- National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824,USA
| | - C Hornung
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - C Jesch
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - R Klawitter
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Max-Planck-Institut für Kernphysik, Heidelberg D-69117, Germany
| | - Y Lan
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - D Lascar
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - K G Leach
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| | - W Lippert
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - J E McKay
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - S F Paul
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Ruprecht-Karls-Universität Heidelberg, D-69117 Heidelberg, Germany
| | - A Schwenk
- Max-Planck-Institut für Kernphysik, Heidelberg D-69117, Germany
- Institut für Kerphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - D Short
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - J Simonis
- Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - V Somà
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - R Steinbrügge
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - S R Stroberg
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Reed College, Portland, Oregon 97202, USA
| | - R Thompson
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - M E Wieser
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - C Will
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - M Yavor
- Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg, Russia
| | - C Andreoiu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - T Dickel
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - I Dillmann
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - G Gwinner
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - W R Plaß
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - C Scheidenberger
- II. Physikalisches Institut, Justus-Liebig-Universität, 35392 Gießen, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A A Kwiatkowski
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - J Dilling
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
19
|
Welker A, Althubiti NAS, Atanasov D, Blaum K, Cocolios TE, Herfurth F, Kreim S, Lunney D, Manea V, Mougeot M, Neidherr D, Nowacki F, Poves A, Rosenbusch M, Schweikhard L, Wienholtz F, Wolf RN, Zuber K. Binding Energy of ^{79}Cu: Probing the Structure of the Doubly Magic ^{78}Ni from Only One Proton Away. PHYSICAL REVIEW LETTERS 2017; 119:192502. [PMID: 29219497 DOI: 10.1103/physrevlett.119.192502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Indexed: 06/07/2023]
Abstract
The masses of the neutron-rich copper isotopes ^{75-79}Cu are determined using the precision mass spectrometer ISOLTRAP at the CERN-ISOLDE facility. The trend from the new data differs significantly from that of previous results, offering a first accurate view of the mass surface adjacent to the Z=28, N=50 nuclide ^{78}Ni and supporting a doubly magic character. The new masses compare very well with large-scale shell-model calculations that predict shape coexistence in a doubly magic ^{78}Ni and a new island of inversion for Z<28. A coherent picture of this important exotic region begins to emerge where excitations across Z=28 and N=50 form a delicate equilibrium with a spherical mean field.
Collapse
Affiliation(s)
- A Welker
- Technische Universität Dresden, 01069 Dresden, Germany
- CERN Geneva, 1211 Geneva, Switzerland
| | - N A S Althubiti
- University of Manchester, Manchester M13 9PL, United Kingdom
| | - D Atanasov
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - K Blaum
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - T E Cocolios
- KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
| | - F Herfurth
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - S Kreim
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - D Lunney
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
| | - V Manea
- CERN Geneva, 1211 Geneva, Switzerland
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - M Mougeot
- CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
| | - D Neidherr
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - F Nowacki
- Université de Strasbourg, IPHC, 67037 Strasbourg, France
- CNRS, UMR7178, 67037 Strasbourg, France
| | - A Poves
- Departamento de Física Teórica and IFT-UAM/CSIC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Institute for Advanced Study, Université de Strasbourg, 67083 Strasbourg, France
| | - M Rosenbusch
- Ernst-Moritz-Arndt-Universität, Institut für Physik, 17487 Greifswald, Germany
| | - L Schweikhard
- Ernst-Moritz-Arndt-Universität, Institut für Physik, 17487 Greifswald, Germany
| | - F Wienholtz
- CERN Geneva, 1211 Geneva, Switzerland
- Ernst-Moritz-Arndt-Universität, Institut für Physik, 17487 Greifswald, Germany
| | - R N Wolf
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - K Zuber
- Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
20
|
Gebrerufael E, Vobig K, Hergert H, Roth R. Ab Initio Description of Open-Shell Nuclei: Merging No-Core Shell Model and In-Medium Similarity Renormalization Group. PHYSICAL REVIEW LETTERS 2017; 118:152503. [PMID: 28452511 DOI: 10.1103/physrevlett.118.152503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Indexed: 06/07/2023]
Abstract
We merge two successful ab initio nuclear-structure methods, the no-core shell model (NCSM) and the multireference in-medium similarity renormalization group (IM-SRG) to define a new many-body approach for the comprehensive description of ground and excited states of closed and open-shell nuclei. Building on the key advantages of the two methods-the decoupling of excitations at the many-body level in the IM-SRG and the access to arbitrary nuclei, eigenstates, and observables in the NCSM-their combination enables fully converged no-core calculations for an unprecedented range of nuclei and observables at moderate computational cost. We present applications in the carbon and oxygen isotopic chains, where conventional NCSM calculations are still feasible and provide an important benchmark. The efficiency and rapid convergence of the new approach make it ideally suited for ab initio studies of the complete spectroscopy of nuclei up into the medium-mass regime.
Collapse
Affiliation(s)
- Eskendr Gebrerufael
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany
| | - Klaus Vobig
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany
| | - Heiko Hergert
- NSCL/FRIB Laboratory and Department of Physics & Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA
| | - Robert Roth
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstr. 2, 64289 Darmstadt, Germany
| |
Collapse
|
21
|
Engel J, Menéndez J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:046301. [PMID: 28140335 DOI: 10.1088/1361-6633/aa5bc5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.
Collapse
Affiliation(s)
- Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, United States of America
| | | |
Collapse
|
22
|
Stroberg SR, Calci A, Hergert H, Holt JD, Bogner SK, Roth R, Schwenk A. Nucleus-Dependent Valence-Space Approach to Nuclear Structure. PHYSICAL REVIEW LETTERS 2017; 118:032502. [PMID: 28157334 DOI: 10.1103/physrevlett.118.032502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Indexed: 06/06/2023]
Abstract
We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3N) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space ab initio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and sd shells. Finally, we address the 1^{+}/3^{+} inversion problem in ^{22}Na and ^{46}V. This approach extends the reach of ab initio nuclear structure calculations to essentially all light- and medium-mass nuclei.
Collapse
Affiliation(s)
- S R Stroberg
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - A Calci
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - H Hergert
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844, USA
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - S K Bogner
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48844, USA
| | - R Roth
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
23
|
Lapoux V, Somà V, Barbieri C, Hergert H, Holt JD, Stroberg SR. Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces. PHYSICAL REVIEW LETTERS 2016; 117:052501. [PMID: 27517768 DOI: 10.1103/physrevlett.117.052501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 06/06/2023]
Abstract
We present a systematic study of both nuclear radii and binding energies in (even) oxygen isotopes from the valley of stability to the neutron drip line. Both charge and matter radii are compared to state-of-the-art ab initio calculations along with binding energy systematics. Experimental matter radii are obtained through a complete evaluation of the available elastic proton scattering data of oxygen isotopes. We show that, in spite of a good reproduction of binding energies, ab initio calculations with conventional nuclear interactions derived within chiral effective field theory fail to provide a realistic description of charge and matter radii. A novel version of two- and three-nucleon forces leads to considerable improvement of the simultaneous description of the three observables for stable isotopes but shows deficiencies for the most neutron-rich systems. Thus, crucial challenges related to the development of nuclear interactions remain.
Collapse
Affiliation(s)
- V Lapoux
- CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
| | - V Somà
- CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
| | - C Barbieri
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - H Hergert
- National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| | - S R Stroberg
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
| |
Collapse
|
24
|
Kondo Y, Nakamura T, Tanaka R, Minakata R, Ogoshi S, Orr NA, Achouri NL, Aumann T, Baba H, Delaunay F, Doornenbal P, Fukuda N, Gibelin J, Hwang JW, Inabe N, Isobe T, Kameda D, Kanno D, Kim S, Kobayashi N, Kobayashi T, Kubo T, Leblond S, Lee J, Marqués FM, Motobayashi T, Murai D, Murakami T, Muto K, Nakashima T, Nakatsuka N, Navin A, Nishi S, Otsu H, Sato H, Satou Y, Shimizu Y, Suzuki H, Takahashi K, Takeda H, Takeuchi S, Togano Y, Tuff AG, Vandebrouck M, Yoneda K. Nucleus ^{26}O: A Barely Unbound System beyond the Drip Line. PHYSICAL REVIEW LETTERS 2016; 116:102503. [PMID: 27015476 DOI: 10.1103/physrevlett.116.102503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 06/05/2023]
Abstract
The unbound nucleus ^{26}O has been investigated using invariant-mass spectroscopy following one-proton removal reaction from a ^{27}F beam at 201 MeV/nucleon. The decay products, ^{24}O and two neutrons, were detected in coincidence using the newly commissioned SAMURAI spectrometer at the RIKEN Radioactive Isotope Beam Factory. The ^{26}O ground-state resonance was found to lie only 18±3(stat)±4(syst) keV above threshold. In addition, a higher lying level, which is most likely the first 2^{+} state, was observed for the first time at 1.28_{-0.08}^{+0.11} MeV above threshold. Comparison with theoretical predictions suggests that three-nucleon forces, pf-shell intruder configurations, and the continuum are key elements to understanding the structure of the most neutron-rich oxygen isotopes beyond the drip line.
Collapse
Affiliation(s)
- Y Kondo
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - T Nakamura
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - R Tanaka
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - R Minakata
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - S Ogoshi
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - N A Orr
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - N L Achouri
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - T Aumann
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - H Baba
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - F Delaunay
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - P Doornenbal
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - N Fukuda
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - J Gibelin
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - J W Hwang
- Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Republic of Korea
| | - N Inabe
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - T Isobe
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - D Kameda
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - D Kanno
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - S Kim
- Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Republic of Korea
| | - N Kobayashi
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - T Kobayashi
- Department of Physics, Tohoku University, Miyagi 980-8578, Japan
| | - T Kubo
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - S Leblond
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - J Lee
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - F M Marqués
- LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, F-14050 Caen, France
| | - T Motobayashi
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - D Murai
- Departiment of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - T Murakami
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - K Muto
- Department of Physics, Tohoku University, Miyagi 980-8578, Japan
| | - T Nakashima
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - N Nakatsuka
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - A Navin
- Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France
| | - S Nishi
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
| | - H Otsu
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - H Sato
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Y Satou
- Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Republic of Korea
| | - Y Shimizu
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - H Suzuki
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - K Takahashi
- Department of Physics, Tohoku University, Miyagi 980-8578, Japan
| | - H Takeda
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - S Takeuchi
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| | - Y Togano
- Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan
- ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - A G Tuff
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - M Vandebrouck
- Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, Université de Paris Sud, F-91406 Orsay, France
| | - K Yoneda
- RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
| |
Collapse
|
25
|
Jansen GR, Engel J, Hagen G, Navratil P, Signoracci A. Ab initio coupled-cluster effective interactions for the shell model: application to neutron-rich oxygen and carbon isotopes. PHYSICAL REVIEW LETTERS 2014; 113:142502. [PMID: 25325637 DOI: 10.1103/physrevlett.113.142502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Indexed: 06/04/2023]
Abstract
We derive and compute effective valence-space shell-model interactions from ab initio coupled-cluster theory and apply them to open-shell and neutron-rich oxygen and carbon isotopes. Our shell-model interactions are based on nucleon-nucleon and three-nucleon forces from chiral effective-field theory. We compute the energies of ground and low-lying states, and find good agreement with experiment. In particular, our computed 2(+) states are consistent with N = 14,16 shell closures in (22,24)O, and a weaker N=14 shell closure in (20)C. We find good agreement between our coupled-cluster effective-interaction results with those obtained from standard single-reference coupled-cluster calculations for up to eight valence neutrons.
Collapse
Affiliation(s)
- G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - J Engel
- Deptartment of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - P Navratil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3 Canada
| | - A Signoracci
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|