1
|
Ritter ME, DeSouza SA, Ogden HM, Michael TJ, Mullin AS. Transient IR spectroscopy of optically centrifuged CO 2 (R186-R282) and collision dynamics for the J = 244-282 states. Faraday Discuss 2024; 251:140-159. [PMID: 38766993 DOI: 10.1039/d3fd00179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Collisions of optically centrifuged CO2 molecules with J = 244-282 (Erot = 22 800-30 300 cm-1) are investigated with high-resolution transient IR absorption spectroscopy to reveal collisional and orientational phenomena of molecules with hyper-thermal rotational energies. The optical centrifuge is a non-resonant optical excitation technique that uses ultrafast, 800 nm chirped pulses to drive molecules to extreme rotational states through sequential Raman transitions. The extent of rotational excitation is controlled by tuning the optical bandwidth of the excitation pulses. Frequencies of 30 R-branch ν3 fundamental IR probe transitions are measured for the J = 186-282 states of CO2, expanding beyond previously reported IR transitions up to J = 128. The optically centrifuged molecules have oriented angular momentum and unidirectional rotation. Polarization-sensitive transient IR absorption of individual rotational states of optically centrifuged molecules and their collision products reveals information about collisional energy transfer, relaxation kinetics, and dynamics of rotation-to-translation energy transfer. The transient IR probe also measures the extent of polarization anisotropy. Rotational energy transfer for lower energy molecules is discussed in terms of statistical models and a comparison highlights the role of increasing energy gap with J and angular momentum of the optically centrifuged molecules.
Collapse
Affiliation(s)
- Michael E Ritter
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Simone A DeSouza
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Hannah M Ogden
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Tara J Michael
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA.
| | - Amy S Mullin
- Department of Chemistry and Biochemistry, University of Maryland College Park, College Park, Maryland 20742, USA.
| |
Collapse
|
2
|
Pan S, Zhang Z, Xu L, Zhang W, Lu P, Ji Q, Lin K, Zhou L, Lu C, Ni H, Ruiz C, Ueda K, He F, Wu J. Manipulating Parallel and Perpendicular Multiphoton Transitions in H_{2} Molecules. PHYSICAL REVIEW LETTERS 2023; 130:143203. [PMID: 37084425 DOI: 10.1103/physrevlett.130.143203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
We demonstrate that dissociative ionization of H_{2} can be fully manipulated in an angle-time-resolved fashion, employing a polarization-skewed (PS) laser pulse in which the polarization vector rotates. The leading and falling edges of the PS laser pulse, characterized by unfolded field polarization, trigger, sequentially, parallel and perpendicular transitions of stretching H_{2} molecules, respectively. These transitions result in counterintuitive proton ejections that deviate significantly from the laser polarization directions. Our findings demonstrate that the reaction pathways can be controlled through fine-tuning the time-dependent polarization of the PS laser pulse. The experimental results are well reproduced using an intuitive wave-packet surface propagation simulation method. This research highlights the potential of PS laser pulses as powerful tweezers to resolve and manipulate complex laser-molecule interactions.
Collapse
Affiliation(s)
- Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhaohan Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Xu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Camilo Ruiz
- Instituto Universitario de Física Fundamental y Matemáticas, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
| | - Kiyoshi Ueda
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Li H, Gong X, Ni H, Lu P, Luo X, Wen J, Yang Y, Qian X, Sun Z, Wu J. Light-Induced Ultrafast Molecular Dynamics: From Photochemistry to Optochemistry. J Phys Chem Lett 2022; 13:5881-5893. [PMID: 35730581 PMCID: PMC9251772 DOI: 10.1021/acs.jpclett.2c01119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/10/2022] [Indexed: 05/04/2023]
Abstract
By precisely controlling the waveform of ultrashort laser fields, electronic and nuclear motions in molecules can be steered on extremely short time scales, even in the attosecond regime. This new research field, termed "optochemistry", presents the light field in the time-frequency domain and opens new avenues for tailoring molecular reactions beyond photochemistry. This Perspective summarizes the ultrafast laser techniques employed in recent years for manipulating the molecular reactions based on waveform control of intense ultrashort laser pulses, where the chemical reactions can take place in isolated molecules, clusters, and various nanosystems. The underlying mechanisms for the coherent control of molecular dynamics are explicitly explored. Challenges and opportunities coexist in the field of optochemistry. Advanced technologies and theoretical modeling are still being pursued, with great prospects for controlling chemical reactions with unprecedented spatiotemporal precision.
Collapse
Affiliation(s)
- Hui Li
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hongcheng Ni
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiao Luo
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jin Wen
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Youjun Yang
- State
Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory
of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhenrong Sun
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Xu L, Tutunnikov I, Prior Y, Averbukh I. Optimization of the double-laser-pulse scheme for enantioselective orientation of chiral molecules. J Chem Phys 2022; 157:034304. [DOI: 10.1063/5.0092114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a comprehensive study of enantioselective orientation of chiral molecules excited by a pair of delayed cross-polarized femtosecond laser pulses. We show that by optimizing the pulses' parameters, a significant (~ 10%) degree of enantioselective orientation can be achieved at zero and at five kelvin rotational temperatures. This study suggests a set of reasonable experimental conditions for inducing and measuring strong enantioselective orientation. The strong enantioselective orientation and the wide availability of the femtosecond laser systems required for the proposed experiments may open new avenues for discriminating and separating molecular enantiomers.
Collapse
Affiliation(s)
- Long Xu
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | - Ilia Tutunnikov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| | | | - Ilya Averbukh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Israel
| |
Collapse
|
5
|
Nakamura K, Fukahori S, Hasegawa H. Rotational dynamics and transitions between Λ-type doubling of NO induced by an intense two-color laser field. J Chem Phys 2021; 155:174308. [PMID: 34742217 DOI: 10.1063/5.0071516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We numerically investigate the rotational dynamics of NO in the electronic ground X2Π state induced by an intense two-color laser field (10 TW/cm2) as a function of pulse duration (0.3-25 ps). In the short pulse duration of less than 12 ps, rotational Raman excitation is effectively induced and results in molecular orientation. On the contrary, when the pulse duration is longer than 15 ps, the rotational excitation is suppressed. In addition to the rotational excitation, we find that transitions between Λ-type doubling are induced. Significantly, the maximum coherent wave packet between Λ-type doubling in J = 0.5 is generated using the pulse duration of 19.8 ps. The wave packet changes to the eigenstates of Λ = +1 or -1 alternatively, where Λ is the projection of the electronic orbital angular momentum on the N-O axis, which is regarded as the unidirectional rotation of an unpaired 2π electron around the N-O axis in a space-fixed frame as well as in a molecule-fixed frame. The experimental method to observe the alternation of the rotational direction of the electron around the N-O axis is proposed.
Collapse
Affiliation(s)
- Kenta Nakamura
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shinichi Fukahori
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hirokazu Hasegawa
- Department of Integrated Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Nautiyal VV, Devi S, Tyagi A, Vidhani B, Maan A, Prasad V. Orientation and Alignment dynamics of polar molecule driven by shaped laser pulses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 256:119663. [PMID: 33827039 DOI: 10.1016/j.saa.2021.119663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
We review the theoretical status of intense laser induced orientation and alignment-a field of study which lies at the interface of intense laser physics and chemical dynamics and having potential applications such as high harmonic generation, nano-scale processing and control of chemical reactions. The evolution of the rotational wave packet and its dynamics leading to orientation and alignment is the topic of the present discussion. The major part of this article primarily presents an overview of recent theoretical progress in controlling the orientation and alignment dynamics of a molecule by means of shaped laser pulses. The various theoretical approaches that lead to orientation and alignment such as static electrostatic field in combination with laser field(s), combination of orienting and aligning field, combination of aligning fields, combination of orienting fields, application of train of pulses etc. are discussed. It is observed that the train of pulses is quite an efficient tool for increasing the orientation or alignment of a molecule without causing the molecule to ionize. The orientation and alignment both can occur in adiabatic and non-adiabatic conditions with the rotational period of the molecule taken under consideration. The discussion is mostly limited to non-adiabatic rotational excitation (NAREX) i.e. cases in which the pulse duration is shorter than the rotational period of the molecule. We have emphasised on the so called half-cycle pulse (HCP) and square pulse (SQP). The effect of ramped pulses and of collision on the various laser parameters is also studied. We summarize the current discussion by presenting a consistent theoretical approach for describing the action of such pulses on movement of molecules. The impact of a particular pulse shape on the post-pulse dynamics is also calculated and analysed. In addition to this, the roles played by various laser parameters including the laser frequency, the pulse duration and the system temperature etc. are illustrated and discussed. The concept of alignment is extended from one-dimensional alignment to three-dimensional alignment with the proper choice of molecule and the polarised light. We conclude the article by discussing the potential applications of intense laser orientation and alignment.
Collapse
Affiliation(s)
- Vijit V Nautiyal
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India
| | - Sumana Devi
- Department of Physics and Astrophysics, University of Delhi, Delhi, Delhi 110007, India; Department of Physics, Miranda House College, University of Delhi, Delhi, Delhi 110007, India
| | - Ashish Tyagi
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India
| | - Bhavna Vidhani
- Department of Physics, Hansraj College, University of Delhi, Delhi, Delhi 110007, India
| | - Anjali Maan
- Department of Physics, Pt.N.R.S.G.C.Rohtak, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Vinod Prasad
- Department of Physics, Swami Shradhanand College, University of Delhi, Delhi, Delhi 110036, India.
| |
Collapse
|
7
|
Pan S, Zhang W, Li H, Lu C, Zhang W, Ji Q, Li H, Sun F, Qiang J, Chen F, Tong J, Zhou L, Jiang W, Gong X, Lu P, Wu J. Clocking Dissociative Above-Threshold Double Ionization of H_{2} in a Multicycle Laser Pulse. PHYSICAL REVIEW LETTERS 2021; 126:063201. [PMID: 33635700 DOI: 10.1103/physrevlett.126.063201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The dissociative above-threshold double ionization (ATDI) of H_{2} in strong laser fields involves the sequential releasing of two electrons at specific instants with the stretching of the molecular bond. By mapping the releasing instants of two electrons to their emission directions in a multicycle polarization-skewed femtosecond laser pulse, we experimentally clock the dissociative ATDI of H_{2} via distinct photon-number-resolved pathways, which are distinguished in the kinetic energy release spectrum of two protons measured in coincidence. The timings of the experimentally resolved dissociative ATDI pathways are in good accordance with the classical predictions. Our results verify the multiphoton scenario of the dissociative ATDI of H_{2} in both time and energy fashion, strengthening the understanding of the strong-field phenomenon and providing a robust tool with a subcycle time resolution to clock abundant ultrafast dynamics of molecules.
Collapse
Affiliation(s)
- Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Weihua Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Hanxiao Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Fenghao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Junjie Qiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Fei Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jihong Tong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Pan D, Xu H, García de Abajo FJ. Rotational Doppler cooling and heating. SCIENCE ADVANCES 2021; 7:7/2/eabd6705. [PMID: 33523972 PMCID: PMC7787484 DOI: 10.1126/sciadv.abd6705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Doppler cooling is a widely used technique to laser cool atoms, molecules, and nanoparticles by exploiting the Doppler shift associated with translational motion. The rotational Doppler effect arising from rotational coordinate transformation should similarly enable optical manipulation of the rotational motion of nanosystems. Here, we show that rotational Doppler cooling and heating (RDC and RDH) effects embody rich and unexplored physics, including an unexpected strong dependence on particle morphology. For geometrically constrained particles, cooling and heating are observed at red- or blue-detuned laser frequencies relative to particle resonances. In contrast, for nanosystems that can be modeled as solid particles, RDH appears close to resonant illumination, while detuned frequencies produce cooling of rotation. We further predict that RDH can lead to optomechanical spontaneous chiral symmetry breaking, where an achiral particle under linearly polarized illumination starts spontaneously rotating. Our results open up new exciting possibilities to control the rotational motion of nanosystems.
Collapse
Affiliation(s)
- Deng Pan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
| | - Hongxing Xu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
9
|
Béjot P, Szmygel E, Dubrouil A, Billard F, Lavorel B, Faucher O, Hertz E. Doppler effect as a tool for ultrashort electric field reconstruction. OPTICS LETTERS 2020; 45:6795-6798. [PMID: 33325899 DOI: 10.1364/ol.402935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
We present a new, to the best of our knowledge, variant of the spectral-shearing interferometry method for characterizing ultrashort laser pulses. This original approach, called Doppler effect e-field replication (DEER), exploits the rotational Doppler effect for producing frequency shear and provides spectral shearing in the absence of frequency conversion, enabling operation in the ultraviolet spectral range. Evaluation of the DEER-spectral phase interferometry for direct electric field reconstruction setup reveals a phase reconstruction of great reliability. Possible improvements, benefits, and worthwhile prospects of the method are discussed.
Collapse
|
10
|
Li H, Pan S, Chen F, Sun F, Li Z, Xu H, Wu J. Optimization of N 2+ lasing by waveform-controlled polarization-skewed pulses. OPTICS LETTERS 2020; 45:6591-6594. [PMID: 33325847 DOI: 10.1364/ol.410153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/07/2020] [Indexed: 05/20/2023]
Abstract
Optical ionization of N2 and subsequent population redistribution among the ground and excited states of N2+ in an intense laser field are commonly accepted to be fundamentally responsible for the generation of N2+ lasing. By finely controlling this two-step process, the optimization of N2+ lasing is possibly achieved. Here, we design a waveform-controlled polarization-skewed (PS) pumping pulse, in which the leading and falling edges are orthogonally polarized, and their relative field strength and phase can be well controlled. We demonstrate that precise manipulation of the N2+ lasing at 391 nm and 428 nm emissions can be achieved by modulating both the relative phase and amplitudes of the two orthogonally polarized components of the pumping PS pulse. We find that the optimization of N2+ lasing depends not only on the competitive balance between the ionization and post-ionization coupling that varies in different pumping energies but also on the phase with the maximum intensity appearing at the phase of nπ. Orders of magnitude enhancement in the N2+ lasing intensity is observed as the phase changes from (n+1/2)π to nπ. The PS pulse with a controllable spatiotemporal waveform provides us a robust and straightforward tool to efficiently enhance the N2+ lasing emission.
Collapse
|
11
|
Mun JH, Kim DE. Field-free molecular orientation by delay- and polarization-optimized two fs pulses. Sci Rep 2020; 10:18875. [PMID: 33139806 PMCID: PMC7606518 DOI: 10.1038/s41598-020-75826-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022] Open
Abstract
Unless the molecular axis is fixed in the laboratory frame, intrinsic structural information of molecules can be averaged out over the various rotational states. The macroscopic directional properties of polar molecules have been controlled by two fs pulses with an optimized delay. In the method, the first one-color laser pulse provokes molecular alignment. Subsequently, the molecular sample is irradiated with the second two-color laser pulse, when the initial even-J states are aligned, and the odd-J states are anti-aligned in the thermal ensemble. The second pulse selectively orients only the aligned even-J states in the same direction, which results in significant enhancement of the net degree of orientation. This paper reports the results of simulations showing that the two-pulse technique can be even more powerful when the second pulse is cross-polarized. This study shows that the alignment and orientation can be very well synchronized temporally because the crossed field does not disturb the preformed alignment modulation significantly, suggesting that the molecules are very well confined in the laboratory frame. This cross-polarization method will serve as a promising technique for studying ultrafast molecular spectroscopy in a molecule-fixed frame.
Collapse
Affiliation(s)
- Je Hoi Mun
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, Pohang, 37673, South Korea.
- Max Planck POSTECH/KOREA Research Initiative, Pohang, 37673, South Korea.
| | - Dong Eon Kim
- Department of Physics and Center for Attosecond Science and Technology, POSTECH, Pohang, 37673, South Korea.
- Max Planck POSTECH/KOREA Research Initiative, Pohang, 37673, South Korea.
| |
Collapse
|
12
|
Mizuse K, Sakamoto N, Fujimoto R, Ohshima Y. Direct imaging of direction-controlled molecular rotational wave packets created by a polarization-skewed double-pulse. Phys Chem Chem Phys 2020; 22:10853-10862. [PMID: 32373841 DOI: 10.1039/d0cp01084g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-precision, time-resolved Coulomb explosion imaging of rotational wave packets in nitrogen molecules created with a pair of time-delayed, polarization-skewed femtosecond laser pulses is presented, providing insight into the creation process and dynamics of direction-controlled wave packets. To initiate unidirectional rotation, the interval of the double-pulse was set so that the second, polarization-tilted pulse hit the molecules at the time when molecules were aligned or antialigned along the polarization vector of the first pulse. During the revival period of the rotational wave packet, pulse intervals around both the full and half revival times were used. The observed molecular wave packet movies clearly show the signatures of quantum rotation, such as angular localization (alignment), dispersion, and revival phenomena, during the unidirectional motion. The patterns are quite different depending on the pulse interval even when the angular distribution at the second pulse irradiation is similar. The observed interval-dependence of the dynamics was analyzed on the basis of the real-time images, with the aid of numerical simulations, and the creation process of the packets was discussed. We show that the observed image patterns can be essentially rationalized in terms of rotational period and alignment parameter. Because the double-pulse scheme is the most fundamental in the creation of direction-controlled rotational wave packets, this study will lead to more sophisticated control and characterization of directional molecular motions.
Collapse
Affiliation(s)
- Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-W4-9 Ookayama, Meguro, Tokyo 152-8550, Japan.
| | | | | | | |
Collapse
|
13
|
MacPhail-Bartley I, Wasserman WW, Milner AA, Milner V. Laser control of molecular rotation: Expanding the utility of an optical centrifuge. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:045122. [PMID: 32357749 DOI: 10.1063/1.5140358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Since its invention in 1999, the optical centrifuge has become a powerful tool for controlling molecular rotation and studying molecular dynamics and molecular properties at extreme levels of rotational excitation. This technique has been applied to a variety of molecular species, from simple linear molecules to symmetric and asymmetric tops, to molecular ions and chiral enantiomers. Properties of isolated ultrafast rotating molecules, the so-called molecular superrotors, have been investigated, as well as their collisions with one another and the interaction with external fields. The ability of an optical centrifuge to spin a particular molecule of interest depends on both the molecular structure and the parameters of the centrifuge laser pulse. An interplay between these two factors dictates the utility of an optical centrifuge in any specific application. Here, we discuss the strategy of assessing and adjusting the properties of the centrifuge to those of the molecular rotors and describe two practical examples of optical centrifuges with very different characteristics, implemented experimentally in our laboratory.
Collapse
Affiliation(s)
- Ian MacPhail-Bartley
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T-1Z1, Canada
| | - Walter W Wasserman
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T-1Z1, Canada
| | - Alexander A Milner
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T-1Z1, Canada
| | - Valery Milner
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T-1Z1, Canada
| |
Collapse
|
14
|
Ji Q, Pan S, He P, Wang J, Lu P, Li H, Gong X, Lin K, Zhang W, Ma J, Li H, Duan C, Liu P, Bai Y, Li R, He F, Wu J. Timing Dissociative Ionization of H_{2} Using a Polarization-Skewed Femtosecond Laser Pulse. PHYSICAL REVIEW LETTERS 2019; 123:233202. [PMID: 31868470 DOI: 10.1103/physrevlett.123.233202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/09/2019] [Indexed: 05/20/2023]
Abstract
We experimentally observe the bond stretching time of one-photon and net-two-photon dissociation pathways of singly ionized H_{2} molecules driven by a polarization-skewed femtosecond laser pulse. By measuring the angular distributions of the ejected photoelectron and nuclear fragments in coincidence, the cycle-changing polarization of the laser field enables us to clock the photon-ionization starting time and photon-dissociation stopping time, analogous to a stopwatch. After the single ionization of H_{2}, our results show that the produced H_{2}^{+} takes almost the same time in the one-photon and net-two-photon dissociation pathways to stretch to the internuclear distance of the one-photon coupled dipole-transition between the ground and excited electronic states. The spatiotemporal mapping character of the polarization-skewed laser field provides us a straightforward route to clock the ultrafast dynamics of molecules with sub-optical-cycle time resolution.
Collapse
Affiliation(s)
- Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Shengzhe Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Peilun He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junping Wang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kang Lin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Wenbin Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Junyang Ma
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hanxiao Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Chungang Duan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Peng Liu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ya Bai
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
15
|
Mizuse K, Fujimoto R, Ohshima Y. Acceleration and Deceleration of Unidirectional Molecular Rotation by a Femtosecond Laser Pulse. CHEM LETT 2019. [DOI: 10.1246/cl.190614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenta Mizuse
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Romu Fujimoto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Yasuhiro Ohshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
16
|
Milner AA, Fordyce JAM, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh IS. Controlled Enantioselective Orientation of Chiral Molecules with an Optical Centrifuge. PHYSICAL REVIEW LETTERS 2019; 122:223201. [PMID: 31283279 DOI: 10.1103/physrevlett.122.223201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an optical centrifuge. Using Coulomb explosion imaging, we show that the centrifuged molecules acquire preferential orientation perpendicular to the plane of rotation, and that the direction of this orientation depends on the relative handedness of the enantiomer and the rotating centrifuge field. The observed effect is in agreement with theoretical predictions and is reproduced in numerical simulations of the centrifuge excitation followed by Coulomb explosion of the centrifuged molecules. The demonstrated technique opens new avenues in optical enantioselective control of chiral molecules with a plethora of potential applications in differentiation, separation, and purification of chiral mixtures.
Collapse
Affiliation(s)
- Alexander A Milner
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Jordan A M Fordyce
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Ian MacPhail-Bartley
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Walter Wasserman
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Valery Milner
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Ilia Tutunnikov
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
17
|
Ogden HM, Michael TJ, Murray MJ, Liu Q, Toro C, Mullin AS. The effect of CO rotation from shaped pulse polarization on reactions that form C2. Phys Chem Chem Phys 2019; 21:14103-14110. [DOI: 10.1039/c8cp06917d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of CO rotational energy on bimolecular reactions to form electronically excited C2 is reported here.
Collapse
Affiliation(s)
- Hannah M. Ogden
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Tara J. Michael
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | | | - Qingnan Liu
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Carlos Toro
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry
- University of Maryland
- College Park
- USA
| |
Collapse
|
18
|
Prost E, Hertz E, Billard F, Lavorel B, Faucher O. Polarization-based tachometer for measuring spinning rotors. OPTICS EXPRESS 2018; 26:31839-31849. [PMID: 30650763 DOI: 10.1364/oe.26.031839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
We report on the polarization analysis of shortpulse ultraviolet radiation produced by third-harmonic generation in a gas of coherently spinning molecules. A pulse of twisted linear polarization imprints a unidirectional rotational motion to the molecules leading to an orientation of their rotational angular momenta. A second pulse, time-delayed with respect to the first one, circularly polarized in the plane of rotation of the molecules, acts as a driving field for third-harmonic generation. The angular momentum and energy conservation applied to this process foresees the generation of two Doppler-shifted circularly-polarized harmonics of opposite handedness. Our analysis reveals that spinning molecules enable the generation of a well polarized third-harmonic radiation exhibiting a high degree of ellipticity. Tracking the orientation of the latter allows a time-capture of the molecular axis direction from which the average angular velocity of the rotating molecules is inferred. This method provides a user-friendly polarization-based tachometer for measurement of the rotational speed of spinning nonlinear rotors.
Collapse
|
19
|
He L, Lan P, Le AT, Wang B, Wang B, Zhu X, Lu P, Lin CD. Real-Time Observation of Molecular Spinning with Angular High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2018; 121:163201. [PMID: 30387638 DOI: 10.1103/physrevlett.121.163201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate an angular high-harmonic spectroscopy method to probe the spinning dynamics of a molecular rotation wave packet in real time. With the excitation of two time-delayed, polarization-skewed pump pulses, the molecular ensemble is impulsively kicked to rotate unidirectionally, which is subsequently irradiated by another delayed probe pulse for high-order harmonic generation (HHG). The spatiotemporal evolution of the molecular rotation wave packet is visualized from the time-dependent angular distributions of the HHG yields and frequency shift measured at various polarization directions and time delays of the probe pulse. The observed frequency shift in HHG is demonstrated to arise from the nonadiabatic effect induced by molecular spinning. Different from the previous spectroscopic and Coulomb explosion imaging techniques, the angular high-harmonic spectroscopy method can reveal additionally the electronic structure and multiple orbitals of the sampled molecule. All the experimental findings are well reproduced by numerical simulations. Further extension of this method would provide a powerful tool for probing complex polyatomic molecules with HHG spectroscopy.
Collapse
Affiliation(s)
- Lixin He
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anh-Thu Le
- Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, USA
| | - Baoning Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bincheng Wang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaosong Zhu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Laboratory of Optical Information Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - C D Lin
- Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506, USA
| |
Collapse
|
20
|
Tutunnikov I, Gershnabel E, Gold S, Averbukh IS. Selective Orientation of Chiral Molecules by Laser Fields with Twisted Polarization. J Phys Chem Lett 2018; 9:1105-1111. [PMID: 29417812 DOI: 10.1021/acs.jpclett.7b03416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We explore a pure optical method for enantioselective orientation of chiral molecules by means of laser fields with twisted polarization. Several field implementations are considered, including a pair of delayed, cross-polarized laser pulses, an optical centrifuge, and polarization-shaped pulses. We show that these schemes lead to out-of-phase time-dependent dipole signals for different enantiomers, and we also predict a substantial permanent molecular orientation persisting long after the laser fields are over. The underlying classical orientation mechanism common to all of these fields is discussed, and its operation is demonstrated for a range of chiral molecules of various complexity: hydrogen thioperoxide (HSOH), propylene oxide (CH3CHCH2O), and ethyl oxirane (CH3CH2CHCH2O). The presented results demonstrate generality, versatility, and robustness of this optical method for manipulating molecular enantiomers in the gas phase.
Collapse
Affiliation(s)
- Ilia Tutunnikov
- Department of Chemical and Biological Physics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Erez Gershnabel
- Department of Chemical and Biological Physics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Shachar Gold
- Department of Chemical and Biological Physics, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Ilya Sh Averbukh
- Department of Chemical and Biological Physics, Weizmann Institute of Science , Rehovot 7610001, Israel
| |
Collapse
|
21
|
Murray MJ, Ogden HM, Mullin AS. Importance of rotational adiabaticity in collisions of CO2 super rotors with Ar and He. J Chem Phys 2018; 148:084310. [DOI: 10.1063/1.5009440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew J. Murray
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Hannah M. Ogden
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
22
|
Maan A, Tyagi A, Prasad V. Field-free molecular orientation by delayed elliptically polarised laser pulses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:268-275. [PMID: 28732284 DOI: 10.1016/j.saa.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
A theoretical model of NAREX (non-adiabatic rotational excitation) and field-free molecular orientation by a short specific elliptically polarised laser pulses (EPLPs) driving a polar molecule is presented. By choosing the proper value of elliptically polarised field parameters, efficient field-free orientation could be achieved. It is demonstrated that NAREX can be controlled by various laser parameters, out of which pulse shape plays the most significant role. The effect of elliptic parameter on the rotational excitation and orientation dynamics is also under concern.
Collapse
Affiliation(s)
- Anjali Maan
- Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India; Department of Physics, Pt.N.R.S.G.C.Rohtak, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Ashish Tyagi
- Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, Delhi, India.
| | - Vinod Prasad
- Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, Delhi, India.
| |
Collapse
|
23
|
Murray MJ, Ogden HM, Mullin AS. Anisotropic kinetic energy release and gyroscopic behavior of CO2super rotors from an optical centrifuge. J Chem Phys 2017; 147:154309. [DOI: 10.1063/1.4997701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthew J. Murray
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Hannah M. Ogden
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
24
|
Skantzakis E, Chatziathanasiou S, Carpeggiani PA, Sansone G, Nayak A, Gray D, Tzallas P, Charalambidis D, Hertz E, Faucher O. Polarization shaping of high-order harmonics in laser-aligned molecules. Sci Rep 2016; 6:39295. [PMID: 27995974 PMCID: PMC5172357 DOI: 10.1038/srep39295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/21/2016] [Indexed: 11/17/2022] Open
Abstract
The present work reports on the generation of short-pulse coherent extreme ultraviolet radiation of controlled polarization. The proposed strategy is based on high-order harmonics generated in pre-aligned molecules. Field-free molecular alignment produced by a short linearly-polarized infrared laser pulse is used to break the isotropy of a gas medium. Driving the aligned molecules by a circularly-polarized infrared pulse allows to transfer the anisotropy of the medium to the polarization of the generated harmonic light. The ellipticity of the latter is controlled by adjusting the angular distribution of the molecules at the time they interact with the driving pulse. Extreme ultraviolet radiation produced with high degree of ellipticity (close to circular) is demonstrated.
Collapse
Affiliation(s)
- E Skantzakis
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
| | - S Chatziathanasiou
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- Department of Physics, University of Crete, P.O. Box 2208, GR71003 Heraklion, Crete, Greece
| | - P A Carpeggiani
- Dipartimento di Fisica Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - G Sansone
- ELI-ALPS, ELI-Hu Kft., Dugonics tér 13, H-6720 Szeged Hungary
- Institute of Photonics and Nanotechnologies (IFN)-Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Dipartimento di Fisica Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - A Nayak
- ELI-ALPS, ELI-Hu Kft., Dugonics tér 13, H-6720 Szeged Hungary
| | - D Gray
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
| | - P Tzallas
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- ELI-ALPS, ELI-Hu Kft., Dugonics tér 13, H-6720 Szeged Hungary
| | - D Charalambidis
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- Department of Physics, University of Crete, P.O. Box 2208, GR71003 Heraklion, Crete, Greece
- ELI-ALPS, ELI-Hu Kft., Dugonics tér 13, H-6720 Szeged Hungary
| | - E Hertz
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870, F-21078 DIJON Cedex, France
| | - O Faucher
- ELI-ALPS, ELI-Hu Kft., Dugonics tér 13, H-6720 Szeged Hungary
- Laboratoire Interdisciplinaire CARNOT de Bourgogne, UMR 6303 CNRS-Université Bourgogne Franche-Comté, 9 Av. A. Savary, BP 47870, F-21078 DIJON Cedex, France
| |
Collapse
|
25
|
Murray MJ, Ogden HM, Toro C, Liu Q, Mullin AS. Impulsive Collision Dynamics of CO Super Rotors from an Optical Centrifuge. Chemphyschem 2016; 17:3692-3700. [DOI: 10.1002/cphc.201600871] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew J. Murray
- Department of Chemistry and Biochemistry University of Maryland College Park MD USA
| | - Hannah M. Ogden
- Department of Chemistry and Biochemistry University of Maryland College Park MD USA
| | - Carlos Toro
- Department of Chemistry and Biochemistry University of Maryland College Park MD USA
| | - Qingnan Liu
- National Institute of Standards and Technology 100 Bureau Drive, Stop 8320 Gaithersburg MD 20899 USA
| | - Amy S. Mullin
- Department of Chemistry and Biochemistry University of Maryland College Park MD USA
| |
Collapse
|
26
|
Steinitz U, Khodorkovsky Y, Hartmann J, Averbukh IS. Dynamics and Hydrodynamics of Molecular Superrotors. Chemphyschem 2016; 17:3795-3810. [DOI: 10.1002/cphc.201600508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Uri Steinitz
- AMOS and Department of Chemical Physics Weizmann Institute of Science 234 Herzl St. Rehovot 76100 Israel
| | - Yuri Khodorkovsky
- AMOS and Department of Chemical Physics Weizmann Institute of Science 234 Herzl St. Rehovot 76100 Israel
| | - Jean‐Michel Hartmann
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), CNRS (UMR 7583) Université Paris Est Créteil, Université Paris Diderot, Institut Pierre-Simon Laplace 94010 Créteil Cedex France
| | - Ilya Sh. Averbukh
- AMOS and Department of Chemical Physics Weizmann Institute of Science 234 Herzl St. Rehovot 76100 Israel
| |
Collapse
|