1
|
Gulati P, Caballero F, Cristina Marchetti M. Active Fluids Form System-Spanning Filamentary Networks. PHYSICAL REVIEW LETTERS 2025; 134:138301. [PMID: 40250356 DOI: 10.1103/physrevlett.134.138301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/10/2025] [Indexed: 04/20/2025]
Abstract
Recent experimental realizations of liquid-liquid phase separation of active liquid crystals have offered an insight into the interaction between phase separation, ubiquitous in soft matter and biology, and chaotic active flows. In this Letter, we use continuum theory to examine phase separation of an active liquid crystal and a passive fluid and report two new results. First, we provide an analytical derivation of the activity-induced suppression of the phase boundary of the coexistence region-a result first reported in simulations and experiments. We show that the shift in the critical point is a result of the balance between self-stirring active flows and phase-separating diffusive fluxes. Second, we show that this same balance is responsible for dramatically changing the morphology of the phase separated state, resulting in the emergence of a new mixed active phase consisting of a dynamical filamentous active network that invades the entire system area, trapping droplets of passive material. This structure exists even for very low volume fractions of active material. Our work provides an important step towards the goal of understanding how to use activity as a new handle for sculpting interfaces.
Collapse
Affiliation(s)
- Paarth Gulati
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
| | - Fernando Caballero
- Brandeis University, Department of Physics, Waltham, Massachusetts 02453, USA
| | - M Cristina Marchetti
- University of California Santa Barbara, Department of Physics, Santa Barbara, California 93106, USA
- University of California Santa Barbara, Interdisciplinary Program in Quantitative Biosciences, Santa Barbara, California 93106, USA
| |
Collapse
|
2
|
Yadav RS, Chakrabarti R. Demixing of an active-passive binary mixture through a two-dimensional elastic meshwork. SOFT MATTER 2025; 21:2242-2250. [PMID: 39996288 DOI: 10.1039/d4sm01443j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Separation of particles based on motility is a daunting task, especially when the particles are of the same size and the density is low. We propose and demonstrate how a dilute monodisperse mixture of active-passive particles can be separated by introducing an elastic meshwork. Our in silico method does not rely on any external stimuli, rather the mesh size and stiffness of the meshwork control the demixing. There is a threshold activity above which demixing starts and below this, particles exert pressure on the meshwork that relaxes upon permeation. Our findings are in principle experimentally testable and open up new avenues for active-passive separation, where clustering of particles is not feasible.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
3
|
Sorkin B, Diamant H, Ariel G, Markovich T. Second Law of Thermodynamics without Einstein Relation. PHYSICAL REVIEW LETTERS 2024; 133:267101. [PMID: 39879024 DOI: 10.1103/physrevlett.133.267101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 01/31/2025]
Abstract
Materials that are constantly driven out of thermodynamic equilibrium, such as active and living systems, typically violate the Einstein relation. This may arise from active contributions to particle fluctuations which are unrelated to the dissipative resistance of the surrounding medium. We show that in these cases the widely used relation between informatic entropy production and heat dissipation does not hold. Consequently, fluctuation relations for the mechanical work, such as the Jarzynski and Crooks theorems, are invalid. We relate the breaking of the correspondence between entropy production and heat dissipation to departure from the fluctuation-dissipation theorem. We propose a temperaturelike variable that restores this correspondence and gives rise to a generalized second law of thermodynamics, whereby the dissipated heat is necessarily non-negative and vanishes at equilibrium. The Clausius inequality, Carnot maximum efficiency theorem, and relation between the extractable work and the change of free energy are recovered as well.
Collapse
Affiliation(s)
- Benjamin Sorkin
- Tel Aviv University, School of Chemistry and Center for Physics and Chemistry of Living Systems, 69978 Tel Aviv, Israel
| | - Haim Diamant
- Tel Aviv University, School of Chemistry and Center for Physics and Chemistry of Living Systems, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Bar-Ilan University, Department of Mathematics, 52000 Ramat Gan, Israel
| | - Tomer Markovich
- Tel Aviv University, School of Mechanical Engineering and Center for Physics and Chemistry of Living Systems, 69978 Tel Aviv, Israel
| |
Collapse
|
4
|
Damman P, Démery V, Palumbo G, Thomas Q. Algebraic Depletion Interactions in Two-Temperature Mixtures. PHYSICAL REVIEW LETTERS 2024; 133:267103. [PMID: 39879003 DOI: 10.1103/physrevlett.133.267103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/31/2025]
Abstract
The phase separation that occurs in two-temperature mixtures, which are driven out of equilibrium at the local scale, has been thoroughly characterized, but much less is known about the depletion interactions that drive it. Using numerical simulations in dimension 2, we show that the depletion interactions extend beyond two particle diameters in dilute systems, as expected at equilibrium, and decay algebraically with an exponent -4. Solving for the N-particle distribution function in the stationary state, perturbatively in the interaction potential, we show that algebraic correlations with an exponent -2d arise from triplets of particles at different temperatures in spatial dimension d. Finally, simulations allow us to extend our results beyond the perturbative limit.
Collapse
Affiliation(s)
- Pascal Damman
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| | - Vincent Démery
- PSL Research University, ESPCI Paris, Gulliver, CNRS, 10 rue Vauquelin, 75005 Paris, France
- ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Guillaume Palumbo
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| | - Quentin Thomas
- Université de Mons, Laboratoire Interfaces & Fluides Complexes, 20 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
5
|
Landi C, Russo J, Sciortino F, Valeriani C. Self-assembly of active bifunctional Brownian particles. SOFT MATTER 2024; 21:45-54. [PMID: 39585192 DOI: 10.1039/d4sm00805g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In this work, with the intent of exploring the out-of-equilibrium polymerization of active patchy particles in linear chains, we study a suspension of active bifunctional Brownian particles (ABBPs). At all studied temperatures and densities, ABBPs self-assemble in aggregating chains, as opposed to the uniformly space-distributed chains observed in the corresponding passive systems. The main effect of activity, other than inducing chain aggregation, is to reduce the chain length and favour the alignment of the propulsion vectors in the bonding process. At low activities, attraction dominates over activity in the bonding process, causing self-assembly to occur randomly regardless of the particle orientations. Interestingly, we find that at the lowest temperature, as density increases, chains aggregate forming a novel state: MISP, i.e., motility-induced spirals, where spirals are characterised by a finite angular velocity. In contrast, at the highest temperature, density and activity, chains aggregate forming a different novel state (a spinning crystalline cluster) characterised by a compact and hexagonally ordered structure, both translating and rotating. The rotation arises from an effective torque generated by the presence of competing domains where particles self-propel in the same direction.
Collapse
Affiliation(s)
- Caterina Landi
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - John Russo
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Sciortino
- Department of Physics, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
6
|
Kailasham R, Khair AS. The influence of active agent motility on SIRS epidemiological dynamics. SOFT MATTER 2024; 20:9193-9207. [PMID: 39531013 DOI: 10.1039/d4sm00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Active Brownian disks moving in two dimensions that exchange information about their internal state stochastically are chosen to model epidemic spread in a self-propelled population of agents under the susceptible-infected-recovered-susceptible (SIRS) framework. The state of infection of an agent, or disk, governs its self-propulsion speed; consequently, the activity of the agents in the system varies in time. Two different protocols (one-to-one and one-to-many) are considered for the transmission of disease from the infected to susceptible populations. The effectiveness of the two protocols are practically identical at high values of the infection transmission rate. The one-to-many protocol, however, outperforms the one-to-one protocol at lower values of the infection transmission rate. Salient features of the macroscopic SIRS model are revisited, and compared to predictions from the agent-based model. Lastly, the motility induced phase separation in a population of such agents with a fluctuating fraction of active disks is found to be well-described by theories governing phase separation in a mixture of active and passive particles with a constant fraction of passive disks.
Collapse
Affiliation(s)
- R Kailasham
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Aditya S Khair
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
Tang Q, Tang C, Huang Y, Müller M, Ma YQ. Suppression of bubbles in unstable active liquids via fast evaporation. Phys Rev E 2024; 110:054602. [PMID: 39690674 DOI: 10.1103/physreve.110.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 12/19/2024]
Abstract
A common intuition in thermodynamics is that bubbles can spontaneously grow in unstable liquids, which will be detrimental to a variety of physical and chemical processes, such as evaporation-induced self-assembly and electrocatalysis. Here, we show that this common intuition can be significantly reversed by demonstrating a suppression of bubbles in unstable active liquids induced by fast evaporation, which is in contrast to the bubble growth in passive liquids. Such anomalous bubble suppression can be attributed to an activity-induced inversion of pressure difference between bubbles and their surrounding liquid. Moreover, this pressure flip depends on the activity as well as the thermodynamics of passive liquids, and it can generate different kinetic pathways that allow controlling the bubble dynamics in unstable liquids. Our results establish a foundation for promoting applications of unstable active liquids in various physical and chemical processes.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Physical Science Research Center, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
8
|
Mondal K, Bera P, Ghosh P. Diverse morphology and motility induced emergent order in bacterial collectives. J Chem Phys 2024; 161:094908. [PMID: 39230379 DOI: 10.1063/5.0220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Microbial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display a superdiffusive behavior, particularly at larger size ratios in the ballistic regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. In addition, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
9
|
Liu S, Li Y, Xu H, Kearns DB, Wu Y. Active interface bulging in Bacillus subtilis swarms promotes self-assembly and biofilm formation. Proc Natl Acad Sci U S A 2024; 121:e2322025121. [PMID: 39052827 PMCID: PMC11295035 DOI: 10.1073/pnas.2322025121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Microbial communities such as biofilms are commonly found at interfaces. However, it is unclear how the physical environment of interfaces may contribute to the development and behavior of surface-associated microbial communities. Combining multimode imaging, single-cell tracking, and numerical simulations, here, we found that activity-induced interface bulging promotes colony biofilm formation in Bacillus subtilis swarms presumably via segregation and enrichment of sessile cells in the bulging area. Specifically, the diffusivity of passive particles is ~50% lower inside the bulging area than elsewhere, which enables a diffusion-trapping mechanism for self-assembly and may account for the enrichment of sessile cells. We also uncovered a quasilinear relation between cell speed and surface-packing density that underlies the process of active interface bulging. Guided by the speed-density relation, we demonstrated reversible formation of liquid bulges by manipulating the speed and local density of cells with light. Over the course of development, the active bulges turned into striped biofilm structures, which eventually give rise to a large-scale ridge pattern. Our findings reveal a unique physical mechanism of biofilm formation at air-solid interface, which is pertinent to engineering living materials and directed self-assembly in active fluids.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Ye Li
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, China
| | - Haoran Xu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, IN47405-7005
| | - Yilin Wu
- Department of Physics and Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
10
|
Kushwaha P, Maity S, Menon A, Chelakkot R, Chikkadi V. Percolation of nonequilibrium assemblies of colloidal particles in active chiral liquids. SOFT MATTER 2024; 20:4699-4706. [PMID: 38832669 DOI: 10.1039/d4sm00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The growing interest in the non-equilibrium assembly of colloidal particles in active liquids is driven by the motivation to create novel structures endowed with tunable properties unattainable within the confines of equilibrium systems. Here, we present an experimental investigation of the structural features of colloidal assemblies in active liquids of chiral E. coli. The colloidal particles form dynamic clusters due to the effective interaction mediated by active media. The activity and chirality of the swimmers strongly influence the dynamics and local ordering of colloidal particles, resulting in clusters with persistent rotation, whose structure differs significantly from those in equilibrium systems with attractive interactions, such as colloid-polymer mixtures. Our colloid-bacteria mixture displays several hallmark features of a percolation transition at a critical density, where the clusters span the system size. A closer examination of the critical exponents associated with cluster size distribution, the average cluster size, and the correlation length in the vicinity of the critical density shows deviations from the prediction of the standard continuum percolation model. Therefore, our experiments reveal a richer phase behavior of colloidal assemblies in active liquids.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Sayan Maity
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| | - Anjaly Menon
- Department of Applied Physics, Aalto University School of Science, Konemiehentie 1, 02150 Espoo, Finland
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vijayakumar Chikkadi
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India.
| |
Collapse
|
11
|
Mo R, Xu D, Xu N. Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2318917121. [PMID: 38843185 PMCID: PMC11181082 DOI: 10.1073/pnas.2318917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/04/2024] [Indexed: 06/19/2024] Open
Abstract
Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self-propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster-breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ding Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| |
Collapse
|
12
|
Ruiz-Garcia M, Barriuso G CM, Alexander LC, Aarts DGAL, Ghiringhelli LM, Valeriani C. Discovering dynamic laws from observations: The case of self-propelled, interacting colloids. Phys Rev E 2024; 109:064611. [PMID: 39020989 DOI: 10.1103/physreve.109.064611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Active matter spans a wide range of time and length scales, from groups of cells and synthetic self-propelled colloids to schools of fish and flocks of birds. The theoretical framework describing these systems has shown tremendous success in finding universal phenomenology. However, further progress is often burdened by the difficulty of determining forces controlling the dynamics of individual elements within each system. Accessing this local information is pivotal for the understanding of the physics governing an ensemble of active particles and for the creation of numerical models capable of explaining the observed collective phenomena. In this work, we present ActiveNet, a machine-learning tool consisting of a graph neural network that uses the collective motion of particles to learn active and two-body forces controlling their individual dynamics. We verify our approach using numerical simulations of active Brownian particles, active particles undergoing underdamped Langevin dynamics, and chiral active Brownian particles considering different interaction potentials and values of activity. Interestingly, ActiveNet can equally learn conservative or nonconservative forces as well as torques. Moreover, ActiveNet has proven to be a useful tool to learn the stochastic contribution to the forces, enabling the estimation of the diffusion coefficients. Therefore, all coefficients of the equation of motion of Active Brownian Particles are captured. Finally, we apply ActiveNet to experiments of electrophoretic Janus particles, extracting the active and two-body forces controlling colloids' dynamics. On the one side, we have learned that the active force depends on the electric field and area fraction. On the other side, we have also discovered a dependence of the two-body interaction with the electric field that leads us to propose that the dominant force between active colloids is a screened electrostatic interaction with a constant length scale. We believe that the proposed methodological tool, ActiveNet, might open a new avenue for the study and modeling of experimental suspensions of active particles.
Collapse
Affiliation(s)
- Miguel Ruiz-Garcia
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Mathematics, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Spain
- Grupo Interdisciplinar Sistemas Complejos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | - Luca M Ghiringhelli
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany
- Department of Materials Science, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstrasse 5-7, 91058 Erlangen, Germany
| | | |
Collapse
|
13
|
Batton CH, Rotskoff GM. Microscopic origin of tunable assembly forces in chiral active environments. SOFT MATTER 2024; 20:4111-4126. [PMID: 38726733 DOI: 10.1039/d4sm00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal systems, equilibrium self-assembly is entirely dictated by-and therefore limited by-the thermodynamic properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium conditions. Recently, a number of works have suggested that active matter drives or accelerates self-organization, but the emergent interactions that arise between solutes immersed in actively driven environments are complex and poorly understood. Here, we analyze and resolve two crucial questions concerning actively driven self-assembly: (i) how, mechanistically, do active environments drive self-assembly of passive solutes? (ii) Under which conditions is this assembly robust? We employ the framework of odd hydrodynamics to theoretically explain numerical and experimental observations that chiral active matter, i.e., particles driven with a directional torque, produces robust and long-ranged assembly forces. Together, these developments constitute an important step towards a comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.
Collapse
Affiliation(s)
- Clay H Batton
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Yadav RS, Sharma S, Metzler R, Chakrabarti R. A passive star polymer in a dense active bath: insights from computer simulations. SOFT MATTER 2024; 20:3910-3922. [PMID: 38700098 DOI: 10.1039/d4sm00144c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Using computer simulations in two dimensions (2D), we explore the structure and dynamics of a star polymer with three arms made of passive monomers immersed in a bath of active Brownian particles (ABPs). We analyze the conformational and dynamical changes of the polymer as a function of activity and packing fraction. We also study the process of motility induced phase separation (MIPS) in the presence of a star polymer, which acts as a mobile nucleation center. The presence of the polymer increases the growth rate of the clusters in comparison to a bath without the polymer. In particular, for low packing fraction, both nucleation and cluster growth are affected by the inclusion of the star polymer. Clusters grow in the vicinity of the star polymer, resulting in the star polymer experiencing a caged motion similar to a tagged ABP in the dense phase. Due to the topological constraints of the star polymers and clustering nearby, the conformational changes of the star polymer lead to interesting observations. Inter alia, we observe the shrinking of the arm with increasing activity along with a short-lived hairpin structure of one arm formed. We also see the transient pairing of two arms of the star polymer, while the third is largely separated at high activity. We hope our findings will help in understanding the behavior of active-passive mixtures, including biopolymers of complex topology in dense active suspensions.
Collapse
Affiliation(s)
- Ramanand Singh Yadav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Sanaa Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Germany.
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
15
|
Hecht L, Dong I, Liebchen B. Motility-induced coexistence of a hot liquid and a cold gas. Nat Commun 2024; 15:3206. [PMID: 38615122 PMCID: PMC11016108 DOI: 10.1038/s41467-024-47533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
If two phases exist at the same time, such as a gas and a liquid, they have the same temperature. This fundamental law of equilibrium physics is known to apply even to many non-equilibrium systems. However, recently, there has been much attention in the finding that inertial self-propelled particles like Janus colloids in a plasma or microflyers could self-organize into a hot gas-like phase that coexists with a colder liquid-like phase. Here, we show that a kinetic temperature difference across coexisting phases can occur even in equilibrium systems when adding generic (overdamped) self-propelled particles. In particular, we consider mixtures of overdamped active and inertial passive Brownian particles and show that when they phase separate into a dense and a dilute phase, both phases have different kinetic temperatures. Surprisingly, we find that the dense phase (liquid) cannot only be colder but also hotter than the dilute phase (gas). This effect hinges on correlated motions where active particles collectively push and heat up passive ones primarily within the dense phase. Our results answer the fundamental question if a non-equilibrium gas can be colder than a coexisting liquid and create a route to equip matter with self-organized domains of different kinetic temperatures.
Collapse
Affiliation(s)
- Lukas Hecht
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Iris Dong
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
16
|
Farago O, Smith NR. Confined run-and-tumble particles with non-Markovian tumbling statistics. Phys Rev E 2024; 109:044121. [PMID: 38755884 DOI: 10.1103/physreve.109.044121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/18/2024]
Abstract
Confined active particles constitute simple, yet realistic, examples of systems that converge into a nonequilibrium steady state. We investigate a run-and-tumble particle in one spatial dimension, trapped by an external potential, with a given distribution g(t) of waiting times between tumbling events whose mean value is equal to τ. Unless g(t) is an exponential distribution (corresponding to a constant tumbling rate), the process is non-Markovian, which makes the analysis of the model particularly challenging. We use an analytical framework involving effective position-dependent tumbling rates to develop a numerical method that yields the full steady-state distribution (SSD) of the particle's position. The method is very efficient and requires modest computing resources, including in the large-deviation and/or small-τ regime, where the SSD can be related to the the large-deviation function, s(x), via the scaling relation P_{st}(x)∼e^{-s(x)/τ}.
Collapse
Affiliation(s)
- Oded Farago
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Marcus Family Campus, Be'er Sheva 8410501, Israel
| | - Naftali R Smith
- Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be'er Sheva 8499000, Israel
| |
Collapse
|
17
|
Chen SY, Lopez Rios HM, Olvera de la Cruz M, Driscoll M. Restructuring a passive colloidal suspension using a rotationally driven particle. SOFT MATTER 2024; 20:2151-2161. [PMID: 38351846 DOI: 10.1039/d4sm00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The interaction between passive and active/driven particles has introduced a new way to control colloidal suspension properties from particle aggregation to crystallization. Here, we focus on the hydrodynamic interaction between a single rotational driven particle and a suspension of passive particles near the floor. Using experiments and Stokesian dynamics simulations that account for near-field lubrication, we demonstrate that the flow induced by the driven particle can induce long-ranged rearrangement in a passive suspension. We observe an accumulation of passive particles in front of the driven particle and a depletion of passive particles behind the driven particle. This restructuring generates a pattern that can span a range more than 10 times the driven particles radius. We further show that size scale of the pattern is only a function of the particles height above the floor.
Collapse
Affiliation(s)
- Shih-Yuan Chen
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
| | - Hector Manuel Lopez Rios
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Monica Olvera de la Cruz
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois, 60208, USA
| | - Michelle Driscoll
- Department of Physics & Astronomy, Northwestern University, Evanston, Illinois, 60208, USA.
| |
Collapse
|
18
|
Spera G, Duclut C, Durand M, Tailleur J. Nematic Torques in Scalar Active Matter: When Fluctuations Favor Polar Order and Persistence. PHYSICAL REVIEW LETTERS 2024; 132:078301. [PMID: 38427854 DOI: 10.1103/physrevlett.132.078301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
We study the impact of nematic alignment on scalar active matter in the disordered phase. We show that nematic torques control the emergent physics of particles interacting via pairwise forces and can either induce or prevent phase separation. The underlying mechanism is a fluctuation-induced renormalization of the mass of the polar field that generically arises from nematic torques. The correlations between the fluctuations of the polar and nematic fields indeed conspire to increase the particle persistence length, contrary to what phenomenological computations predict. This effect is generic and our theory also quantitatively accounts for how nematic torques enhance particle accumulation along confining boundaries and opposes demixing in mixtures of active and passive particles.
Collapse
Affiliation(s)
- Gianmarco Spera
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Charlie Duclut
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Laboratoire Physique des Cellules et Cancer (PCC), CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Marc Durand
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Tang ZS, Li JJ, Zhu WJ, Ai BQ. Collective self-optimization of binary mixed heterogeneous populations. Phys Rev E 2024; 109:024405. [PMID: 38491669 DOI: 10.1103/physreve.109.024405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/16/2024] [Indexed: 03/18/2024]
Abstract
To maximize the survival chances of society members, collective self-organization must balance individual interests with promoting the collective welfare. Although situations where group members have equal optimal values are clear, how varying optimal values impacts group dynamics remains unclear. To address this gap, we conducted a self-optimization study of a binary system incorporating communication-enabled active particles with distinct optimal values. We demonstrate that similar particles will spontaneously aggregate and separate from each other to maximize their individual benefits during the process of self-optimization. Our research shows that both types of particles can produce the optimal field values at low density. However, only one type of particle can achieve the optimal field values at medium density. At high densities, neither type of particle is effective in reaching the optimal field values. Interestingly, we observed that during the self-optimization process, the mixture demixed spontaneously under certain circumstances of mixed particles. Particles with higher optimal values developed into larger clusters, while particles with lower optimal values migrated outside of these clusters, resulting in the separation of the mixture. To achieve this separation, suitable noise intensity, particle density, and the significant difference in optimal values were necessary. Our results provide a more profound comprehension of the self-optimization of synthetic or biological agents' communication and provide valuable insight into separating binary species and mixtures.
Collapse
Affiliation(s)
- Zhao-Sha Tang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Jia-Jian Li
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
| | - Wei-Jing Zhu
- School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Bao-Quan Ai
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
20
|
Bröker S, Te Vrugt M, Jeggle J, Stenhammar J, Wittkowski R. Pair-distribution function of active Brownian spheres in three spatial dimensions: simulation results and analytical representation. SOFT MATTER 2023; 20:224-244. [PMID: 38078539 DOI: 10.1039/d3sm00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The pair-distribution function, which provides information about correlations in a system of interacting particles, is one of the key objects of theoretical soft matter physics. In particular, it allows for microscopic insights into the phase behavior of active particles. While this function is by now well studied for two-dimensional active matter systems, the more complex and more realistic case of three-dimensional systems is not well understood by now. In this work, we analyze the full pair-distribution function of spherical active Brownian particles interacting via a Weeks-Chandler-Andersen potential in three spatial dimensions using Brownian dynamics simulations. Besides extracting the structure of the pair-distribution function from the simulations, we obtain an analytical representation for this function, parametrized by activity and concentration, which takes into account the symmetries of a homogeneous stationary state. Our results are useful as input to quantitative models of active Brownian particles and advance our understanding of the microstructure in dense active fluids.
Collapse
Affiliation(s)
- Stephan Bröker
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
| | - Michael Te Vrugt
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, UK
| | - Julian Jeggle
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University, 221 00 Lund, Sweden
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
21
|
Shi A, Wu H, Schwartz DK. Nanomotor-enhanced transport of passive Brownian particles in porous media. SCIENCE ADVANCES 2023; 9:eadj2208. [PMID: 38039361 PMCID: PMC10691774 DOI: 10.1126/sciadv.adj2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Artificial micro/nanomotors are expected to perform tasks in interface-rich and species-rich environments for biomedical and environmental applications. In these highly confined and interconnected pore spaces, active species may influence the motion of coexisting passive participants in unexpected ways. Using three-dimensional super-resolution single-nanoparticle tracking, we observed enhanced motion of passive nanoparticles due to the presence of dilute well-separated nanomotors in an interconnected pore space. This enhancement acted at distances that are large compared to the sizes of the particles and cavities, in contrast with the insignificant effect on the passive particles with the same dilute concentration of nanomotors in an unconfined liquid. Experiments and simulations suggested an amplification of hydrodynamic coupling between self-propelled and passive nanoparticles in the interconnected confined environment, which enhanced the effective energy for passive particles to escape cavities through small holes. This finding represents an emergent behavior of confined nanomotors and suggests new strategies for the development of antifouling membranes and drug delivery systems.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Haichao Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
22
|
Venkatareddy N, Mandal J, Maiti PK. Effect of confinement and topology: 2-TIPS vs. MIPS. SOFT MATTER 2023; 19:8561-8576. [PMID: 37905347 DOI: 10.1039/d3sm00796k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
2-TIPS (two temperature induced phase separation) refers to the phase separation phenomenon observed in mixtures of active and passive particles which are modelled using scalar activity. The active particles are connected to a thermostat at high temperature while the passive particles are connected to the thermostat at low temperature and the relative temperature difference between "hot" and "cold" particles is taken as the measure of the activity χ of the non-equilibrium system. The study of such binary mixtures of hot and cold particles under various kinds of confinement is an important problem in many physical and biological processes. The nature and extent of phase separation are heavily influenced by the geometry of confinement, activity, and density of the non-equilibrium binary mixture. Investigating such 3D binary mixtures confined by parallel walls, we observe that the active and passive particles phase separate, but the extent of phase separation is reduced compared to bulk phase separation at high densities and enhanced at low densities. However, when the binary mixture of active and passive particles is confined inside a spherical cavity, the phase separation is radial for small radii of the confining sphere and the extent of phase separation is higher compared to their bulk counterparts. Confinement leads to interesting properties in the passive (cold) region like enhanced layering and high compression in the direction parallel to the confining wall. In 2D, both the bulk and confined systems of the binary mixture show a significant decrement in the extent of phase separation at higher densities. This observation is attributed to the trapping of active particles inside the passive cluster, which increases with density. Thus the 2D systems show structures more akin to dense-dilute phase co-existence, which is observed in motility induced phase separation in 2D active systems. The binary mixture constrained on the spherical surface also shows similar phase co-existence. Our analyses reveal that the coexistent densities observed in 2-TIPS on the spherical surface agree with the findings of previous studies on MIPS in active systems on a sphere.
Collapse
Affiliation(s)
- Nayana Venkatareddy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Jaydeep Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
23
|
Dinelli A, O'Byrne J, Curatolo A, Zhao Y, Sollich P, Tailleur J. Non-reciprocity across scales in active mixtures. Nat Commun 2023; 14:7035. [PMID: 37923724 PMCID: PMC10624904 DOI: 10.1038/s41467-023-42713-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
In active matter, particles typically experience mediated interactions, which are not constrained by Newton's third law and are therefore generically non-reciprocal. Non-reciprocity leads to a rich set of emerging behaviors that are hard to account for starting from the microscopic scale, due to the absence of a generic theoretical framework out of equilibrium. Here we consider bacterial mixtures that interact via mediated, non-reciprocal interactions (NRI) like quorum-sensing and chemotaxis. By explicitly relating microscopic and macroscopic dynamics, we show that, under conditions that we derive explicitly, non-reciprocity may fade upon coarse-graining, leading to large-scale equilibrium descriptions. In turn, this allows us to account quantitatively, and without fitting parameters, for the rich behaviors observed in microscopic simulations including phase separation, demixing, and multi-phase coexistence. We also derive the condition under which non-reciprocity survives coarse-graining, leading to a wealth of dynamical patterns. Again, our analytical approach allows us to predict the phase diagram of the system starting from its microscopic description. All in all, our work demonstrates that the fate of non-reciprocity across scales is a subtle and important question.
Collapse
Affiliation(s)
- Alberto Dinelli
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
| | - Jérémy O'Byrne
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France
- Department of Applied Maths and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Rd, Cambridge, CB3 0WA, UK
| | - Agnese Curatolo
- John A. Paulson School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA, 02138, USA
| | - Yongfeng Zhao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, 215006, Suzhou, China
| | - Peter Sollich
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37 077, Göttingen, Germany
- Department of Mathematics, King's College London, London, WC2R 2LS, UK
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205, Paris, France.
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
24
|
Bera P, Wasim A, Ghosh P. Interplay of cell motility and self-secreted extracellular polymeric substance induced depletion effects on spatial patterning in a growing microbial colony. SOFT MATTER 2023; 19:8136-8149. [PMID: 37847026 DOI: 10.1039/d3sm01144e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Reproducing bacteria self-organize to develop patterned biofilms in various conditions. Various factors contribute to the shaping of a multicellular bacterial organization. Here we investigate how motility force and self-secreted extracellular polymeric substances (EPS) influence bacterial cell aggregation, leading to phase-separated colonies using a particle-based/individual-based model. Our findings highlight the critical role of the interplay between motility force and depletion effects in regulating phase separation within a growing colony under far-from-equilibrium conditions. We observe that increased motility force hinders depletion-induced cell aggregation and phase segregation, necessitating a higher depletion effect for highly motile bacteria to undergo phase separation within a growing biofilm. We present a phase diagram illustrating the systematic variation of motility force and repulsive mechanical force, shedding light on the combined contributions of these two factors: self-propulsive motion and aggregation due to the depletion effect, resulting in the presence of small to large bacterial aggregates. Furthermore, our study reveals the dynamic nature of clustering, marked by changes in cluster size over time. Additionally, our findings suggest that differential dispersion among the components can lead to the localization of EPS at the periphery of a growing colony. Our study enhances the understanding of the collective dynamics of motile bacterial cells within a growing colony, particularly in the presence of a self-secreted polymer-driven depletion effect.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
25
|
Rojas-Vega M, de Castro P, Soto R. Mixtures of self-propelled particles interacting with asymmetric obstacles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:95. [PMID: 37819444 DOI: 10.1140/epje/s10189-023-00354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
In the presence of an obstacle, active particles condensate into a surface "wetting" layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of "fast" and "slow" active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion "diversity," defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.
Collapse
Affiliation(s)
- Mauricio Rojas-Vega
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Pablo de Castro
- ICTP South American Institute for Fundamental Research and Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, São Paulo, 01140-070, Brazil.
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
26
|
Desgranges C, Ferrari M, Chaikin PM, Sacanna S, Tuckerman ME, Delhommelle J. Microswimmers under the spotlight: interplay between agents with different levels of activity. SOFT MATTER 2023; 19:7334-7342. [PMID: 37727916 DOI: 10.1039/d3sm00915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The ability of active matter to assemble into reconfigurable nonequilibrium structures has drawn considerable interest in recent years. We investigate how active fluids respond to spatial light patterns through simulations and experiments on light-activated self-propelled colloidal particles. We examine the processes of inverse templated assembly, which involves creating a region without active particles through a bright pattern, and templated assembly, which promotes the formation of dense particle regions through a dark pattern. We identify scaling relations for the characteristic times for both processes that quantify the interplay between the dimension of the applied pattern and the intrinsic properties of the active fluid. We also explore the assembly mechanism and dynamics of large clusters and show how assembly and inverse assembly can be combined to create any arbitrarily complex template. In addition to providing protocols for templated assembly via light patterning, our results demonstrate how the local packing fraction can be fine-tuned by modulation of the light intensity. The protocol so obtained exceeds the capabilities of conventional assembly strategies, in which packing fraction is dictated by thermodynamics, and opens the door to arbitrarily precise and programmable nonequilibrium assembly strategies in active matter.
Collapse
Affiliation(s)
- Caroline Desgranges
- Department of Physics & Applied Physics, University of Massachusetts, Lowell, MA 01854, USA
| | - Melissa Ferrari
- Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA.
| | - Paul M Chaikin
- Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA.
| | - Stefano Sacanna
- Department of Chemistry, New York University (NYU), New York, New York 10003, USA
| | - Mark E Tuckerman
- Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA.
- Department of Chemistry, New York University (NYU), New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University (NYU), New York, New York 10012, USA
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, USA.
| |
Collapse
|
27
|
Bickmann J, Bröker S, Te Vrugt M, Wittkowski R. Active Brownian particles in external force fields: Field-theoretical models, generalized barometric law, and programmable density patterns. Phys Rev E 2023; 108:044601. [PMID: 37978644 DOI: 10.1103/physreve.108.044601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
We investigate the influence of external forces on the collective dynamics of interacting active Brownian particles in two as well as three spatial dimensions. Via explicit coarse graining, we derive predictive models, i.e., models that give a direct relation between the models' coefficients and the bare parameters of the system, that are applicable for space- and time-dependent external force fields. We study these models for the cases of gravity and harmonic traps. In particular, we derive a generalized barometric formula for interacting active Brownian particles under gravity that is valid for low to high concentrations and activities of the particles. Furthermore, we show that one can use an external harmonic trap to induce motility-induced phase separation in systems that, without external fields, remain in a homogeneous state. This finding makes it possible to realize programmable density patterns in systems of active Brownian particles. Our analytic predictions are found to be in very good agreement with Brownian dynamics simulations.
Collapse
Affiliation(s)
- Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Stephan Bröker
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
28
|
Dai L, Wan H, Xu D, Dai X, Li G, Yan LT. Hydrodynamic Anisotropy of Depletion in Nonequilibrium. PHYSICAL REVIEW LETTERS 2023; 131:134002. [PMID: 37832000 DOI: 10.1103/physrevlett.131.134002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/01/2023] [Indexed: 10/15/2023]
Abstract
Active colloids in a bath of inert particles of smaller size cause anisotropic depletion. The active hydrodynamics of this nonequilibrium phenomenon, which is fundamentally different from its equilibrium counterpart and passive particles in an active bath, remains scarcely understood. Here we combine mesoscale hydrodynamic simulation as well as theoretical analysis to examine the physical origin for the active depletion around a self-propelled noninteractive colloid. Our results elucidate that the variable hydrodynamic effect critically governs the microstructure of the depletion zone. Three characteristic states of anisotropic depletion are identified, depending on the strength and stress of activity. This yields a state diagram of depletion in the two-parameter space, captured by developing a theoretical model with the continuum kinetic theory and leading to a mechanistic interpretation of the hydrodynamic anisotropy of depletion. Furthermore, we demonstrate that such depletion in nonequilibrium results in various clusters with ordered organization of squirmers, which follows a distinct principle contrary to that of the entropy scenario of depletion in equilibrium. The findings might be of immediate interest to tune the hydrodynamics-mediated anisotropic interactions and active nonequilibrium organizations in the self-propulsion systems.
Collapse
Affiliation(s)
- Lijun Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Gaojin Li
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
29
|
Kushwaha P, Semwal V, Maity S, Mishra S, Chikkadi V. Phase separation of passive particles in active liquids. Phys Rev E 2023; 108:034603. [PMID: 37849120 DOI: 10.1103/physreve.108.034603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/03/2023] [Indexed: 10/19/2023]
Abstract
The transport properties of colloidal particles in active liquids have been studied extensively. It has led to a deeper understanding of the interactions between passive and active particles. However, the phase behavior of colloidal particles in active media has received little attention. Here, we present a combined experimental and numerical investigation of passive colloids dispersed in suspensions of active particles. Our study reveals dynamic clustering of colloids in active media due to an interplay of activity and attractive effective potential between the colloids. The strength of the effective potential is set by the size ratio of passive particles to the active ones. As the relative size of the passive particles increases, the effective potential becomes stronger and the average size of the clusters grows. The simulations reveal a macroscopic phase separation at sufficiently large size ratios. We will discuss the effect of density fluctuations of active particles on the nature of effective interactions between passive ones.
Collapse
Affiliation(s)
- Pragya Kushwaha
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Vivek Semwal
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sayan Maity
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | | |
Collapse
|
30
|
Smith NR. Nonequilibrium steady state of trapped active particles. Phys Rev E 2023; 108:L022602. [PMID: 37723780 DOI: 10.1103/physreve.108.l022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/20/2023]
Abstract
We consider an overdamped particle with a general physical mechanism that creates noisy active movement (e.g., a run-and-tumble particle or active Brownian particle, etc.), that is confined by an external potential. Focusing on the limit in which the correlation time τ of the active noise is small, we find the nonequilibrium steady-state distribution P_{st}(X) of the particle's position X. While typical fluctuations of X follow a Boltzmann distribution with an effective temperature that is not difficult to find, the tails of P_{st}(X) deviate from a Boltzmann behavior: In the limit τ→0, they scale as P_{st}(X)∼e^{-s(X)/τ}. We calculate the large-deviation function s(X) exactly for arbitrary trapping potential and active noise in dimension d=1, by relating it to the rate function that describes large deviations of the position of the same active particle in absence of an external potential at long times. We then extend our results to d>1 assuming rotational symmetry.
Collapse
Affiliation(s)
- Naftali R Smith
- Department of Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| |
Collapse
|
31
|
Bera A, Binder K, Egorov SA, Das SK. Phase behavior and dynamics in a colloid-polymer mixture under spherical confinement. SOFT MATTER 2023; 19:3386-3397. [PMID: 37128824 DOI: 10.1039/d3sm00362k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
From studies via molecular dynamics simulations, we report results on structure and dynamics in mixtures of active colloids and passive polymers that are confined inside a spherical container with a repulsive boundary. All interactions in the fully passive limit are chosen in such a way that in equilibrium coexistence between colloid-rich and polymer-rich phases occurs. For most part of the studies the chosen compositions give rise to Janus-like structure: nearly one side of the sphere is occupied by the colloids and the rest by the polymers. This partially wet situation mimics approximately a neutral wall in the fully passive scenario. Following the introduction of a velocity-aligning activity to the colloids, the shape of the polymer-rich domain changes to that of an ellipsoid, around the long axis of which the colloid-rich domain attains a macroscopic angular momentum. In the steady state, the orientation of this axis evolves via diffusion, magnitude of which depends upon the strength of activity, but only weakly.
Collapse
Affiliation(s)
- Arabinda Bera
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| | - Kurt Binder
- Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Staudinger Weg 7, Germany
| | - Sergei A Egorov
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
32
|
Zheng J, Chen J, Jin Y, Wen Y, Mu Y, Wu C, Wang Y, Tong P, Li Z, Hou X, Tang J. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023; 617:499-506. [PMID: 37198311 PMCID: PMC10191859 DOI: 10.1038/s41586-023-05873-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
Phase segregation is ubiquitously observed in immiscible mixtures, such as oil and water, in which the mixing entropy is overcome by the segregation enthalpy1-3. In monodispersed colloidal systems, however, the colloidal-colloidal interactions are usually non-specific and short-ranged, which leads to negligible segregation enthalpy4. The recently developed photoactive colloidal particles show long-range phoretic interactions, which can be readily tuned with incident light, suggesting an ideal model for studying phase behaviour and structure evolution kinetics5,6. In this work, we design a simple spectral selective active colloidal system, in which TiO2 colloidal species were coded with spectral distinctive dyes to form a photochromic colloidal swarm. In this system, the particle-particle interactions can be programmed by combining incident light with various wavelengths and intensities to enable controllable colloidal gelation and segregation. Furthermore, by mixing the cyan, magenta and yellow colloids, a dynamic photochromic colloidal swarm is formulated. On illumination of coloured light, the colloidal swarm adapts the appearance of incident light due to layered phase segregation, presenting a facile approach towards coloured electronic paper and self-powered optical camouflage.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yakang Jin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
33
|
Lan Y, Xu M, Xie J, Yang Y, Jiang H. Spontaneous symmetry-breaking of the active cluster drives the directed movement and self-sustained oscillation of symmetric rod-like passive particles. SOFT MATTER 2023; 19:3222-3227. [PMID: 37083022 DOI: 10.1039/d2sm01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Active particles without detailed balance can rectify their random motions to drive the directed movement or rotation of asymmetric passive obstacles. However, whether they can drive the directed movement of symmetric passive obstacles is still unclear. Here, we show that a rod-like passive particle which is fixed to move along the x-axis in an active bath can keep long-lived directed movement at nearly constant speed due to the spontaneous symmetry breaking of the neighboring active particle cluster. If the passive particle is further confined by a harmonic potential, it may undergo self-sustained periodic oscillation for an appropriate length of the passive particle and self-propelled velocity of active particles. The restoring force from the harmonic potential will trigger the velocity jump-off and thus lead to self-sustained periodic oscillation. Remarkably, the relationship between the velocity of the passive particle and the external force shows that the effective viscosity of the active bath may become negative in some regime. Finally, we develop a minimum 1D theoretical model to further probe the mechanism underlying the directed movement and self-sustained oscillation of the passive particle. Our findings reveal the effect of the moving boundary on the active bath and demonstrate a novel method to extract practical mechanical work from the active bath to propel microdevices.
Collapse
Affiliation(s)
- Ying Lan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Man Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinjiang Xie
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
34
|
Bouvard J, Moisy F, Auradou H. Ostwald-like ripening in the two-dimensional clustering of passive particles induced by swimming bacteria. Phys Rev E 2023; 107:044607. [PMID: 37198759 DOI: 10.1103/physreve.107.044607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Clustering passive particles by active agents is a promising route for fabrication of colloidal structures. Here, we report the dynamic clustering of micrometric beads in a suspension of motile bacteria. We characterize the coarsening dynamics for various bead sizes, surface fractions, and bacterial concentrations. We show that the time scale τ for the onset of clustering is governed by the time of first encounter of diffusing beads. At large time (t≫τ), we observe a robust cluster growth as t^{1/3}, similar to the Ostwald ripening mechanism. From bead tracking measurements, we extract the short-range bacteria-induced attractive force at the origin of this clustering.
Collapse
Affiliation(s)
- J Bouvard
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - F Moisy
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - H Auradou
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| |
Collapse
|
35
|
Venkatareddy N, Lin ST, Maiti PK. Phase behavior of active and passive dumbbells. Phys Rev E 2023; 107:034607. [PMID: 37073042 DOI: 10.1103/physreve.107.034607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023]
Abstract
We report phase separation in a mixture of "hot" and "cold" three-dimensional dumbbells which interact by Lennard-Jones potential. We also have studied the effect of asymmetry of dumbbells and the variation of ratio of "hot" and "cold" dumbbells on their phase separation. The ratio of the temperature difference between hot and cold dumbbells to the temperature of cold dumbbells is a measure of the activity χ of the system. From constant density simulations of symmetric dumbbells, we observe that the "hot" and "cold" dumbbells phase separate at higher activity ratio (χ>5.80) compared to that of a mixture of hot and cold Lennard-Jones monomers (χ>3.44). We find that, in the phase-separated system, the hot dumbbells have high effective volume and hence high entropy which is calculated by two-phase thermodynamic method. The high kinetic pressure of hot dumbbells forces the cold dumbbells to form dense clusters such that at the interface the high kinetic pressure of hot dumbbells is balanced by the virial pressure of cold dumbbells. We find that phase separation pushes the cluster of cold dumbbells to have solidlike ordering. Bond orientation order parameters reveal that the cold dumbbells form solidlike ordering consisting of predominantly face-centered cubic and hexagonal-close packing packing, but the individual dumbbells have random orientations. The simulation of the nonequilibrium system of symmetric dumbbells at different ratios of number of hot dumbbells to cold dumbbells reveals that the critical activity of phase separation decreases with increase in fraction of hot dumbbells. The simulation of equal mixture of hot and cold asymmetric dumbbells revealed that the critical activity of phase separation was independent of the asymmetry of dumbbells. We also observed that the clusters of cold asymmetric dumbbells showed both crystalline and noncrystalline order depending on the asymmetry of dumbbells.
Collapse
Affiliation(s)
- Nayana Venkatareddy
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| | - Shiang-Tai Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| |
Collapse
|
36
|
Hrishikesh B, Mani E. Collective behavior of passive and active circle swimming particle mixtures. SOFT MATTER 2023; 19:225-232. [PMID: 36510815 DOI: 10.1039/d2sm01066f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present a numerical study on a binary mixture of passive and circle swimming, self-propelling particles which interact via the Lennard-Jones (LJ) potential in two dimensions. Using Brownian Dynamics (BD) simulations, we present state diagrams using the control parameters such as attraction strength, angular velocity, self-propulsion velocity and composition. In a symmetric mixture, the system undergoes a transition from a mixed gel to a rotating passive cluster state and finally to a homogeneous fluid state as translational activity increases. The formation of the rotating cluster of passive particles surrounded by active and passive monomers is attributed to the combined effect of composition, activity and strength of attraction of the active particles. Different phases are characterized using radial distribution functions, bond order parameters, cluster fraction and probability distribution of local volume fractions. The present study addresses comprehensively the intricate role of activity, angular velocity, inter-particle interaction and compositional variation on the phase behavior. The predictions presented in the study can be experimentally realized in synthetic colloidal swimmers and motile bacterial suspensions.
Collapse
Affiliation(s)
- Bhadra Hrishikesh
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India.
| |
Collapse
|
37
|
Ghosh PK, Zhou Y, Li Y, Marchesoni F, Nori F. Binary Mixtures in Linear Convection Arrays. Chemphyschem 2023; 24:e202200471. [PMID: 36125421 DOI: 10.1002/cphc.202200471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/19/2022] [Indexed: 01/07/2023]
Abstract
We numerically investigated the dynamics of a mixture of finite-size active and passive disks in a linear array of two-dimensional convection rolls. The interplay of advection and steric interactions produces a number of interesting effects, like the stirring of a passive colloidal fluid by a small fraction of slow active particles, or the separation of the mixture active and passive colloidal fractions by increasing the motility of the active one, which eventually clusters in stagnation areas along the array walls. These mechanisms are quantitatively characterized by studying the dependence of the diffusion constants of the active and passive particles on the parameters of the active mixture fraction.
Collapse
Affiliation(s)
- Pulak K Ghosh
- Department of Chemistry, Presidency University, Kolkata, 700073, India
| | - Yuxin Zhou
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yunyun Li
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fabio Marchesoni
- Center for Phononics and Thermal Energy Science, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.,Dipartimento di Fisica, Università di Camerino, I-62032, Camerino
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.,Physics Department, University of Michigan, Ann Arbor, Michigan, 48109-1040, USA
| |
Collapse
|
38
|
Padmanabha P, Busiello DM, Maritan A, Gupta D. Fluctuations of entropy production of a run-and-tumble particle. Phys Rev E 2023; 107:014129. [PMID: 36797901 DOI: 10.1103/physreve.107.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Out-of-equilibrium systems continuously generate entropy, with its rate of production being a fingerprint of nonequilibrium conditions. In small-scale dissipative systems subject to thermal noise, fluctuations of entropy production are significant. Hitherto, mean and variance have been abundantly studied, even if higher moments might be important to fully characterize the system of interest. Here, we introduce a graphical method to compute any moment of entropy production for a generic discrete-state system. Then, we focus on a paradigmatic model of active particles, i.e., run-and-tumble dynamics, which resembles the motion observed in several micro-organisms. Employing our framework, we compute the first three cumulants of the entropy production for a discrete version of this model. We also compare our analytical results with numerical simulations. We find that as the number of states increases, the distribution of entropy production deviates from a Gaussian. Finally, we extend our framework to a continuous state-space run-and-tumble model, using an appropriate scaling of the transition rates. The approach presented here might help uncover the features of nonequilibrium fluctuations of any current in biological systems operating out-of-equilibrium.
Collapse
Affiliation(s)
- Prajwal Padmanabha
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova 35131, Italy
| | | | - Amos Maritan
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padova 35131, Italy
| | - Deepak Gupta
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
- Institute for Theoretical Physics, Technical University of Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
| |
Collapse
|
39
|
Rojas-Vega M, de Castro P, Soto R. Wetting dynamics by mixtures of fast and slow self-propelled particles. Phys Rev E 2023; 107:014608. [PMID: 36797971 DOI: 10.1103/physreve.107.014608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of "fast" and "slow" self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front.
Collapse
Affiliation(s)
| | - Pablo de Castro
- ICTP South American Institute for Fundamental Research & Instituto de Física Teórica, Universidade Estadual Paulista - UNESP, 01140-070 São Paulo, Brazil
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Avenida Blanco Encalada 2008, Santiago, Chile
| |
Collapse
|
40
|
Wu S, Li JX, Lei QL. Facilitated dynamics of an active polymer in 2D crowded environments with obstacles. SOFT MATTER 2022; 18:9263-9272. [PMID: 36441607 DOI: 10.1039/d2sm00974a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the behaviors of a single active chain in complex environments is not only an interesting topic in non-equilibrium physics but also has applicative implications in biological/medical engineering. In this work, by using molecular simulations, we systematically study the dynamical and conformational behaviors of an active polymer in crowded environments, i.e., a single active chain confined in 2D space with randomly arranged obstacles. We found that the competition between the chain's activity and rigidity in the presence of obstacles leads to many interesting dynamical and conformational states, such as the diffusive expanded state, the diffusive collapsed state, and the localized collapsed state. Importantly, we found a counter-intuitive phenomenon, i.e., crowded environments facilitate the diffusion of the active polymer within a large parameter space. As the crowdedness (packing fraction of obstacles) increases, the parameter space in which crowding-enhanced diffusion occurs still remains. This abnormal dynamics is attributed to a structural reason that the obstacles prevent active chains from collapsing. Our findings capture some generic features of active polymers in complex environments and provide insights into the design of novel drug delivery systems.
Collapse
Affiliation(s)
- Song Wu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Jia-Xiang Li
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Qun-Li Lei
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
Forget M, Adiba S, Brunnet LG, De Monte S. Heterogeneous individual motility biases group composition in a model of aggregating cells. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1052309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Aggregative life cycles are characterized by alternating phases of unicellular growth and multicellular development. Their multiple, independent evolutionary emergence suggests that they may have coopted pervasive properties of single-celled ancestors. Primitive multicellular aggregates, where coordination mechanisms were less efficient than in extant aggregative microbes, must have faced high levels of conflict between different co-aggregating populations. Such conflicts within a multicellular body manifest in the differential reproductive output of cells of different types. Here, we study how heterogeneity in cell motility affects the aggregation process and creates a mismatch between the composition of the population and that of self-organized groups of active adhesive particles. We model cells as self-propelled particles and describe aggregation in a plane starting from a dispersed configuration. Inspired by the life cycle of aggregative model organisms such as Dictyostelium discoideum or Myxococcus xanthus, whose cells interact for a fixed duration before the onset of chimeric multicellular development, we study finite-time configurations for identical particles and in binary mixes. We show that co-aggregation results in three different types of frequency-dependent biases, one of which is associated to evolutionarily stable coexistence of particles with different motility. We propose a heuristic explanation of such observations, based on the competition between delayed aggregation of slower particles and detachment of faster particles. Unexpectedly, despite the complexity and non-linearity of the system, biases can be largely predicted from the behavior of the two corresponding homogenous populations. This model points to differential motility as a possibly important factor in driving the evolutionary emergence of facultatively multicellular life-cycles.
Collapse
|
42
|
Xu G, Huang T, Han Y, Chen Y. Morphologies and dynamics of free surfaces of crystals composed of active particles. SOFT MATTER 2022; 18:8830-8839. [PMID: 36367378 DOI: 10.1039/d2sm00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active matter exhibits various collective motions and nonequilibrium phases, such as crystals; however, their surface properties have been poorly explored. Here, we use Brownian dynamics simulations to investigate the surface morphology and dynamics of two-dimensional active crystals during and after growth. For crystal growth on a substrate, the position and roughness of the crystal surface reach steady states at different times. In the steady state, the surface exhibits superdiffusive behaviour at the short time, and the roughness is insensitive to the roughening process and particle activity. We observe two-stage and three-stage surface roughening at different Péclet numbers. The result of dynamic scaling analysis shows that the surface is similar to anomalous roughening, which is distinct from the normal roughening typically found in conventional passive systems. Capillary wave theory for a thermal equilibrium system can describe the active surface fluctuations only in the long-wavelength regime, indicating that active particles mainly drive the surface out of equilibrium locally. These similarities and differences between the active and passive crystal surfaces are essential for understanding active crystals and interfaces.
Collapse
Affiliation(s)
- Guoqing Xu
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| | - Tao Huang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Yong Chen
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
43
|
Smith NR, Le Doussal P, Majumdar SN, Schehr G. Exact position distribution of a harmonically confined run-and-tumble particle in two dimensions. Phys Rev E 2022; 106:054133. [PMID: 36559430 DOI: 10.1103/physreve.106.054133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022]
Abstract
We consider an overdamped run-and-tumble particle in two dimensions, with self-propulsion in an orientation that stochastically rotates by 90^{∘} at a constant rate, clockwise or counterclockwise with equal probabilities. In addition, the particle is confined by an external harmonic potential of stiffness μ, and possibly diffuses. We find the exact time-dependent distribution P(x,y,t) of the particle's position, and in particular, the steady-state distribution P_{st}(x,y) that is reached in the long-time limit. We also find P(x,y,t) for a "free" particle, μ=0. We achieve this by showing that, under a proper change of coordinates, the problem decomposes into two statistically independent one-dimensional problems, whose exact solution has recently been obtained. We then extend these results in several directions, to two such run-and-tumble particles with a harmonic interaction, to analogous systems of dimension three or higher, and by allowing stochastic resetting.
Collapse
Affiliation(s)
- Naftali R Smith
- Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Pierre Le Doussal
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, ENS and Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | | | - Grégory Schehr
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
44
|
Gnan N, Maggi C. Critical behavior of quorum-sensing active particles. SOFT MATTER 2022; 18:7654-7661. [PMID: 36169619 DOI: 10.1039/d2sm00654e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It is still a debated issue whether all critical active particles belong to the same universality class. Here we numerically study the critical behavior of quorum sensing active particles that represents the archetypal model for interpreting motility-induced phase separation. Mean-field theory predicts that this model should undergo a full phase separation if particles slow-down enough when sensing the presence of their neighbors and that the coexistence line terminates in a critical point. By performing large-scale numerical simulations, we confirm this scenario, locate the critical point and use finite-size scaling analysis to show that the static and dynamic critical exponents of this active system substantially agree with those of the Ising universality class.
Collapse
Affiliation(s)
- Nicoletta Gnan
- ISC-CNR, Institute for Complex Systems, Piazzale A. Moro 2, I-00185, Roma, Italy.
- Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy
| | - Claudio Maggi
- Dipartimento di Fisica, Università di Roma "Sapienza", I-00185, Roma, Italy
- NANOTEC-CNR, Institute of Nanotechnology, Soft and Living Matter Laboratory-Piazzale A. Moro 2, I-00185, Roma, Italy.
| |
Collapse
|
45
|
Mayer Martins J, Wittkowski R. Inertial dynamics of an active Brownian particle. Phys Rev E 2022; 106:034616. [PMID: 36266913 DOI: 10.1103/physreve.106.034616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Active Brownian motion commonly assumes spherical overdamped particles. However, self-propelled particles are often neither symmetric nor overdamped yet underlie random fluctuations from their surroundings. Active Brownian motion has already been generalized to include asymmetric particles. Separately, recent findings have shown the importance of inertial effects for particles of macroscopic size or in low-friction environments. We aim to consolidate the previous findings into the general description of a self-propelled asymmetric particle with inertia. We derive the Langevin equation of such a particle as well as the corresponding Fokker-Planck equation. Furthermore, a formula is presented that allows reconstructing the hydrodynamic resistance matrix of the particle by measuring its trajectory. Numerical solutions of the Langevin equation show that, independently of the particle's shape, the noise-free trajectory at zero temperature starts with an inertial transition phase and converges to a circular helix. We discuss this universal convergence with respect to the helical motion that many microorganisms exhibit.
Collapse
Affiliation(s)
- Jonas Mayer Martins
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
46
|
Williams S, Jeanneret R, Tuval I, Polin M. Confinement-induced accumulation and de-mixing of microscopic active-passive mixtures. Nat Commun 2022; 13:4776. [PMID: 35970896 PMCID: PMC9378696 DOI: 10.1038/s41467-022-32520-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the out-of-equilibrium properties of noisy microscale systems and the extent to which they can be modulated externally, is a crucial scientific and technological challenge. It holds the promise to unlock disruptive new technologies ranging from targeted delivery of chemicals within the body to directed assembly of new materials. Here we focus on how active matter can be harnessed to transport passive microscopic systems in a statistically predictable way. Using a minimal active-passive system of weakly Brownian particles and swimming microalgae, we show that spatial confinement leads to a complex non-monotonic steady-state distribution of colloids, with a pronounced peak at the boundary. The particles’ emergent active dynamics is well captured by a space-dependent Poisson process resulting from the space-dependent motion of the algae. Based on our findings, we then realise experimentally the de-mixing of the active-passive suspension, opening the way for manipulating colloidal objects via controlled activity fields. Understanding how order emerges in active matter may facilitate macroscopic control of microscopic objects. Here, Williams et al. show how to control the transport of passive microscopic particles in presence of motile algae in conjunction with boundary-induced accumulation of microswimmers.
Collapse
Affiliation(s)
- Stephen Williams
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Raphaël Jeanneret
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Idan Tuval
- Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain.,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain
| | - Marco Polin
- Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom. .,Departament de Física, Universitat de les Illes Balears, 07071, Palma de Mallorca, Spain. .,Instituto Mediterráneo de Estudios Avanzados, IMEDEA, Miquel Marques 21, 07190, Esporles, Spain.
| |
Collapse
|
47
|
Abstract
The human genome is arranged in the cell nucleus nonrandomly, and phase separation has been proposed as an important driving force for genome organization. However, the cell nucleus is an active system, and the contribution of nonequilibrium activities to phase separation and genome structure and dynamics remains to be explored. We simulated the genome using an energy function parametrized with chromosome conformation capture (Hi-C) data with the presence of active, nondirectional forces that break the detailed balance. We found that active forces that may arise from transcription and chromatin remodeling can dramatically impact the spatial localization of heterochromatin. When applied to euchromatin, active forces can drive heterochromatin to the nuclear envelope and compete with passive interactions among heterochromatin that tend to pull them in opposite directions. Furthermore, active forces induce long-range spatial correlations among genomic loci beyond single chromosome territories. We further showed that the impact of active forces could be understood from the effective temperature defined as the fluctuation-dissipation ratio. Our study suggests that nonequilibrium activities can significantly impact genome structure and dynamics, producing unexpected collective phenomena.
Collapse
Affiliation(s)
- Zhongling Jiang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Yifeng Qi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Kartik Kamat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
48
|
Bagchi D. Macroscopic charge segregation in driven polyelectrolyte solutions. SOFT MATTER 2022; 18:5676-5686. [PMID: 35861507 DOI: 10.1039/d2sm00448h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the behavior of charged complex fluids is crucial for a plethora of important industrial, technological, and medical applications. Here, using coarse-grained molecular dynamics simulations, we investigate the properties of a polyelectrolyte solution with explicit counterions and implicit solvent that is driven by a steady electric field. By properly tuning the interplay between interparticle electrostatics and the applied electric field, we uncover two non-equilibrium continuous phase transitions as a function of the driving field. The first transition occurs from a homogeneous mixed phase to a macroscopic charge-segregated phase in which the polyelectrolyte solution self-organizes to form two lanes of like-charges, parallel to the applied field. We show that the fundamental underlying factor responsible for the emergence of this charge segregation in the presence of an electric field is the excluded volume interactions of the drifting polyelectrolyte chains. As the driving field is increased further, a re-entrant transition is observed from a charge-segregated phase to a homogeneous phase. The re-entrance is signaled by a decrease in the mobility of the monomers and counterions as the electric field is increased. Furthermore, with multivalent counterions, a counterintuitive regime of negative differential mobility is observed in which the charges move progressively more slowly as the driving field is increased. We show that all these features can be consistently explained using an intuitive trapping mechanism that operates between the oppositely moving charges, and present numerical evidence to support our claims. Parameter dependencies and phase diagrams are studied to better understand charge segregation in such driven polyelectrolyte solutions.
Collapse
Affiliation(s)
- Debarshee Bagchi
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
| |
Collapse
|
49
|
Li L, Liu P, Chen K, Zheng N, Yang M. Active depletion torque between two passive rods. SOFT MATTER 2022; 18:4265-4272. [PMID: 35609282 DOI: 10.1039/d2sm00469k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The active depletion torque experienced by two anisotropic objects in an active bath is a conceptional generalization of the equilibrium entropic torque. Using Brownian dynamics simulations, we compute the active depletion torque suffered by two passive rods immersed in an ensemble of active Brownian particles. Our results demonstrate that the active depletion torque is qualitatively different from its passive counterpart. Interestingly, we find that the active depletion torque can be greatly affected by the external constraint applied on the rotational degree of freedom of the rods, and even the direction may be changed with the orientational constraint, which is in contrast to the equilibrium depletion torque. The main reason for the remarkable features of the active depletion torque is that the active particles can significantly accumulate in the vicinity of the rods due to persistent self-propulsion, which is sensitively dependent on the constraint strength and the rod configurations. Our findings could be relevant for understanding the self-assembly and dynamics of anisotropic macromolecules in living environments.
Collapse
Affiliation(s)
- Longfei Li
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Peng Liu
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ning Zheng
- School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
50
|
Singh JP, Pattanayak S, Mishra S, Chakrabarti J. Effective single component description of steady state structures of passive particles in an active bath. J Chem Phys 2022; 156:214112. [DOI: 10.1063/5.0088259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We model a binary mixture of passive and active Brownian particles in two dimensions using the effective interaction between passive particles in the active bath. The activity of active particles and the size ratio of two types of particles are the two control parameters in the system. The effective interaction is calculated from the average force on two particles generated by the active particles. The effective interaction can be attractive or repulsive, depending on the system parameters. The passive particles form four distinct structural orders for different system parameters, viz., homogeneous structures, disordered cluster, ordered cluster, and crystalline structure. The change in structure is dictated by the change in nature of the effective interaction. We further confirm the four structures using a full microscopic simulation of active and passive mixture. Our study is useful to understand the different collective behavior in non-equilibrium systems.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sudipta Pattanayak
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, 95302 Cergy-Pontoise, France
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jaydeb Chakrabarti
- S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|