1
|
He Y, Kennes DM, Karrasch C, Rausch R. Terminable Transitions in a Topological Fermionic Ladder. PHYSICAL REVIEW LETTERS 2024; 132:136501. [PMID: 38613303 DOI: 10.1103/physrevlett.132.136501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 04/14/2024]
Abstract
Interacting fermionic ladders are versatile platforms to study quantum phases of matter, such as different types of Mott insulators. In particular, there are D-Mott and S-Mott states that hold preformed fermion pairs and become paired-fermion liquids upon doping (d wave and s wave, respectively). We show that the D-Mott and S-Mott phases are in fact two facets of the same topological phase and that the transition between them is terminable. These results provide a quantum analog of the well-known terminable liquid-to-gas transition. However, the phenomenology we uncover is even richer, as the order of the transition may alternate between continuous and first order, depending on the interaction details. Most importantly, the terminable transition is robust in the sense that it is guaranteed to appear for weak, but arbitrary couplings. We discuss a minimal model where some analytical insights can be obtained, a generic model where the effect persists; and a model-independent field-theoretical study demonstrating the general phenomenon. The role of symmetry and the edge states is briefly discussed. The numerical results are obtained using the variational uniform matrix-product state (VUMPS) formalism for infinite systems, as well as the density-matrix renormalization group (DMRG) algorithm for finite systems.
Collapse
Affiliation(s)
- Yuchi He
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056 Aachen, Germany
- Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dante M Kennes
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056 Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Christoph Karrasch
- Technische Universität Braunschweig, Institut für Mathematische Physik, Mendelssohnstraße 3, 38106 Braunschweig, Germany
| | - Roman Rausch
- Technische Universität Braunschweig, Institut für Mathematische Physik, Mendelssohnstraße 3, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Martinelli L, Wohlfeld K, Pelliciari J, Arpaia R, Brookes NB, Di Castro D, Fernandez MG, Kang M, Krockenberger Y, Kummer K, McNally DE, Paris E, Schmitt T, Yamamoto H, Walters A, Zhou KJ, Braicovich L, Comin R, Sala MM, Devereaux TP, Daghofer M, Ghiringhelli G. Collective Nature of Orbital Excitations in Layered Cuprates in the Absence of Apical Oxygens. PHYSICAL REVIEW LETTERS 2024; 132:066004. [PMID: 38394564 DOI: 10.1103/physrevlett.132.066004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/27/2023] [Accepted: 12/21/2023] [Indexed: 02/25/2024]
Abstract
We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen. We ascribe the origin of the dispersion as stemming from a substantial next-nearest-neighbor (NNN) orbital superexchange. Such an exchange leads to the liberation of the orbiton from its coupling to magnons, which is associated with the orbiton hopping between nearest neighbor copper sites. Finally, we show that the exceptionally large NNN orbital superexchange can be traced back to the absence of apical oxygens suppressing the charge transfer energy.
Collapse
Affiliation(s)
- Leonardo Martinelli
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Krzysztof Wohlfeld
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warsaw, Poland
| | - Jonathan Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Riccardo Arpaia
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nicholas B Brookes
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Daniele Di Castro
- Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
- CNR-SPIN, Università di Roma Tor Vergata, Via del Politecnico 1, I-00133 Roma, Italy
| | | | - Mingu Kang
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Kurt Kummer
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Daniel E McNally
- Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Eugenio Paris
- Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Thorsten Schmitt
- Photon Science Division, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Hideki Yamamoto
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa, 243-0198, Japan
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - Lucio Braicovich
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Marco Moretti Sala
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Thomas P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC, Menlo Park, California 94025, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | - Maria Daghofer
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
- Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Giacomo Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| |
Collapse
|
3
|
Shen Y, Sears J, Fabbris G, Weichselbaum A, Yin W, Zhao H, Mazzone DG, Miao H, Upton MH, Casa D, Acevedo-Esteves R, Nelson C, Barbour AM, Mazzoli C, Cao G, Dean MPM. Emergence of Spinons in Layered Trimer Iridate Ba_{4}Ir_{3}O_{10}. PHYSICAL REVIEW LETTERS 2022; 129:207201. [PMID: 36461990 DOI: 10.1103/physrevlett.129.207201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Spinons are well known as the elementary excitations of one-dimensional antiferromagnetic chains, but means to realize spinons in higher dimensions is the subject of intense research. Here, we use resonant x-ray scattering to study the layered trimer iridate Ba_{4}Ir_{3}O_{10}, which shows no magnetic order down to 0.2 K. An emergent one-dimensional spinon continuum is observed that can be well described by XXZ spin-1/2 chains with a magnetic exchange of ∼55 meV and a small Ising-like anisotropy. With 2% isovalent Sr doping, magnetic order appears below T_{N}=130 K along with sharper excitations in (Ba_{1-x}Sr_{x})_{4}Ir_{3}O_{10}. Combining our data with exact diagonalization calculations, we find that the frustrated intratrimer interactions effectively reduce the system into decoupled spin chains, the subtle balance of which can be easily tipped by perturbations such as chemical doping. Our results put Ba_{4}Ir_{3}O_{10} between the one-dimensional chain and two-dimensional quantum spin liquid scenarios, illustrating a new way to suppress magnetic order and realize fractional spinons.
Collapse
Affiliation(s)
- Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J Sears
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - G Fabbris
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - A Weichselbaum
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - W Yin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - H Zhao
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - D G Mazzone
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - M H Upton
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Casa
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - R Acevedo-Esteves
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Nelson
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A M Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - G Cao
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
4
|
Fumega AO, Wong D, Schulz C, Rodríguez F, Blanco-Canosa S. Spectroscopy of the frustrated quantum antiferromagnet Cs 2CuCl 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495603. [PMID: 34517361 DOI: 10.1088/1361-648x/ac2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We investigate the electronic structure of Cs2CuCl4, a material discussed in the framework of a frustrated quantum antiferromagnet, by means of resonant inelastic x-ray scattering (RIXS) and density functional theory (DFT). From the non-dispersive highly localizedddexcitations, we resolve the crystal field splitting of the Cu2+ions in a strongly distorted tetrahedral coordination. This allows us to model the RIXS spectrum within the crystal field theory (CFT), assign theddorbital excitations and retrieve experimentally the values of the crystal field splitting parametersDq,DsandDτ. The electronic structure obtainedab-initioagrees with the RIXS spectrum and modelled by CFT, highlighting the potential of combined spectroscopic, cluster and DFT calculations to determine the electronic ground state of complex materials.
Collapse
Affiliation(s)
- Adolfo O Fumega
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
- Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
| | - D Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - C Schulz
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - F Rodríguez
- MALTA TEAM, DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
| | - S Blanco-Canosa
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
5
|
Li J, Xu L, Garcia-Fernandez M, Nag A, Robarts HC, Walters AC, Liu X, Zhou J, Wohlfeld K, van den Brink J, Ding H, Zhou KJ. Unraveling the Orbital Physics in a Canonical Orbital System KCuF_{3}. PHYSICAL REVIEW LETTERS 2021; 126:106401. [PMID: 33784112 DOI: 10.1103/physrevlett.126.106401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF_{3} using the Cu L_{3}-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu^{2+} dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF_{3}, which predominantly drives orbital ordering.
Collapse
Affiliation(s)
- Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Xu
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
| | | | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - H C Robarts
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - X Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianshi Zhou
- The Materials Science and Engineering Program, Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, USA
| | - Krzysztof Wohlfeld
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warsaw, Poland
| | - Jeroen van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01069 Dresden, Germany
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
6
|
Abstract
We discuss a few possibilities of high- T c superconductivity with more than one orbital symmetry contributing to the pairing. First, we show that the high energies of orbital excitations in various cuprates suggest a simplified model with a single orbital of x 2 − y 2 symmetry doped by holes. Next, several routes towards involving both e g orbital symmetries for doped holes are discussed: (i) some give superconductivity in a CuO 2 monolayer on Bi2212 superconductors, Sr 2 CuO 4 − δ , Ba 2 CuO 4 − δ , while (ii) others as nickelate heterostructures or Eu 2 − x Sr x NiO 4 , could in principle realize it as well. At low electron filling of Ru ions, spin-orbital entangled states of t 2 g symmetry contribute in Sr 2 RuO 4 . Finally, electrons with both t 2 g and e g orbital symmetries contribute to the superconducting properties and nematicity of Fe-based superconductors, pnictides or FeSe. Some of them provide examples of orbital-selective Cooper pairing.
Collapse
|
7
|
Avella A, Oleś AM, Horsch P. Defect-Induced Orbital Polarization and Collapse of Orbital Order in Doped Vanadium Perovskites. PHYSICAL REVIEW LETTERS 2019; 122:127206. [PMID: 30978090 DOI: 10.1103/physrevlett.122.127206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 06/09/2023]
Abstract
We explore mechanisms of orbital-order decay in the doped Mott insulators R_{1-x}(Sr,Ca)_{x}VO_{3} (R=Pr,Y,La) caused by charged (Sr,Ca) defects. Our unrestricted Hartree-Fock analysis focuses on the combined effect of random charged impurities and associated doped holes up to x=0.5. The study is based on a generalized multiband Hubbard model for the relevant vanadium t_{2g} electrons and includes the long-range (i) Coulomb potentials of defects and (ii) electron-electron interactions. We show that the rotation of t_{2g} orbitals, induced by the electric field of defects, is a very efficient perturbation that largely controls the suppression of orbital order in these compounds. We investigate the inverse participation number spectra and find that electron states remain localized on few sites even in the regime where orbital order is collapsed. From the change of kinetic and superexchange energy, we can conclude that the motion of doped holes, which is the dominant effect for the reduction of magnetic order in high-T_{c} compounds, is of secondary importance here.
Collapse
Affiliation(s)
- Adolfo Avella
- Dipartimento di Fisica "E.R. Caianiello," Università degli Studi di Salerno, I-84084 Fisciano (SA), Italy
- CNR-SPIN, UOS di Salerno, I-84084 Fisciano (SA), Italy
- Unità CNISM di Salerno, Università degli Studi di Salerno, I-84084 Fisciano (SA), Italy
| | - Andrzej M Oleś
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Prof. S. Łojasiewicza 11, PL-30348 Kraków, Poland
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Peter Horsch
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Dantz M, Pelliciari J, Samal D, Bisogni V, Huang Y, Olalde-Velasco P, Strocov VN, Koster G, Schmitt T. Quenched Magnon excitations by oxygen sublattice reconstruction in (SrCuO2)n/(SrTiO3)2 superlattices. Sci Rep 2016; 6:32896. [PMID: 27616448 PMCID: PMC5018731 DOI: 10.1038/srep32896] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/16/2016] [Indexed: 11/14/2022] Open
Abstract
The recently discovered structural reconstruction in the cuprate superlattice (SrCuO2)n/(SrTiO3)2 has been investigated across the critical value of n = 5 using resonant inelastic x-ray scattering (RIXS). We find that at the critical value of n, the cuprate layer remains largely in the bulk-like two-dimensional structure with a minority of Cu plaquettes being reconstructed. The partial reconstruction leads to quenching of the magnons starting at the Γ-point due to the minority plaquettes acting as scattering points. Although comparable in relative abundance, the doped charge impurities in electron-doped cuprate superconductors do not show this quenching of magnetic excitations.
Collapse
Affiliation(s)
- M. Dantz
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - J. Pelliciari
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - D. Samal
- MESA+ Institute for Nanotechnology, University of Twente, Post Office Box 217, 7500AE Enschede, The Netherlands
| | - V. Bisogni
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Y. Huang
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - P. Olalde-Velasco
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - V. N. Strocov
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G. Koster
- MESA+ Institute for Nanotechnology, University of Twente, Post Office Box 217, 7500AE Enschede, The Netherlands
| | - T. Schmitt
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|