1
|
Nilsson A. Time-resolved x-ray absorption spectroscopy probe in ultrafast surface chemistry. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:011301. [PMID: 39935452 PMCID: PMC11811907 DOI: 10.1063/4.0000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
To celebrate the scientific achievement of Jo Stöhr, I present here a personal account of the use of x-ray absorption spectroscopy to probe dynamics on surfaces using x-ray lasers. In particular, I will review the investigation of ultrafast processes in adsorbates on surfaces using an optical pump and an x-ray absorption spectroscopy probe. Here, it is shown that it is possible to gain insight into the effects of electronic excitations in metals on adsorbates as well as laser-induced vibrational motions. Furthermore, the ultrafast optical pump allows the detection of the CO precursor state in the desorption channel, species close to the transition state in CO oxidation, and the transient HCO intermediate during CO hydrogenation on Ru(0001).
Collapse
Affiliation(s)
- Anders Nilsson
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden and SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
2
|
Tetenoire A, Juaristi JI, Alducin M. Disentangling the role of electrons and phonons in the photoinduced CO desorption and CO oxidation on (O,CO)-Ru(0001). Front Chem 2023; 11:1235176. [PMID: 37521015 PMCID: PMC10380958 DOI: 10.3389/fchem.2023.1235176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
The role played by electronic and phononic excitations in the femtosecond laser induced desorption and oxidation of CO coadsorbed with O on Ru(0001) is investigated using ab initio molecular dynamics with electronic friction. To this aim, simulations that account for both kind of excitations and that only consider electronic excitations are performed. Results for three different surface coverages are obtained. We unequivocally demonstrate that CO desorption is governed by phononic excitations. In the case of oxidation the low statistics does not allow to give a categorical answer. However, the analysis of the adsorbates kinetic energy gain and displacements strongly suggest that phononic excitations and surface distortion also play an important role in the oxidation process.
Collapse
Affiliation(s)
- Auguste Tetenoire
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
| | - J. Iñaki Juaristi
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología, Facultad de Química (UPV/EHU), Donostia-San Sebastian, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastian, Spain
| | - Maite Alducin
- Donostia International Physics Center (DIPC), Donostia-San Sebastian, Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Tetenoire A, Ehlert C, Juaristi JI, Saalfrank P, Alducin M. Why Ultrafast Photoinduced CO Desorption Dominates over Oxidation on Ru(0001). J Phys Chem Lett 2022; 13:8516-8521. [PMID: 36067002 PMCID: PMC9486938 DOI: 10.1021/acs.jpclett.2c02327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
CO oxidation on Ru(0001) is a long-standing example of a reaction that, being thermally forbidden in ultrahigh vacuum, can be activated by femtosecond laser pulses. In spite of its relevance, the precise dynamics of the photoinduced oxidation process as well as the reasons behind the dominant role of the competing CO photodesorption remain unclear. Here we use ab initio molecular dynamics with electronic friction that account for the highly excited and nonequilibrated system created by the laser to investigate both reactions. Our simulations successfully reproduce the main experimental findings: the existence of photoinduced oxidation and desorption, the large desorption to oxidation branching ratio, and the changes in the O K-edge X-ray absorption spectra attributed to the initial stage of the oxidation process. Now, we are able to monitor in detail the ultrafast CO desorption and CO oxidation occurring in the highly excited system and to disentangle what causes the unexpected inertness to the otherwise energetically favored oxidation.
Collapse
Affiliation(s)
- Auguste Tetenoire
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Christopher Ehlert
- Heidelberg
Institute for Theoretical Studies (HITS gGmbH), Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany
- Interdisciplinary
Center for Scientific Computing (IWR), Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 205, 69120, Heidelberg, Germany
| | - J. I. Juaristi
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, Facultad de Químicas
(UPV/EHU), Apartado 1072, 20080, Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| | - Peter Saalfrank
- Institut
für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476, Potsdam, Germany
| | - M. Alducin
- Donostia
International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
- Centro
de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018, Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Diesen E, Wang HY, Schreck S, Weston M, Ogasawara H, LaRue J, Perakis F, Dell'Angela M, Capotondi F, Giannessi L, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Spezzani C, Beye M, Cavalca F, Liu B, Gladh J, Koroidov S, Miedema PS, Costantini R, Heinz TF, Abild-Pedersen F, Voss J, Luntz AC, Nilsson A. Ultrafast Adsorbate Excitation Probed with Subpicosecond-Resolution X-Ray Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2021; 127:016802. [PMID: 34270277 DOI: 10.1103/physrevlett.127.016802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100 fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.
Collapse
Affiliation(s)
- Elias Diesen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Luca Giannessi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Carlo Spezzani
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Martin Beye
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Piter S Miedema
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Roberto Costantini
- CNR-IOM, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan C Luntz
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Wang HY, Schreck S, Weston M, Liu C, Ogasawara H, LaRue J, Perakis F, Dell'Angela M, Capotondi F, Giannessi L, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Spezzani C, Beye M, Cavalca F, Liu B, Gladh J, Koroidov S, Miedema PS, Costantini R, Pettersson LGM, Nilsson A. Time-resolved observation of transient precursor state of CO on Ru(0001) using carbon K-edge spectroscopy. Phys Chem Chem Phys 2020; 22:2677-2684. [PMID: 31531435 DOI: 10.1039/c9cp03677f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new "vibrationally hot precursor" state was identified in the polarization-dependent XA spectra.
Collapse
Affiliation(s)
- Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Chang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | | | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Luca Giannessi
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Carlo Spezzani
- FERMI, Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
| | - Martin Beye
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Piter S Miedema
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Roberto Costantini
- CNR-IOM, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy and Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
6
|
Alducin M, Camillone N, Hong SY, Juaristi JI. Electrons and Phonons Cooperate in the Laser-Induced Desorption of CO from Pd(111). PHYSICAL REVIEW LETTERS 2019; 123:246802. [PMID: 31922860 DOI: 10.1103/physrevlett.123.246802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
Femtosecond laser induced desorption of CO from a CO-covered Pd(111) surface is investigated with ab initio molecular dynamics with electronic friction that incorporates effects due to the excited electronic and phononic systems, as well as out-of-phase coadsorbate interactions. Our simulations show evidence of an important electron-phonon synergy in promoting CO desorption that has largely been neglected in other similar systems. At the saturated coverage of 0.75 ML, effects due to CO-CO interadsorbate energy exchange are also important. Our dynamics simulations, in concert with site-specific desorption energy calculations, allow us to understand the large coverage dependence of the desorption yields observed in experiments.
Collapse
Affiliation(s)
- Maite Alducin
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Camillone
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Sung-Young Hong
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - J Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lončarić I, Füchsel G, Juaristi JI, Saalfrank P. Strong Anisotropic Interaction Controls Unusual Sticking and Scattering of CO at Ru(0001). PHYSICAL REVIEW LETTERS 2017; 119:146101. [PMID: 29053313 DOI: 10.1103/physrevlett.119.146101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 06/07/2023]
Abstract
Complete sticking at low incidence energies and broad angular scattering distributions at higher energies are often observed in molecular beam experiments on gas-surface systems which feature a deep chemisorption well and lack early reaction barriers. Although CO binds strongly on Ru(0001), scattering is characterized by rather narrow angular distributions and sticking is incomplete even at low incidence energies. We perform molecular dynamics simulations, accounting for phononic (and electronic) energy loss channels, on a potential energy surface based on first-principles electronic structure calculations that reproduce the molecular beam experiments. We demonstrate that the mentioned unusual behavior is a consequence of a very strong rotational anisotropy in the molecule-surface interaction potential. Beyond the interpretation of scattering phenomena, we also discuss implications of our results for the recently proposed role of a precursor state for the desorption and scattering of CO from ruthenium.
Collapse
Affiliation(s)
- Ivor Lončarić
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Gernot Füchsel
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J I Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
- Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Peter Saalfrank
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
9
|
LaRue J, Krejčí O, Yu L, Beye M, Ng ML, Öberg H, Xin H, Mercurio G, Moeller S, Turner JJ, Nordlund D, Coffee R, Minitti MP, Wurth W, Pettersson LGM, Öström H, Nilsson A, Abild-Pedersen F, Ogasawara H. Real-Time Elucidation of Catalytic Pathways in CO Hydrogenation on Ru. J Phys Chem Lett 2017; 8:3820-3825. [PMID: 28759996 DOI: 10.1021/acs.jpclett.7b01549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The direct elucidation of the reaction pathways in heterogeneous catalysis has been challenging due to the short-lived nature of reaction intermediates. Here, we directly measured on ultrafast time scales the initial hydrogenation steps of adsorbed CO on a Ru catalyst surface, which is known as the bottleneck reaction in syngas and CO2 reforming processes. We initiated the hydrogenation of CO with an ultrafast laser temperature jump and probed transient changes in the electronic structure using real-time X-ray spectroscopy. In combination with theoretical simulations, we verified the formation of CHO during CO hydrogenation.
Collapse
Affiliation(s)
- J LaRue
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
- Schmid College of Science and Technology, Chapman University , One University Drive, Orange, California 92866, United States
- Fritz-Haber Institute of the Max-Planck-Society , Faradayweg 4-6, D-14195 Berlin, Germany
| | - O Krejčí
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
- Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague , V Holešovičkách 2, 180 00, Prague, Czech Republic
- Institute of Physics of the Czech Academy of Sciences , Cukrovarnická 10, 162 53, Prague, Czech Republic
| | - L Yu
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , Stanford, California 95305, United States
| | - M Beye
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - M L Ng
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - H Öberg
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
| | - H Xin
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , Stanford, California 95305, United States
| | - G Mercurio
- University of Hamburg and Center for Free Electron Laser Science , Luruper Chausse 149, D-22761 Hamburg, Germany
| | - S Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - J J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - D Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - R Coffee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - M P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - W Wurth
- University of Hamburg and Center for Free Electron Laser Science , Luruper Chausse 149, D-22761 Hamburg, Germany
- DESY Photon Science , Notkestrasse 85, 22607 Hamburg, Germany
| | - L G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
| | - H Öström
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
| | - A Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University , SE-10691 Stockholm, Sweden
| | - F Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - H Ogasawara
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Nilsson A, LaRue J, Öberg H, Ogasawara H, Dell'Angela M, Beye M, Öström H, Gladh J, Nørskov J, Wurth W, Abild-Pedersen F, Pettersson L. Catalysis in real time using X-ray lasers. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Eilert A, Cavalca F, Roberts FS, Osterwalder J, Liu C, Favaro M, Crumlin EJ, Ogasawara H, Friebel D, Pettersson LGM, Nilsson A. Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction. J Phys Chem Lett 2017; 8:285-290. [PMID: 27983864 DOI: 10.1021/acs.jpclett.6b02273] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Copper electrocatalysts derived from an oxide have shown extraordinary electrochemical properties for the carbon dioxide reduction reaction (CO2RR). Using in situ ambient pressure X-ray photoelectron spectroscopy and quasi in situ electron energy-loss spectroscopy in a transmission electron microscope, we show that there is a substantial amount of residual oxygen in nanostructured, oxide-derived copper electrocatalysts but no residual copper oxide. On the basis of these findings in combination with density functional theory simulations, we propose that residual subsurface oxygen changes the electronic structure of the catalyst and creates sites with higher carbon monoxide binding energy. If such sites are stable under the strongly reducing conditions found in CO2RR, these findings would explain the high efficiencies of oxide-derived copper in reducing carbon dioxide to multicarbon compounds such as ethylene.
Collapse
Affiliation(s)
- André Eilert
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 95305, United States
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| | - Filippo Cavalca
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 95305, United States
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| | - F Sloan Roberts
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 95305, United States
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| | - Jürg Osterwalder
- Department of Physics, University of Zürich , Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chang Liu
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| | - Marco Favaro
- Advanced Light Source, Lawrence Berkeley National Laboratory , 6 Cyclotron Road, Berkeley, California 94720, United States
- Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ethan J Crumlin
- Advanced Light Source, Lawrence Berkeley National Laboratory , 6 Cyclotron Road, Berkeley, California 94720, United States
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Daniel Friebel
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| | - Anders Nilsson
- SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University , 443 Via Ortega, Stanford, California 95305, United States
- Department of Physics, AlbaNova University Center, Stockholm University , S-10691 Stockholm, Sweden
| |
Collapse
|
12
|
Sun G, Jiang H. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study. J Chem Phys 2015; 143:234706. [DOI: 10.1063/1.4937483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Geng Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hong Jiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| |
Collapse
|