1
|
Li X, Jin Y. Thermodynamic crossovers in supercritical fluids. Proc Natl Acad Sci U S A 2024; 121:e2400313121. [PMID: 38652745 PMCID: PMC11067041 DOI: 10.1073/pnas.2400313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Can liquid-like and gas-like states be distinguished beyond the critical point, where the liquid-gas phase transition no longer exists and conventionally only a single supercritical fluid phase is defined? Recent experiments and simulations report strong evidence of dynamical crossovers above the critical temperature and pressure. Despite using different criteria, many existing theoretical explanations consider a single crossover line separating liquid-like and gas-like states in the supercritical fluid phase. We argue that such a single-line scenario is inconsistent with the supercritical behavior of the Ising model, which has two crossover lines due to its symmetry, violating the universality principle of critical phenomena. To reconcile the inconsistency, we define two thermodynamic crossover lines in supercritical fluids as boundaries of liquid-like, indistinguishable, and gas-like states. Near the critical point, the two crossover lines follow critical scalings with exponents of the Ising universality class, supported by calculations of theoretical models and analyses of experimental data from the standard database. The upper line agrees with crossovers independently estimated from the inelastic X-ray scattering data of supercritical argon, and from the small-angle neutron scattering data of supercritical carbon dioxide. The lower line is verified by the equation of states for the compressibility factor. This work provides a fundamental framework for understanding supercritical physics in general phase transitions.
Collapse
Affiliation(s)
- Xinyang Li
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yuliang Jin
- Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100049, China
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
2
|
Zhang K, Li X, Jin Y, Jiang Y. Machine learning glass caging order parameters with an artificial nested neural network. SOFT MATTER 2022; 18:6270-6277. [PMID: 35959881 DOI: 10.1039/d2sm00310d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Around a glass transition, the dynamics of a supercooled liquid dramatically slow down, exhibited by caging of particles, while the structural changes remain subtle. Alternative to recent machine learning studies searching for structural predictors of glassy dynamics, here we propose to learn directly particle caging features defined purely according to dynamics. We focus on three transitions in a simulated hard sphere glass model, the melting of ultra-stable glasses, the Gardner transition and the liquid to ordinary glass transition. Implementing the machine learning algorithm based on a two-level nested neural network, we attain not only appropriate caging order parameters for all three transitions, but also a phase classification for input samples. A finite-size scaling analysis of the phase classification results identifies the order of melting (first) and Gardner (second) transitions. A false positive is avoided, as the liquid to glass transition is indicated as a crossover, rather than a phase transition with a well-defined transition point. This study paves the way to a generic approach for learning dynamical features in glassy systems, with a minimum requirement of system-specific knowledge.
Collapse
Affiliation(s)
- Kaihua Zhang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xinyang Li
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Jin
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ying Jiang
- School of Chemistry, Beihang University, Beijing 100191, China.
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Guiselin B, Tarjus G, Berthier L. Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope. J Chem Phys 2022; 156:194503. [PMID: 35597648 DOI: 10.1063/5.0086517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose and numerically implement a local probe of the static self-induced heterogeneity characterizing glass-forming liquids. This method relies on the equilibrium statistics of the overlap between pairs of configurations measured in mesoscopic cavities with unconstrained boundaries. By systematically changing the location of the probed cavity, we directly detect spatial variations of the overlap fluctuations. We provide a detailed analysis of the statistics of a local estimate of the configurational entropy, and we infer an estimate of the surface tension between amorphous states, ingredients that are both at the basis of the random first-order transition theory of glass formation. Our results represent the first direct attempt to visualize and quantify the self-induced heterogeneity underpinning the thermodynamics of glass formation. They pave the way for the development of coarse-grained effective theories and for a direct assessment of the role of thermodynamics in the activated dynamics of deeply supercooled liquids.
Collapse
Affiliation(s)
- Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
4
|
Berthier L. Self-Induced Heterogeneity in Deeply Supercooled Liquids. PHYSICAL REVIEW LETTERS 2021; 127:088002. [PMID: 34477435 DOI: 10.1103/physrevlett.127.088002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to analyze self-induced static and dynamic heterogeneity in equilibrium systems approaching the experimental glass transition. I characterize the broad sample-to-sample fluctuations of salient dynamic and thermodynamic properties in elementary mesoscopic systems. Findings regarding local lifetimes and distributions of dynamic heterogeneity are in excellent agreement with recent single molecule studies. Surprisingly broad thermodynamic fluctuations are also found, which correlate well with dynamic fluctuations, thus providing a local test of the thermodynamic origin of slow dynamics.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France and Yusuf Hamied Deprtment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Kumar R S, Gupta BS. Universality of plastic instability and mechanical yield in metallic glasses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:315102. [PMID: 34032220 DOI: 10.1088/1361-648x/ac0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
The generic response of a wide range of amorphous solids is the average increase of stress upon external loading until the yielding transition point, after which elasto-plastic steady state sets in. The stress-strain response comprises of a series of elastic branches interspersed with plastic drops. The ubiquitousness of these phenomena indicates universality, independent of material property, but the literature predominantly deals with specific materials. In pursuit of generality among different amorphous systems, we undertake a careful investigation in the mechanical response of metallic glasses using computer simulation. By comparing our results of multi-body metallic glass potentials to those obtained from pairwise Lennard-Jones glasses, we show that the mechanism of plastic instabilities is universal and independent of the details of the underlying potential. We also investigate the yielding transition in terms of the overlap parameterQ12, which has been successfully used Lennard-Jones glasses. The yielding is unambiguously identified as a first-order phase transition. These observations conform the nature of plastic instabilities and mechanical yield as universal and independent of microscopic interactions.
Collapse
Affiliation(s)
- Santhosh Kumar R
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
6
|
Cho HW, Shi G, Kirkpatrick TR, Thirumalai D. Random First Order Transition Theory for Glassy Dynamics in a Single Condensed Polymer. PHYSICAL REVIEW LETTERS 2021; 126:137801. [PMID: 33861095 DOI: 10.1103/physrevlett.126.137801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The number of compact structures of a single condensed polymer (SCP), with similar free energies, grows exponentially with the degree of polymerization. In analogy with structural glasses (SGs), we expect that at low temperatures chain relaxation should occur by activated transitions between the compact metastable states. By evolving the states of the SCP, linearly coupled to a reference state, we show that, below a dynamical transition temperature (T_{d}), the SCP is trapped in a metastable state leading to slow dynamics. At a lower temperature, T_{K}≠0, the configurational entropy vanishes, resulting in a thermodynamic random first order ideal glass transition. The relaxation time obeys the Vogel-Fulcher-Tamman law, diverging at T=T_{0}≈T_{K}. These findings, accord well with the random first order transition theory, establishing that SCP and SG exhibit similar universal characteristics.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Guang Shi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
7
|
Guiselin B, Tarjus G, Berthier L. On the overlap between configurations in glassy liquids. J Chem Phys 2020; 153:224502. [PMID: 33317282 DOI: 10.1063/5.0022614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The overlap, or similarity, between liquid configurations is at the core of the mean-field description of the glass transition and remains a useful concept when studying three-dimensional glass-forming liquids. In liquids, however, the overlap involves a tolerance, typically of a fraction a/σ of the inter-particle distance, associated with how precisely similar two configurations must be for belonging to the same physically relevant "state." Here, we systematically investigate the dependence of the overlap fluctuations and of the resulting phase diagram when the tolerance is varied over a large range. We show that while the location of the dynamical and thermodynamic glass transitions (if present) is independent of a/σ, that of the critical point associated with a transition between a low- and a high-overlap phase in the presence of an applied source nontrivially depends on the value of a/σ. We rationalize our findings by using liquid-state theory and the hypernetted-chain approximation for correlation functions. In addition, we confirm the theoretical trends by studying a three-dimensional glass-former by computer simulations. We show, in particular, that a range of a/σ below what is commonly considered maximizes the temperature of the critical point, pushing it up in a liquid region where viscosity is low and computer investigations are easier due to a significantly faster equilibration.
Collapse
Affiliation(s)
- Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75252 Paris Cedex 05, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
8
|
Ivancic RJS, Riggleman RA. Dynamic phase transitions in freestanding polymer thin films. Proc Natl Acad Sci U S A 2020; 117:25407-25413. [PMID: 33008880 PMCID: PMC7568329 DOI: 10.1073/pnas.2006703117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After more than two decades of study, many fundamental questions remain unanswered about the dynamics of glass-forming materials confined to thin films. Experiments and simulations indicate that free interfaces enhance dynamics over length scales larger than molecular sizes, and this effect strengthens at lower temperatures. The nature of the influence of interfaces, however, remains a point of significant debate. In this work, we explore the properties of the nonequilibrium phase transition in dynamics that occurs in trajectory space between high- and low-mobility basins in a set of model polymer freestanding films. In thick films, the film-averaged mobility transition is broader than the bulk mobility transition, while in thin films it is a variant of the bulk result shifted toward a higher bias. Plotting this transition's local coexistence points against the distance from the films' surface shows thick films have surface and film-center transitions, while thin films practically have a single transition throughout the film. These observations are reminiscent of thermodynamic capillary condensation of a vapor-liquid phase between parallel plates, suggesting they constitute a demonstration of such an effect in a trajectory phase transition in the dynamics of a structural glass former. Moreover, this transition bears similarities to several experiments exhibiting anomalous behavior in the glass transition upon reducing film thickness below a material-dependent onset, including the broadening of the glass transition and the homogenization of surface and bulk glass transition temperatures.
Collapse
Affiliation(s)
- Robert J S Ivancic
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
9
|
Guiselin B, Berthier L, Tarjus G. Random-field Ising model criticality in a glass-forming liquid. Phys Rev E 2020; 102:042129. [PMID: 33212666 DOI: 10.1103/physreve.102.042129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/07/2020] [Indexed: 11/07/2022]
Abstract
We use computer simulations to investigate the extended phase diagram of a supercooled liquid linearly coupled to a quenched reference configuration. An extensive finite-size scaling analysis demonstrates the existence of a random-field Ising model (RFIM) critical point and of a first-order transition line, in agreement with recent field-theoretical approaches. The dynamics in the vicinity of this critical point resembles the peculiar activated scaling of RFIM-like systems, and the overlap autocorrelation displays a logarithmic stretching. Our study demonstrates RFIM criticality in the thermodynamic limit for a three-dimensional supercooled liquid at equilibrium.
Collapse
Affiliation(s)
- Benjamin Guiselin
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
10
|
Nishikawa Y, Hukushima K. Lattice Glass Model in Three Spatial Dimensions. PHYSICAL REVIEW LETTERS 2020; 125:065501. [PMID: 32845685 DOI: 10.1103/physrevlett.125.065501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The understanding of thermodynamic glass transition has been hindered by the lack of proper models beyond mean-field theories. Here, we propose a three-dimensional lattice glass model on a simple cubic lattice that exhibits the typical dynamics observed in fragile supercooled liquids such as two-step relaxation, super-Arrhenius growth in the relaxation time, and dynamical heterogeneity. Using advanced Monte Carlo methods, we compute the thermodynamic properties deep inside the glassy temperature regime, well below the onset temperature of the slow dynamics. The specific heat has a finite jump towards the thermodynamic limit with critical exponents close to those expected from the hyperscaling and the random first-order transition theory for the glass transition. We also study an effective free energy of glasses, the Franz-Parisi potential, as a function of the overlap between equilibrium and quenched configurations. The effective free energy indicates the existence of a first-order phase transition, consistent with the random first-order transition theory. These findings strongly suggest that the glassy dynamics of the model has its origin in thermodynamics.
Collapse
Affiliation(s)
- Yoshihiko Nishikawa
- Laboratoire Charles Coulomb, UMR 5221 CNRS, Université de Montpellier, 34095 Montpellier, France
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Koji Hukushima
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Cho HW, Mugnai ML, Kirkpatrick TR, Thirumalai D. Fragile-to-strong crossover, growing length scales, and dynamic heterogeneity in Wigner glasses. Phys Rev E 2020; 101:032605. [PMID: 32290023 DOI: 10.1103/physreve.101.032605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
Colloidal particles, which are ubiquitous, have become ideal testing grounds for the structural glass transition theories. In these systems glassy behavior arises as the density of the particles is increased. Thus, soft colloidal particles with varying degree of softness capture diverse glass-forming properties, observed normally in molecular glasses. Brownian dynamics simulations for a binary mixture of micron-sized charged colloidal suspensions show that tuning the softness of the interaction potential, achievable by changing the monovalent salt concentration results in a continuous transition from fragile to strong behavior. Remarkably, this is found in a system where the well characterized interaction potential between the colloidal particles is isotropic. We also show that the predictions of the random first-order transition (RFOT) theory quantitatively describes the universal features such as the growing correlation length, ξ∼(ϕ_{K}/ϕ-1)^{-ν} with ν=2/3 where ϕ_{K}, the analog of the Kauzmann temperature, depends on the salt concentration. As anticipated by the RFOT predictions, we establish a causal relationship between the growing correlation length and a steep increase in the relaxation time and dynamic heterogeneity as the system is compressed. The broad range of fragility observed in Wigner glasses is used to draw analogies with molecular and polymer glasses. The large variations in the fragility are normally found only when the temperature dependence of the viscosity is examined for a large class of diverse glass-forming materials. In sharp contrast, this is vividly illustrated in a single system that can be experimentally probed. Our work also shows that the RFOT predictions are accurate in describing the dynamics over the entire density range, regardless of the fragility of the glasses.
Collapse
Affiliation(s)
- Hyun Woo Cho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - Mauro L Mugnai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| | - T R Kirkpatrick
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
12
|
Beasley MS, Bishop C, Kasting BJ, Ediger MD. Vapor-Deposited Ethylbenzene Glasses Approach "Ideal Glass" Density. J Phys Chem Lett 2019; 10:4069-4075. [PMID: 31269793 DOI: 10.1021/acs.jpclett.9b01508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spectroscopic ellipsometry was used to characterize vapor-deposited glasses of ethylbenzene (Tg = 115.7 K). For this system, previous calorimetric experiments have established that a transition to the ideal glass state is expected to occur near 101 K (the Kauzmann temperature, TK) if the low-temperature supercooled liquid has the properties expected based upon extrapolation from above Tg. Ethylbenzene glasses were vapor-deposited at substrate temperatures between 100 (∼0.86 Tg) and 116 K (∼Tg), using deposition rates of 0.02-2.1 nm/s. Down to 103 K, glasses prepared in the limit of low deposition rate have densities consistent with the extrapolated supercooled liquid. The highest density glass is within 0.15% of the density expected for the ideal glass. These results support the hypothesis that the extrapolated properties of supercooled ethylbenzene are correct to within just a few Kelvin of TK, consistent with the existence of a phase transition to an ideal glass state at TK.
Collapse
Affiliation(s)
- M S Beasley
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - C Bishop
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - B J Kasting
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - M D Ediger
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
13
|
Berthier L, Ozawa M, Scalliet C. Configurational entropy of glass-forming liquids. J Chem Phys 2019; 150:160902. [PMID: 31042883 DOI: 10.1063/1.5091961] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The configurational entropy is one of the most important thermodynamic quantities characterizing supercooled liquids approaching the glass transition. Despite decades of experimental, theoretical, and computational investigation, a widely accepted definition of the configurational entropy is missing, its quantitative characterization remains fraught with difficulties, misconceptions, and paradoxes, and its physical relevance is vividly debated. Motivated by recent computational progress, we offer a pedagogical perspective on the configurational entropy in glass-forming liquids. We first explain why the configurational entropy has become a key quantity to describe glassy materials, from early empirical observations to modern theoretical treatments. We explain why practical measurements necessarily require approximations that make its physical interpretation delicate. We then demonstrate that computer simulations have become an invaluable tool to obtain precise, nonambiguous, and experimentally relevant measurements of the configurational entropy. We describe a panel of available computational tools, offering for each method a critical discussion. This perspective should be useful to both experimentalists and theoreticians interested in glassy materials and complex systems.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
14
|
Berthier L, Biroli G, Bouchaud JP, Tarjus G. Can the glass transition be explained without a growing static length scale? J Chem Phys 2019; 150:094501. [DOI: 10.1063/1.5086509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Giulio Biroli
- Institut de physique théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 75005 Paris, France
| | | | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Ozawa M, Parisi G, Berthier L. Configurational entropy of polydisperse supercooled liquids. J Chem Phys 2018; 149:154501. [DOI: 10.1063/1.5040975] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Giorgio Parisi
- Dipartimento di Fisica, Università degli studi di Roma La Sapienza, Nanotec-CNR, UOS Rome, INFN-Sezione di Roma 1, Piazzale A. Moro 2, 00185 Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
16
|
Niblett SP, de Souza VK, Jack RL, Wales DJ. Effects of random pinning on the potential energy landscape of a supercooled liquid. J Chem Phys 2018; 149:114503. [DOI: 10.1063/1.5042140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- S. P. Niblett
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - V. K. de Souza
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - R. L. Jack
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - D. J. Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
Abstract
A general formulation for constructing addressable atomic clusters is introduced, based on one or more reference structures. By modifying the well depths in a given interatomic potential in favour of nearest-neighbour interactions that are defined in the reference(s), the potential energy landscape can be biased to make a particular permutational isomer the global minimum. The magnitude of the bias changes the resulting potential energy landscape systematically, providing a framework to produce clusters that should self-organise efficiently into the target structure. These features are illustrated for small systems, where all the relevant local minima and transition states can be identified, and for the low-energy regions of the landscape for larger clusters. For a 55-particle cluster, it is possible to design a target structure from a transition state of the original potential and to retain this structure in a doubly addressable landscape. Disconnectivity graphs based on local minima that have no direct connections to a lower minimum provide a helpful way to visualise the larger databases. These minima correspond to the termini of monotonic sequences, which always proceed downhill in terms of potential energy, and we identify them as a class of biminimum. Multiple copies of the target cluster are treated by adding a repulsive term between particles with the same address to maintain distinguishable targets upon aggregation. By tuning the magnitude of this term, it is possible to create assemblies of the target cluster corresponding to a variety of structures, including rings and chains.
Collapse
Affiliation(s)
- David J Wales
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
18
|
Jenkinson T, Crowther P, Turci F, Royall CP. Weak temperature dependence of ageing of structural properties in atomistic model glassformers. J Chem Phys 2018; 147:054501. [PMID: 28789533 DOI: 10.1063/1.4994836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ageing phenomena are investigated from a structural perspective in two binary Lennard-Jones glassformers, the Kob-Andersen and Wahnström mixtures. In both, the geometric motif assumed by the glassformer upon supercooling, the locally favoured structure (LFS), has been established. The Kob-Andersen mixture forms bicapped square antiprisms; the Wahnström model forms icosahedra. Upon ageing, we find that the structural relaxation time has a time-dependence consistent with a power law. However, the LFS population and potential energy increase and decrease, respectively, in a logarithmic fashion. Remarkably, over the time scales investigated, which correspond to a factor of 104 change in relaxation times, the rate at which these quantities age appears almost independent of temperature. Only at temperatures far below the Vogel-Fulcher-Tamman temperature do the ageing dynamics slow.
Collapse
Affiliation(s)
- Thomas Jenkinson
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - Peter Crowther
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol, United Kingdom
| |
Collapse
|
19
|
Fejer SN, Mantell RG, Wales DJ. Designing hierarchical molecular complexity: icosahedra of addressable icosahedra. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1439190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | | | - David J. Wales
- University Chemical Laboratories, University of Cambridge , Cambridge, UK
| |
Collapse
|
20
|
Affiliation(s)
- M. D. Ediger
- Department of Chemistry, University of Wisconsin-Madison,
1101 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
21
|
Procaccia I, Rainone C, Singh M. Mechanical failure in amorphous solids: Scale-free spinodal criticality. Phys Rev E 2017; 96:032907. [PMID: 29346984 DOI: 10.1103/physreve.96.032907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 06/07/2023]
Abstract
The mechanical failure of amorphous media is a ubiquitous phenomenon from material engineering to geology. It has been noticed for a long time that the phenomenon is "scale-free," indicating some type of criticality. In spite of attempts to invoke "Self-Organized Criticality," the physical origin of this criticality, and also its universal nature, being quite insensitive to the nature of microscopic interactions, remained elusive. Recently we proposed that the precise nature of this critical behavior is manifested by a spinodal point of a thermodynamic phase transition. Demonstrating this requires the introduction of an "order parameter" that is suitable for distinguishing between disordered amorphous systems. At the spinodal point there exists a divergent correlation length which is associated with the system-spanning instabilities (known also as shear bands) which are typical to the mechanical yield. The theory, the order parameter used and the correlation functions which exhibit the divergent correlation length are universal in nature and can be applied to any amorphous solid that undergoes mechanical yield. The phenomenon is seen at its sharpest in athermal systems, as is explained below; in this paper we extend the discussion also to thermal systems, showing that at sufficiently high temperatures the spinodal phenomenon is destroyed by thermal fluctuations.
Collapse
Affiliation(s)
- Itamar Procaccia
- Department of Chemical Physics, the Weizmann Institute of Science, Rehovot 76100, Israel
| | - Corrado Rainone
- Department of Chemical Physics, the Weizmann Institute of Science, Rehovot 76100, Israel
| | - Murari Singh
- Department of Chemical Physics, the Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Ozawa M, Berthier L. Does the configurational entropy of polydisperse particles exist? J Chem Phys 2017; 146:014502. [DOI: 10.1063/1.4972525] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Misaki Ozawa
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier, France
| |
Collapse
|
23
|
Jack RL, Berthier L. The melting of stable glasses is governed by nucleation-and-growth dynamics. J Chem Phys 2016; 144:244506. [PMID: 27369526 DOI: 10.1063/1.4954327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultrastable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments suggest that this process is similar to the melting of crystals, thus differing from the behaviour found in ordinary glasses. We rationalize these observations using the physical idea that the transformation process takes place close to a "hidden" equilibrium first-order phase transition, which is observed in systems of coupled replicas. We illustrate our views using simulation results for a simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behaviour. Our results suggest that nucleation-and-growth dynamics, as found near ordinary first-order transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our approach provides a unified understanding of multiple experimental observations, such as propagating melting fronts, large kinetic stability ratios, and "giant" dynamic length scales. We also provide a comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass melting.
Collapse
Affiliation(s)
- Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, 34095 Montpellier, France
| |
Collapse
|
24
|
Jaiswal PK, Procaccia I, Rainone C, Singh M. Mechanical Yield in Amorphous Solids: A First-Order Phase Transition. PHYSICAL REVIEW LETTERS 2016; 116:085501. [PMID: 26967423 DOI: 10.1103/physrevlett.116.085501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Amorphous solids yield at a critical value of the strain (in strain-controlled experiments); for larger strains, the average stress can no longer increase-the system displays an elastoplastic steady state. A long-standing riddle in the materials community is what the difference is between the microscopic states of the material before and after yield. Explanations in the literature are material specific, but the universality of the phenomenon begs a universal answer. We argue here that there is no fundamental difference in the states of matter before and after yield, but the yield is a bona fide first-order phase transition between a highly restricted set of possible configurations residing in a small region of phase space to a vastly rich set of configurations which include many marginally stable ones. To show this, we employ an order parameter of universal applicability, independent of the microscopic interactions, that is successful in quantifying the transition in an unambiguous manner.
Collapse
Affiliation(s)
- Prabhat K Jaiswal
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Itamar Procaccia
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Corrado Rainone
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Murari Singh
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
25
|
Jack RL, Garrahan JP. Phase Transition for Quenched Coupled Replicas in a Plaquette Spin Model of Glasses. PHYSICAL REVIEW LETTERS 2016; 116:055702. [PMID: 26894718 DOI: 10.1103/physrevlett.116.055702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Indexed: 06/05/2023]
Abstract
We study a three-dimensional plaquette spin model whose low temperature dynamics is glassy, due to localized defects and effective kinetic constraints. The thermodynamics of this system is smooth at all temperatures. We show that coupling it to a second system with a fixed (quenched) configuration leads to a phase transition, at finite coupling. The order parameter is the overlap between the copies, and the transition is between phases of low and high overlap. We find critical points whose properties are consistent with random-field Ising universality. We analyze the interfacial free energy cost between the high- and low-overlap states that coexist at (and below) the critical point, and we use this cost as the basis for a finite-size scaling analysis. We discuss these results in the context of mean-field and dynamical facilitation theories of the glass transition.
Collapse
Affiliation(s)
- Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
26
|
Berthier L, Charbonneau P, Yaida S. Efficient measurement of point-to-set correlations and overlap fluctuations in glass-forming liquids. J Chem Phys 2016; 144:024501. [DOI: 10.1063/1.4939640] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université de Montpellier, Montpellier, France
| | - Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Sho Yaida
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
27
|
Pinney R, Liverpool TB, Royall CP. Recasting a model atomistic glassformer as a system of icosahedra. J Chem Phys 2015; 143:244507. [DOI: 10.1063/1.4938424] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rhiannon Pinney
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Bristol Centre for Complexity Science, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | - C. Patrick Royall
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock Close, Bristol BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| |
Collapse
|
28
|
Turner RM, Jack RL, Garrahan JP. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022115. [PMID: 26382352 DOI: 10.1103/physreve.92.022115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 06/05/2023]
Abstract
We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T), which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T)≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.
Collapse
Affiliation(s)
- Robert M Turner
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Robert L Jack
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|