1
|
Zhang H, Eremeev V, Wu J, Orszag M, He B. Scaling behaviors in optomechanically induced nonlinear oscillation. Phys Rev E 2025; 111:014208. [PMID: 39972825 DOI: 10.1103/physreve.111.014208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/13/2024] [Indexed: 02/21/2025]
Abstract
A stable limit cycle as a stabilized mechanical oscillation is the primary result of the dynamical evolution of an optomechanical system under a sufficiently powerful pump. Because this dynamical process is highly nonlinear, it was not clear whether there exists a quantitative law to relate an evolved mechanical oscillation (the limit cycle of the dynamical process) to the given parameters of the fabricated system. Here, by means of the numerical simulations based on nonlinear dynamics, we demonstrate the existence of such quantitative relations that are generally valid to the nonlinear optomechanical processes. These quantitative relations can be summarized to a scaling law that is seemingly similar to those in phase transitions of many-body systems but has very different properties. Such a quantitative law enables one to find the more feasible system parameters for realizing the same or a similar dynamical evolution result, so it will be useful to the relevant experimental research.
Collapse
Affiliation(s)
- Hanxiao Zhang
- Hainan Normal University, School of Physics and Electronic Engineering, Haikou 571158, China
| | - Vitalie Eremeev
- Universidad Diego Portales, Instituto de Ciencias Básicas, Facultad de Ingeniería y Ciencias, Avenida Ejercito 441, Santiago, Chile
| | - Jinhui Wu
- Northeast Normal University, Center for Quantum Sciences and School of Physics, Changchun 130117, China
| | - Miguel Orszag
- Universidad Mayor, Multidisciplinary Center for Physics, Camino La Pirámide 5750, Huechuraba, Chile
| | - Bing He
- Universidad Mayor, Multidisciplinary Center for Physics, Camino La Pirámide 5750, Huechuraba, Chile
| |
Collapse
|
2
|
Wang C, Banniard L, Børkje K, Massel F, Mercier de Lépinay L, Sillanpää MA. Ground-state cooling of a mechanical oscillator by a noisy environment. Nat Commun 2024; 15:7395. [PMID: 39191798 DOI: 10.1038/s41467-024-51645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Dissipation and the accompanying fluctuations are often seen as detrimental for quantum systems since they are associated with fast relaxation and loss of phase coherence. However, it has been proposed that a pure state can be prepared if external noise induces suitable downwards transitions, while exciting transitions are blocked. We demonstrate such a refrigeration mechanism in a cavity optomechanical system, where we prepare a mechanical oscillator in its ground state by injecting strong electromagnetic noise at frequencies around the red mechanical sideband of the cavity. The optimum cooling is reached with a noise bandwidth smaller than but on the order of the cavity decay rate. At higher bandwidths, cooling is less efficient as suitable transitions are not effectively activated. In the opposite regime where the noise bandwidth becomes comparable to the mechanical damping rate, damping follows the noise amplitude adiabatically, and the cooling is also suppressed.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Applied Physics, Aalto University, Aalto, Finland
| | - Louise Banniard
- Department of Applied Physics, Aalto University, Aalto, Finland
| | - Kjetil Børkje
- Department of Science and Industry Systems, University of South-Eastern Norway, Kongsberg, Norway
| | - Francesco Massel
- Department of Science and Industry Systems, University of South-Eastern Norway, Kongsberg, Norway
| | | | - Mika A Sillanpää
- Department of Applied Physics, Aalto University, Aalto, Finland.
| |
Collapse
|
3
|
Bera T, Kandpal M, Agarwal GS, Singh V. Single-photon induced instabilities in a cavity electromechanical device. Nat Commun 2024; 15:7115. [PMID: 39160145 PMCID: PMC11333599 DOI: 10.1038/s41467-024-51499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Cavity-electromechanical systems are extensively used for sensing and controlling the vibrations of mechanical resonators down to their quantum limit. The nonlinear radiation-pressure interaction in these systems could result in an unstable response of the mechanical resonator showing features such as frequency-combs, period-doubling bifurcations and chaos. However, due to weak light-matter interaction, typically these effects appear at very high driving strengths. By using polariton modes formed by a strongly coupled flux-tunable transmon and a microwave cavity, here we demonstrate an electromechanical device and achieve a single-photon coupling rateg 0 / 2 π of 160 kHz, which is nearly 4% of the mechanical frequency ωm. Due to large g0/ωm ratio, the device shows an unstable mechanical response resulting in frequency combs in sub-single photon limit. We systematically investigate the boundary of the unstable response and identify two important regimes governed by the optomechanical backaction and the nonlinearity of the electromagnetic mode. Such an improvement in the single-photon coupling rate and the observations of microwave frequency combs at single-photon levels may have applications in the quantum control of the motional states and critical parametric sensing. Our experiments strongly suggest the requirement of newer approaches to understand instabilities.
Collapse
Affiliation(s)
- Tanmoy Bera
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| | - Mridul Kandpal
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Girish S Agarwal
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, TX, 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Vibhor Singh
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
4
|
Lin XY, Ye GZ, Liu Y, Jiang YK, Wu H. Optomechanical squeezing with strong harmonic mechanical driving. OPTICS EXPRESS 2024; 32:8847-8861. [PMID: 38571132 DOI: 10.1364/oe.516529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
In this paper, we propose an optomechanical scheme for generating mechanical squeezing over the 3 dB limit, with the mechanical mirror being driven by a strong and linear harmonic force. In contrast to parametric mechanical driving, the linearly driven force shakes the mechanical mirror periodically oscillating at twice the mechanical eigenfrequency with large amplitude, where the mechanical mirror can be dissipatively stabilized by the engineered cavity reservoir to a dynamical squeezed steady state with a maximum degree of squeezing over 8 dB. The mechanical squeezing of more than 3 dB can be achieved even for a mechanical thermal temperature larger than 100 mK. The scheme can be implemented in a cascaded optomechanical setup, with potential applications in engineering continuous variable entanglement and quantum sensing.
Collapse
|
5
|
Motazedifard A, Dalafi A, Naderi MH. Negative cavity photon spectral function in an optomechanical system with two parametrically-driven mechanical modes. OPTICS EXPRESS 2023; 31:36615-36637. [PMID: 38017809 DOI: 10.1364/oe.499409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
We propose an experimentally feasible optomechanical scheme to realize a negative cavity photon spectral function (CPSF) which is equivalent to a negative absorption. The system under consideration is an optomechanical system consisting of two mechanical (phononic) modes which are linearly coupled to a common cavity mode via the radiation pressure while parametrically driven through the coherent time-modulation of their spring coefficients. Using the equations of motion for the cavity retarded Green's function obtained in the framework of the generalized linear response theory, we show that in the red-detuned and weak-coupling regimes a frequency-dependent effective cavity damping rate (ECDR) corresponding to a negative CPSF can be realized by controlling the cooperativities and modulation parameters while the system still remains in the stable regime. Nevertheless, such a negativity which acts as an optomechanical gain never occurs in a standard (an unmodulated bare) cavity optomechanical system. Besides, we find that the presence of two modulated mechanical degrees of freedom provides more controllability over the magnitude and bandwidth of the negativity of CPSF, in comparison to the setup with a single modulated mechanical oscillator. Interestingly, the introduced negativity may open a new platform to realize an extraordinary (modified) optomechanically induced transparency (in which the input signal is amplified in the output) leading to a perfect tunable optomechanical filter with switchable bandwidth which can be used as an optical transistor.
Collapse
|
6
|
Feng XN, Liu HY, Wei LF. Waveguide Mach-Zehnder interferometer to enhance the sensitivity of quantum parameter estimation. OPTICS EXPRESS 2023; 31:17215-17225. [PMID: 37381461 DOI: 10.1364/oe.487793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/02/2023] [Indexed: 06/30/2023]
Abstract
The waveguide Fabry-Perot interferometer (FPI) (see, e.g., in Phys. Rev. Lett.113, 243601 (2015)10.1103/PhysRevLett.115.243601 and Nature569, 692 (2019)10.1038/s41586-019-1196-1), instead of the free space's one, have been demonstrated for the sensitive quantum parameter estimations. Here, we propose a waveguide Mach-Zehnder interferometer (MZI) to further enhance the sensitivity of the relevant parameter estimations. The configuration is formed by two one-dimensional waveguides coupled sequentially to two atomic mirrors, which are served as the beam splitters of the waveguide photons to control the probabilities of the photons being transferred from one waveguide to another. Due to the quantum interference of the waveguide photons, the acquired phase of the photons when they pass through a phase shifter can be sensitively estimated by measuring either the transmitted or reflected probabilities of the transporting photons. Interestingly, we show that, with the proposed waveguide MZI the sensitivity of the quantum parameter estimation could be further optimized, compared with the waveguide FPI, in the same condition. The feasibility of the proposal, with the current atom-waveguide integrated technique, is also discussed.
Collapse
|
7
|
Ranfagni A, Marino F, Marin F. Spectral Analysis of Quantum Field Fluctuations in a Strongly Coupled Optomechanical System. PHYSICAL REVIEW LETTERS 2023; 130:193601. [PMID: 37243649 DOI: 10.1103/physrevlett.130.193601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 05/29/2023]
Abstract
With a levitodynamics experiment in the strong and coherent quantum optomechanical coupling regime, we demonstrate that the oscillator acts as a broadband quantum spectrum analyzer. The asymmetry between positive and negative frequency branches in the displacement spectrum traces out the spectral features of the quantum fluctuations in the cavity field, which are thus explored over a wide spectral range. Moreover, in our two-dimensional mechanical system the quantum backaction, generated by such vacuum fluctuations, is strongly suppressed in a narrow spectral region due to a destructive interference in the overall susceptibility.
Collapse
Affiliation(s)
- A Ranfagni
- Dipartimento di Fisica e Astronomia, Università di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - F Marino
- INFN, Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- CNR-INO, largo Enrico Fermi 6, I-50125 Firenze, Italy
| | - F Marin
- Dipartimento di Fisica e Astronomia, Università di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- CNR-INO, largo Enrico Fermi 6, I-50125 Firenze, Italy
| |
Collapse
|
8
|
Ignat I, Schuster B, Hafner J, Kwon M, Platz D, Schmid U. Intermodal coupling spectroscopy of mechanical modes in microcantilevers. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:123-132. [PMID: 36743298 PMCID: PMC9874237 DOI: 10.3762/bjnano.14.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Atomic force microscopy (AFM) is highly regarded as a lens peering into the next discoveries of nanotechnology. Fundamental research in atomic interactions, molecular reactions, and biological cell behaviour are key focal points, demanding a continuous increase in resolution and sensitivity. While renowned fields such as optomechanics have marched towards outstanding signal-to-noise ratios, these improvements have yet to find a practical way to AFM. As a solution, we investigate here a mechanism in which individual mechanical eigenmodes of a microcantilever couple to one another, mimicking optomechanical techniques to reduce thermal noise. We have a look at the most commonly used modes in AFM, starting with the first two flexural modes of cantilevers and asses the impact of an amplified coupling between them. In the following, we expand our investigation to the sea of eigenmodes available in the same structure and find a maximum coupling of 9.38 × 103 Hz/nm between two torsional modes. Through such findings we aim to expand the field of multifrequency AFM with innumerable possibilities leading to improved signal-to-noise ratios, all accessible with no additional hardware.
Collapse
Affiliation(s)
- Ioan Ignat
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| | - Bernhard Schuster
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| | - Jonas Hafner
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| | - MinHee Kwon
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| | - Daniel Platz
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| | - Ulrich Schmid
- Institute of Sensor and Actuator Systems, TU Wien, Gußhaustraße 27–29, 1040 Vienna, Austria
| |
Collapse
|
9
|
Guo Q, Ren XQ, Bai CH, Zhang Y, Li G, Zhang T. Mechanical squeezing in an active-passive-coupled double-cavity optomechanical system via pump modulation. OPTICS EXPRESS 2022; 30:47070-47081. [PMID: 36558644 DOI: 10.1364/oe.475529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
We focus on the generation of mechanical squeezing by using periodically amplitude-modulated laser to drive an active-passive-coupled double-cavity optomechanical system, where the coupled gain cavity and loss cavity can form into a parity-time (P T)-symmetry system. The numerical analysis of the system stability shows that the system is more likely to be stable in the unbroken-P T-symmetry regime than in the broken-P T-symmetry regime. The mechanical squeezing in the active-passive system exhibits stronger robustness against the thermal noise than that in the passive-passive system, and the so-called 3 dB limit can be broken in the resolved-sideband regime. Furthermore, it is also found that the mechanical squeezing obtained in the unbroken-P T-symmetry region is stronger than that in the broken-P T-symmetry region. This work may be meaningful for the quantum state engineering in the gain-loss quantum system that contributes to the study of P T-symmetric physics in the quantum regime.
Collapse
|
10
|
Xiong B, Chao S, Shan C, Liu J. Optomechanical squeezing with pulse modulation. OPTICS LETTERS 2022; 47:5545-5548. [PMID: 37219265 DOI: 10.1364/ol.471230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 05/24/2023]
Abstract
Quantum control technology provides an increasingly useful toolbox for quantum information tasks. In this Letter, by introducing a pulsed coupling to a standard optomechanical system, we show that stronger squeezing can be obtained with pulse modulation due to the reduction of the heating coefficient. Also, the general squeezed states, such as the squeezed vacuum, squeezed coherent, and squeezed cat states, can be obtained with their squeezing level exceeding 3 dB. Moreover, our scheme is robust to cavity decay, thermal temperature, and classical noise, which is friendly to experiments. The present work can extend the application of quantum engineering technology in optomechanical systems.
Collapse
|
11
|
Qin W, Miranowicz A, Nori F. Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout. PHYSICAL REVIEW LETTERS 2022; 129:123602. [PMID: 36179165 DOI: 10.1103/physrevlett.129.123602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
While the squeezing of a propagating field can, in principle, be made arbitrarily strong, the cavity-field squeezing is subject to the well-known 3 dB limit, and thus has limited applications. Here, we propose the use of a fully quantum degenerate parametric amplifier (DPA) to beat this squeezing limit. Specifically, we show that by simply applying a two-tone driving to the signal mode, the pump mode can, counterintuitively, be driven by the photon loss of the signal mode into a squeezed steady state with, in principle, an arbitrarily high degree of squeezing. Furthermore, we demonstrate that this intracavity squeezing can increase the signal-to-noise ratio of longitudinal qubit readout exponentially with the degree of squeezing. Correspondingly, an improvement of the measurement error by many orders of magnitude can be achieved even for modest parameters. In stark contrast, using intracavity squeezing of the semiclassical DPA cannot practically increase the signal-to-noise ratio and thus improve the measurement error. Our results extend the range of applications of DPAs and open up new opportunities for modern quantum technologies.
Collapse
Affiliation(s)
- Wei Qin
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University 61-614 Poznań, Poland
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
12
|
Miao T, Zhou X, Wu X, Li Q, Hou Z, Hu X, Wang Z, Xiao D. Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems. Nat Commun 2022; 13:2352. [PMID: 35487900 PMCID: PMC9054851 DOI: 10.1038/s41467-022-29995-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 04/08/2022] [Indexed: 11/09/2022] Open
Abstract
Electromechanical phonon-cavity systems are man-made micro-structures, in which vibrational energy can be coherently transferred between different degrees of freedom. In such devices, the energy transfer direction and coupling strength can be parametrically controlled, offering great opportunities for both fundamental studies and practical applications such as phonon manipulation and sensing. However, to date the investigation of such systems has largely been limited to linear vibrations, while their responses in the nonlinear regime remain yet to be explored. Here, we demonstrate nonlinear operation of electromechanical phonon-cavity systems, and show that the resonant response differs drastically from that in the linear regime. We further demonstrate that by controlling the parametric pump, one can achieve nonlinearity-mediated digitization and amplification in the frequency domain, which can be exploited to build high-performance MEMS sensing devices based on phonon-cavity systems. Our findings offer intriguing opportunities for creating frequency-shift-based sensors and transducers.
Collapse
Affiliation(s)
- Tongqiao Miao
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China
| | - Xin Zhou
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China
| | - Xuezhong Wu
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China.,The Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073, Changsha, China.,MEMS Engineering Center of Hunan, 410100, Changsha, China
| | - Qingsong Li
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China
| | - Zhanqiang Hou
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China
| | - Xiaoping Hu
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China
| | - Zenghui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China. .,State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Dingbang Xiao
- College of Intelligence Science, National University of Defense Technology, 410073, Changsha, China. .,The Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073, Changsha, China. .,MEMS Engineering Center of Hunan, 410100, Changsha, China.
| |
Collapse
|
13
|
Wu S, Liu Y, Liu Q, Wang SP, Chen Z, Li T. Hybridized Frequency Combs in Multimode Cavity Electromechanical System. PHYSICAL REVIEW LETTERS 2022; 128:153901. [PMID: 35499901 DOI: 10.1103/physrevlett.128.153901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The cavity electromechanical devices with radiation-pressure interaction induced Kerr-like nonlinearity are promising candidates to generate microwave frequency combs. We construct a silicon-nitride membrane based superconducting cavity electromechanical device and study two mechanical modes synergistic frequency combs. Around the threshold of intracavity field instability, we first show independent frequency combs with tooth spacing equal to each mechanical mode frequency. At the overlap boundaries of these two individual mechanical mode mediated instability thresholds, we observe hybridization of frequency combs based on the cavity field mediated indirect coupling between these two mechanical modes. The spectrum lines turn out to be unequally spaced, but can be recognized in combinations of the coexisting frequency combs. Beyond the boundary, the comb reverts to the single mode case, and which mechanical mode frequency will the tooth spacing be depends on the mode competition. Our work demonstrates mechanical mode competition enabled switchability of frequency comb tooth spacing and can be extended to other devices with multiple nonlinearities.
Collapse
Affiliation(s)
- Sishi Wu
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Yulong Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Qichun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Shuai-Peng Wang
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China
| | - Zhen Chen
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Tiefu Li
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- School of Integrated Circuits and Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Kustura K, Gonzalez-Ballestero C, Sommer ADLR, Meyer N, Quidant R, Romero-Isart O. Mechanical Squeezing via Unstable Dynamics in a Microcavity. PHYSICAL REVIEW LETTERS 2022; 128:143601. [PMID: 35476467 DOI: 10.1103/physrevlett.128.143601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
We theoretically show that strong mechanical quantum squeezing in a linear optomechanical system can be rapidly generated through the dynamical instability reached in the far red-detuned and ultrastrong coupling regime. We show that this mechanism, which harnesses unstable multimode quantum dynamics, is particularly suited to levitated optomechanics, and we argue for its feasibility for the case of a levitated nanoparticle coupled to a microcavity via coherent scattering. We predict that for submillimeter-sized cavities the particle motion, initially thermal and well above its ground state, becomes mechanically squeezed by tens of decibels on a microsecond timescale. Our results bring forth optical microcavities in the unresolved sideband regime as powerful mechanical squeezers for levitated nanoparticles, and hence as key tools for quantum-enhanced inertial and force sensing.
Collapse
Affiliation(s)
- Katja Kustura
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Carlos Gonzalez-Ballestero
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Andrés de Los Ríos Sommer
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Quantum Center, ETH Zurich, 8083 Zurich, Switzerland
| | - Nadine Meyer
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Quantum Center, ETH Zurich, 8083 Zurich, Switzerland
| | - Romain Quidant
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Quantum Center, ETH Zurich, 8083 Zurich, Switzerland
| | - Oriol Romero-Isart
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
15
|
Yang F, Fu M, Bosnjak B, Blick RH, Jiang Y, Scheer E. Mechanically Modulated Sideband and Squeezing Effects of Membrane Resonators. PHYSICAL REVIEW LETTERS 2021; 127:184301. [PMID: 34767395 DOI: 10.1103/physrevlett.127.184301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated at a low frequency (<1 kHz). This additional parametric modulation leads to prominent antiresonance line shapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We also establish a direct connection between the antiresonance frequency and the squeezing of thermal fluctuation in the system. Our Letter not only provides a simple and robust method for squeezing characterization, but also opens a new possibility toward sideband applications.
Collapse
Affiliation(s)
- Fan Yang
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Mengqi Fu
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Bojan Bosnjak
- Center for Hybrid Nanostructures, Universität Hamburg, 22761 Hamburg, Germany
| | - Robert H Blick
- Center for Hybrid Nanostructures, Universität Hamburg, 22761 Hamburg, Germany
| | - Yuxuan Jiang
- School of Physics and Optoelectronics Engineering, Anhui University, 230601 Hefei, China
| | - Elke Scheer
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
16
|
Wei Y, Wang X, Xiong B, Zhao C, Liu J, Shan C. Improving few-photon optomechanical effects with coherent feedback. OPTICS EXPRESS 2021; 29:35299-35313. [PMID: 34808967 DOI: 10.1364/oe.440382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Few-photon effects such as photon blockade and tunneling have potential applications in modern quantum technology. To enhance the few-photon effects in an optomechanical system, we introduce a coherent feedback loop to cavity mode theoretically. By studying the second-order correlation function, we show that the photon blockade effect can be improved with feedback. Under appropriate parameters, the photon blockade effect exists even when cavity decay rate is larger than the single-photon optomechanical coupling coefficient, which may reduce the difficulty of realizing single-photon source in experiments. Through further study of the third-order correlation function, we show that the tunneling effect can also be enhanced by feedback. In addition, we discuss the application of feedback on Schrödinger-cat state generation in an optomechanical system. The result shows that the fidelity of cat state generation can be improved in the presence of feedback loop.
Collapse
|
17
|
Gonzalez-Ballestero C, Aspelmeyer M, Novotny L, Quidant R, Romero-Isart O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science 2021; 374:eabg3027. [PMID: 34618558 DOI: 10.1126/science.abg3027] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- C Gonzalez-Ballestero
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences A-6020 Innsbruck, Austria
| | - M Aspelmeyer
- Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, A-1090 Vienna, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - L Novotny
- Photonics Laboratory, ETH Zürich, 8093 Zürich, Switzerland.,Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - R Quidant
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland.,Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - O Romero-Isart
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria.,Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences A-6020 Innsbruck, Austria
| |
Collapse
|
18
|
Chao SL, Yang Z, Zhao CS, Peng R, Zhou L. Force sensing in a dual-mode optomechanical system with linear-quadratic coupling and modulated photon hopping. OPTICS LETTERS 2021; 46:3075-3078. [PMID: 34197384 DOI: 10.1364/ol.425484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
A weak force sensor scheme is presented in an optomechanical system, in which the two cavity modes couple to a mechanical mode with linear and quadratic coupling. Due to introducing time-dependent hopping, the linear and quadratic coupling terms coexist under the rotating-wave approximation in the interaction picture. Compared with the quantum non-demolition measurement (ignoring the quadratic optomechanical coupling), the current scheme can decrease the additional noise to a lower level. Our proposal provides a promising platform for improving the detection of a weak force.
Collapse
|
19
|
Cha J, Kim H, Kim J, Shim SB, Suh J. Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. NANO LETTERS 2021; 21:1800-1806. [PMID: 33555879 DOI: 10.1021/acs.nanolett.0c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale electromechanical coupling provides a unique route toward control of mechanical motions and microwave fields in superconducting cavity electromechanical devices. However, conventional devices composed of aluminum have presented severe constraints on their operating conditions due to the low superconducting critical temperature (1.2 K) and magnetic field (0.01 T) of aluminum. To enhance their potential in device applications, we fabricate a superconducting electromechanical device employing niobium and demonstrate a set of cavity electromechanical dynamics, including back-action cooling and amplification, and electromechanically induced reflection at 4.2 K and in strong magnetic fields up to 0.8 T. Niobium-based electromechanical transducers operating at this temperature could potentially be employed to realize compact, nonreciprocal microwave devices in place of conventional isolators and cryogenic amplifiers. Moreover, with their resilience to magnetic fields, niobium devices utilizing the electromechanical back-action effects could be used to study spin-phonon interactions for nanomechanical spin-sensing.
Collapse
Affiliation(s)
- Jinwoong Cha
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Hakseong Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Jihwan Kim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
- Department of Physics, Korea Advanced Institute of Science and Technology, 34141 Daejeon, South Korea
| | - Seung-Bo Shim
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| | - Junho Suh
- Quantum Technology Institute, Korea Research Institute of Standards and Science, 34113 Daejeon, South Korea
| |
Collapse
|
20
|
Zhang JS, Chen AX. Large and robust mechanical squeezing of optomechanical systems in a highly unresolved sideband regime via Duffing nonlinearity and intracavity squeezed light. OPTICS EXPRESS 2020; 28:36620-36631. [PMID: 33379752 DOI: 10.1364/oe.412826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We propose a scheme to generate strong and robust mechanical squeezing in an optomechanical system in the highly unresolved sideband (HURSB) regime with the help of the Duffing nonlinearity and intracavity squeezed light. The system is formed by a standard optomechanical system with the Duffing nonlinearity (mechanical nonlinearity) and a second-order nonlinear medium (optical nonlinearity). In the resolved sideband regime, the second-order nonlinear medium may play a destructive role in the generation of mechanical squeezing. However, it can significantly increase the mechanical squeezing (larger than 3dB) in the HURSB regime when the parameters are chosen appropriately. Finally, we show the mechanical squeezing is robust against the thermal fluctuations of the mechanical resonator. The generation of large and robust mechanical squeezing in the HURSB regime is a combined effect of the mechanical and optical nonlinearities.
Collapse
|
21
|
Li PB, Zhou Y, Gao WB, Nori F. Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System. PHYSICAL REVIEW LETTERS 2020; 125:153602. [PMID: 33095609 DOI: 10.1103/physrevlett.125.153602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Hybrid spin-mechanical setups offer a versatile platform for quantum science and technology, but improving the spin-phonon as well as the spin-spin couplings of such systems remains a crucial challenge. Here, we propose and analyze an experimentally feasible and simple method for exponentially enhancing the spin-phonon and the phonon-mediated spin-spin interactions in a hybrid spin-mechanical setup, using only linear resources. Through modulating the spring constant of the mechanical cantilever with a time-dependent pump, we can acquire a tunable and nonlinear (two-phonon) drive to the mechanical mode, thus amplifying the mechanical zero-point fluctuations and directly enhancing the spin-phonon coupling. This method allows the spin-mechanical system to be driven from the weak-coupling regime to the strong-coupling regime, and even the ultrastrong coupling regime. In the dispersive regime, this method gives rise to a large enhancement of the phonon-mediated spin-spin interactions between distant solid-state spins, typically two orders of magnitude larger than that without modulation. As an example, we show that the proposed scheme can apply to generating entangled states of multiple spins with high fidelities even in the presence of large dissipations.
Collapse
Affiliation(s)
- Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Yuan Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei-Bo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
22
|
Jiao YF, Zhang SD, Zhang YL, Miranowicz A, Kuang LM, Jing H. Nonreciprocal Optomechanical Entanglement against Backscattering Losses. PHYSICAL REVIEW LETTERS 2020; 125:143605. [PMID: 33064545 DOI: 10.1103/physrevlett.125.143605] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
We propose how to achieve nonreciprocal quantum entanglement of light and motion and reveal its counterintuitive robustness against random losses. We find that by splitting the counterpropagating lights of a spinning resonator via the Sagnac effect, photons and phonons can be entangled strongly in a chosen direction but fully uncorrelated in the other. This makes it possible both to realize quantum nonreciprocity even in the absence of any classical nonreciprocity and also to achieve significant entanglement revival against backscattering losses in practical devices. Our work provides a way to protect and engineer quantum resources by utilizing diverse nonreciprocal devices, for building noise-tolerant quantum processors, realizing chiral networks, and backaction-immune quantum sensors.
Collapse
Affiliation(s)
- Ya-Feng Jiao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Sheng-Dian Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Yan-Lei Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Adam Miranowicz
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Le-Man Kuang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
23
|
Wang DY, Bai CH, Liu S, Zhang S, Wang HF. Dissipative bosonic squeezing via frequency modulation and its application in optomechanics. OPTICS EXPRESS 2020; 28:28942-28953. [PMID: 33114802 DOI: 10.1364/oe.399687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
The dissipative squeezing mechanism is an effective method to generate the strong squeezing, which is important in the precision metrology. Here, we propose a practical method to achieve arbitrary bosonic squeezing via introducing frequency modulation into the coupled harmonic resonator model. We analyze the effect of frequency modulation and give the analytical and numerical squeezing results, respectively. To measure the accurate dynamic squeezing in our proposal, we give a more general defination of the relative squeezing degree. Finally, the proposed method is extended to generate the strong mechanical squeezing (>3 dB) in a practical optomechanical system consisting of a graphene mechanical oscillator coupled to a superconducting microwave cavity. The result indicates that the strong mechanical squeezing can be effectively achieved even when the mechanical oscillator is not initially in its ground state. The proposed method expands the study on nonclassical state and does not need the bichromatic microwave driving technology.
Collapse
|
24
|
Zoepfl D, Juan ML, Schneider CMF, Kirchmair G. Single-Photon Cooling in Microwave Magnetomechanics. PHYSICAL REVIEW LETTERS 2020; 125:023601. [PMID: 32701311 DOI: 10.1103/physrevlett.125.023601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Cavity optomechanics, where photons are coupled to mechanical motion, provides the tools to control mechanical motion near the fundamental quantum limits. Reaching single-photon strong coupling would allow to prepare the mechanical resonator in non-Gaussian quantum states. Preparing massive mechanical resonators in such states is of particular interest for testing the boundaries of quantum mechanics. This goal remains however challenging due to the small optomechanical couplings usually achieved with massive devices. Here we demonstrate a novel approach where a mechanical resonator is magnetically coupled to a microwave cavity. We measure a single-photon coupling of g_{0}/2π∼3 kHz, an improvement of one order of magnitude over current microwave optomechanical systems. At this coupling we measure a large single-photon cooperativity with C_{0}≳10, an important step to reach single-photon strong coupling. Such a strong interaction allows us to cool the massive mechanical resonator to a third of its steady state phonon population with less than two photons in the microwave cavity. Beyond tests for quantum foundations, our approach is also well suited as a quantum sensor or a microwave to optical transducer.
Collapse
Affiliation(s)
- D Zoepfl
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M L Juan
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - C M F Schneider
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - G Kirchmair
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria and Institute for Experimental Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
25
|
Qiu L, Shomroni I, Seidler P, Kippenberg TJ. Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. PHYSICAL REVIEW LETTERS 2020; 124:173601. [PMID: 32412282 DOI: 10.1103/physrevlett.124.173601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/18/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Optomechanical systems in the well-resolved-sideband regime are ideal for studying a myriad of quantum phenomena with mechanical systems, including backaction-evading measurements, mechanical squeezing, and nonclassical states generation. For these experiments, the mechanical oscillator should be prepared in its ground state, i.e., exhibit negligible residual excess motion compared to its zero-point motion. This can be achieved using the radiation pressure of laser light in the cavity by selectively driving the lower motional sideband, leading to sideband cooling. To date, the preparation of sideband-resolved optical systems to their zero-point energy has eluded laser cooling because of strong optical absorption heating. The alternative method of passive cooling suffers from the same problem, as the requisite milliKelvin environment is incompatible with the strong optical driving needed by many quantum protocols. Here, we employ a highly sideband-resolved silicon optomechanical crystal in a ^{3}He buffer-gas environment at ∼2 K to demonstrate laser sideband cooling to a mean thermal phonon occupancy of 0.09_{-0.01}^{+0.02} quantum (self-calibrated using motional sideband asymmetry), which is -7.4 dB of the oscillator's zero-point energy and corresponds to 92% ground state probability. Achieving such low occupancy by laser cooling opens the door to a wide range of quantum-optomechanical experiments in the optical domain.
Collapse
Affiliation(s)
- Liu Qiu
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Itay Shomroni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| | - Paul Seidler
- IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Station 3, CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Modal Coupling Effect in a Novel Nonlinear Micromechanical Resonator. MICROMACHINES 2020; 11:mi11050472. [PMID: 32365726 PMCID: PMC7281384 DOI: 10.3390/mi11050472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022]
Abstract
Capacitive micromechanical resonators share electrodes with the same bias voltage, resulting in the occurrence of electrostatic coupling between intrinsic modes. Unlike the traditional mechanical coupling, the electrostatic coupling is determined by the structural electric potential energy, and generally, it only occurs when the coupling modes operate in nonlinear regions. However, previous electrostatic coupling studies mainly focus on the stiffness softening region, with little attention on the opposite stiffness hardening condition. This paper presents a study on the electrostatic modal coupling effect in the stiffness hardening region. A novel capacitive micromechanical resonator with different modal nonlinearities is designed and fabricated. It is demonstrated that activating a cavity mode can shift the fundamental resonance of the manipulated mode by nearly 90 times its mechanical bandwidth. Moreover, the frequency shifting direction is found to be related to the manipulated mode’s nonlinearity, while the frequency hopscotch is determined by the cavity mode’s nonlinearity. The electrostatic coupling has been proven to be an efficient and tunable dynamical coupling with great potential for tuning the frequency in a wide range. The modal coupling theory displayed in this paper is suitable for most capacitive resonators and can be used to improve the resonator’s performance.
Collapse
|
27
|
Bothner D, Yanai S, Iniguez-Rabago A, Yuan M, Blanter YM, Steele GA. Cavity electromechanics with parametric mechanical driving. Nat Commun 2020; 11:1589. [PMID: 32221296 PMCID: PMC7101360 DOI: 10.1038/s41467-020-15389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Microwave optomechanical circuits have been demonstrated to be powerful tools for both exploring fundamental physics of macroscopic mechanical oscillators, as well as being promising candidates for on-chip quantum-limited microwave devices. In most experiments so far, the mechanical oscillator is either used as a passive element and its displacement is detected using the superconducting cavity, or manipulated by intracavity fields. Here, we explore the possibility to directly and parametrically manipulate the mechanical nanobeam resonator of a cavity electromechanical system, which provides additional functionality to the toolbox of microwave optomechanics. In addition to using the cavity as an interferometer to detect parametrically modulated mechanical displacement and squeezed thermomechanical motion, we demonstrate that this approach can realize a phase-sensitive parametric amplifier for intracavity microwave photons. Future perspectives of optomechanical systems with a parametrically driven mechanical oscillator include exotic bath engineering with negative effective photon temperatures, or systems with enhanced optomechanical nonlinearities. Microwave circuits are interesting tools for microwave optomechanics and quantum information processing. Here, the authors demonstrate a phase-sensitive microwave amplifier by using parametric frequency modulation of a MHz mechanical nanobeam integrated in a superconducting microwave cavity.
Collapse
Affiliation(s)
- D Bothner
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| | - S Yanai
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - A Iniguez-Rabago
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - M Yuan
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.,Paul-Drude-Institut für Festkörperphysik Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Ya M Blanter
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - G A Steele
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| |
Collapse
|
28
|
Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. Nat Commun 2020; 11:1183. [PMID: 32184387 PMCID: PMC7078202 DOI: 10.1038/s41467-020-14910-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/10/2020] [Indexed: 11/23/2022] Open
Abstract
Electromagnetic fields carry momentum, which upon reflection on matter gives rise to the radiation pressure of photons. The radiation pressure has recently been utilized in cavity optomechanics for controlling mechanical motions of macroscopic objects at the quantum limit. However, because of the weakness of the interaction, attempts so far had to use a strong coherent drive to reach the quantum limit. Therefore, the single-photon quantum regime, where even the presence of a totally off-resonant single photon alters the quantum state of the mechanical mode significantly, is one of the next milestones in cavity optomechanics. Here we demonstrate an artificial realization of the radiation pressure of microwave photons acting on phonons in a surface acoustic wave resonator. The order-of-magnitude enhancement of the interaction strength originates in the well-tailored, strong, second-order nonlinearity of a superconducting Josephson junction circuit. The synthetic radiation pressure interaction adds a key element to the quantum optomechanical toolbox and can be applied to quantum information interfaces between electromagnetic and mechanical degrees of freedom. The radiation pressure of light on a mechanical oscillator can be used to manipulate mechanical degrees of freedom in the quantum regime. Noguchi et al. use Josephson junctions to realize an artificial system where the radiation pressure of a single photon is stronger than the effect of dissipation.
Collapse
|
29
|
Chowdhury A, Vezio P, Bonaldi M, Borrielli A, Marino F, Morana B, Prodi GA, Sarro PM, Serra E, Marin F. Quantum Signature of a Squeezed Mechanical Oscillator. PHYSICAL REVIEW LETTERS 2020; 124:023601. [PMID: 32004051 DOI: 10.1103/physrevlett.124.023601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Recent optomechanical experiments have observed nonclassical properties in macroscopic mechanical oscillators. A key indicator of such properties is the asymmetry in the strength of the motional sidebands produced in the probe electromagnetic field, which is originated by the noncommutativity between the oscillator ladder operators. Here we extend the analysis to a squeezed state of an oscillator embedded in an optical cavity, produced by the parametric effect originated by a suitable combination of optical fields. The motional sidebands assume a peculiar shape, related to the modified system dynamics, with asymmetric features revealing and quantifying the quantum component of the squeezed oscillator motion.
Collapse
Affiliation(s)
- A Chowdhury
- CNR-INO, L.go Enrico Fermi 6, I-50125 Firenze, Italy
| | - P Vezio
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
| | - M Bonaldi
- Institute of Materials for Electronics and Magnetism, Nanoscience-Trento-FBK Division, 38123 Povo, Trento, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, I-38123 Povo, Trento, Italy
| | - A Borrielli
- Institute of Materials for Electronics and Magnetism, Nanoscience-Trento-FBK Division, 38123 Povo, Trento, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, I-38123 Povo, Trento, Italy
| | - F Marino
- CNR-INO, L.go Enrico Fermi 6, I-50125 Firenze, Italy
- INFN, Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - B Morana
- Institute of Materials for Electronics and Magnetism, Nanoscience-Trento-FBK Division, 38123 Povo, Trento, Italy
- Dept. of Microelectronics and Computer Engineering /ECTM/DIMES, Delft University of Technology, Feldmanweg 17, 2628 CT Delft, Netherlands
| | - G A Prodi
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, I-38123 Povo, Trento, Italy
- Dipartimento di Fisica, Università di Trento, I-38123 Povo, Trento, Italy
| | - P M Sarro
- Dept. of Microelectronics and Computer Engineering /ECTM/DIMES, Delft University of Technology, Feldmanweg 17, 2628 CT Delft, Netherlands
| | - E Serra
- Istituto Nazionale di Fisica Nucleare (INFN), Trento Institute for Fundamental Physics and Application, I-38123 Povo, Trento, Italy
- Dept. of Microelectronics and Computer Engineering /ECTM/DIMES, Delft University of Technology, Feldmanweg 17, 2628 CT Delft, Netherlands
| | - F Marin
- CNR-INO, L.go Enrico Fermi 6, I-50125 Firenze, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Carrara 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN, Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
30
|
Rodrigues IC, Bothner D, Steele GA. Coupling microwave photons to a mechanical resonator using quantum interference. Nat Commun 2019; 10:5359. [PMID: 31767836 PMCID: PMC6877727 DOI: 10.1038/s41467-019-12964-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/10/2019] [Indexed: 11/10/2022] Open
Abstract
The field of optomechanics has emerged as leading platform for achieving quantum control of macroscopic mechanical objects. Implementations of microwave optomechanics to date have coupled microwave photons to mechanical resonators using a moving capacitance. While simple and effective, the capacitive scheme suffers from limitations on the maximum achievable coupling strength. Here, we experimentally implement a fundamentally different approach: flux-mediated optomechanical coupling. In this scheme, mechanical displacements modulate the flux in a superconducting quantum interference device (SQUID) that forms the inductor of a microwave resonant circuit. We demonstrate that this flux-mediated coupling can be tuned in situ by the magnetic flux in the SQUID, enabling nanosecond flux tuning of the optomechanical coupling. Furthermore, we observe linear scaling of the single-photon coupling rate with the in-plane magnetic transduction field, a trend with the potential to overcome the limits of capacitive optomechanics, opening the door for a new generation of groundbreaking optomechanical experiments. Capacitive optomechanics in the microwave regime suffers from inherent and practical limitations on the maximum achievable coupling strength. Here, the authors demonstrate flux-mediated inductive optomechanical coupling allowing tunable single-photon coupling rates.
Collapse
Affiliation(s)
- I C Rodrigues
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - D Bothner
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands
| | - G A Steele
- Kavli Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA, Delft, The Netherlands.
| |
Collapse
|
31
|
Delaney RD, Reed AP, Andrews RW, Lehnert KW. Measurement of Motion beyond the Quantum Limit by Transient Amplification. PHYSICAL REVIEW LETTERS 2019; 123:183603. [PMID: 31763905 DOI: 10.1103/physrevlett.123.183603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Through simultaneous but unequal electromechanical amplification and cooling processes, we create a method for a nearly noiseless pulsed measurement of mechanical motion. We use transient electromechanical amplification (TEA) to monitor a single motional quadrature with a total added noise -8.5±2.0 dB relative to the zero-point motion of the oscillator, or equivalently the quantum limit for simultaneous measurement of both mechanical quadratures. We demonstrate that TEA can be used to resolve fine structure in the phase space of a mechanical oscillator by tomographically reconstructing the density matrix of a squeezed state of motion. Without any inference or subtraction of noise, we directly observe a squeezed variance 2.8±0.3 dB below the oscillator's zero-point motion.
Collapse
Affiliation(s)
- R D Delaney
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - A P Reed
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Honeywell Quantum Solutions, Broomfield, Colorado 80021, USA
| | - R W Andrews
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- HRL Laboratories, LLC, Malibu, California 90265, USA
| | - K W Lehnert
- JILA, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- National Institute of Standards and Technology, Boulder, Colorado 80309, USA
| |
Collapse
|
32
|
Muhonen JT, La Gala GR, Leijssen R, Verhagen E. State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses. PHYSICAL REVIEW LETTERS 2019; 123:113601. [PMID: 31573245 DOI: 10.1103/physrevlett.123.113601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Indexed: 06/10/2023]
Abstract
Pulsed optomechanical measurements enable squeezing, nonclassical state creation, and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large vacuum optomechanical coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude x_{zpf}. We study the effect of other mechanical modes that limit the conditional state width to 58x_{zpf}, and show how decoherence causes the state to grow in time.
Collapse
Affiliation(s)
- Juha T Muhonen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
| | - Giada R La Gala
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Rick Leijssen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| | - Ewold Verhagen
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
33
|
Burd SC, Srinivas R, Bollinger JJ, Wilson AC, Wineland DJ, Leibfried D, Slichter DH, Allcock DTC. Quantum amplification of mechanical oscillator motion. Science 2019; 364:1163-1165. [PMID: 31221854 PMCID: PMC11566721 DOI: 10.1126/science.aaw2884] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/11/2019] [Indexed: 11/17/2024]
Abstract
Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator's motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.
Collapse
Affiliation(s)
- S C Burd
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - R Srinivas
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - J J Bollinger
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - A C Wilson
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D J Wineland
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | - D Leibfried
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D H Slichter
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - D T C Allcock
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
34
|
Optical backaction-evading measurement of a mechanical oscillator. Nat Commun 2019; 10:2086. [PMID: 31064984 PMCID: PMC6504947 DOI: 10.1038/s41467-019-10024-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/19/2019] [Indexed: 11/11/2022] Open
Abstract
Quantum mechanics imposes a limit on the precision of a continuous position measurement of a harmonic oscillator, due to backaction arising from quantum fluctuations in the measurement field. This standard quantum limit can be surpassed by monitoring only one of the two non-commuting quadratures of the motion, known as backaction-evading measurement. This technique has not been implemented using optical interferometers to date. Here we demonstrate, in a cavity optomechanical system operating in the optical domain, a continuous two-tone backaction-evading measurement of a localized gigahertz-frequency mechanical mode of a photonic-crystal nanobeam cryogenically and optomechanically cooled close to the ground state. Employing quantum-limited optical heterodyne detection, we explicitly show the transition from conventional to backaction-evading measurement. We observe up to 0.67 dB (14%) reduction of total measurement noise, thereby demonstrating the viability of backaction-evading measurements in nanomechanical resonators for optical ultrasensitive measurements of motion and force. Measurements of motion that avoid quantum backaction, with the potential to surpass the standard quantum limit, have so far been demonstrated using microwave radiation. Here, Shomroni, Qiu et al. demonstrate a backaction-evading measurement of the motion of a nanomechanical beam using laser light.
Collapse
|
35
|
Kalaee M, Mirhosseini M, Dieterle PB, Peruzzo M, Fink JM, Painter O. Quantum electromechanics of a hypersonic crystal. NATURE NANOTECHNOLOGY 2019; 14:334-339. [PMID: 30778214 DOI: 10.1038/s41565-019-0377-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Recent technical developments in the fields of quantum electromechanics and optomechanics have spawned nanoscale mechanical transducers with the sensitivity to measure mechanical displacements at the femtometre scale and the ability to convert electromagnetic signals at the single photon level. A key challenge in this field is obtaining strong coupling between motion and electromagnetic fields without adding additional decoherence. Here we present an electromechanical transducer that integrates a high-frequency (0.42 GHz) hypersonic phononic crystal with a superconducting microwave circuit. The use of a phononic bandgap crystal enables quantum-level transduction of hypersonic mechanical motion and concurrently eliminates decoherence caused by acoustic radiation. Devices with hypersonic mechanical frequencies provide a natural pathway for integration with Josephson junction quantum circuits, a leading quantum computing technology, and nanophotonic systems capable of optical networking and distributing quantum information.
Collapse
Affiliation(s)
- Mahmoud Kalaee
- Kavli Nanoscience Institute and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - Mohammad Mirhosseini
- Kavli Nanoscience Institute and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - Paul B Dieterle
- Kavli Nanoscience Institute and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
| | - Matilda Peruzzo
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Johannes M Fink
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Oskar Painter
- Kavli Nanoscience Institute and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
36
|
Ockeloen-Korppi CF, Damskägg E, Paraoanu GS, Massel F, Sillanpää MA. Revealing Hidden Quantum Correlations in an Electromechanical Measurement. PHYSICAL REVIEW LETTERS 2018; 121:243601. [PMID: 30608715 DOI: 10.1103/physrevlett.121.243601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 06/09/2023]
Abstract
Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement backaction, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the backaction is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such "ponderomotive" squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechanical oscillator. Under a strong measurement, the emitted field develops complex-valued quantum correlations, which in general are not completely accessible by standard homodyne measurements. We recover these hidden correlations, using a phase-sensitive measurement scheme employing two local oscillators. The utilization of hidden correlations presents a step forward in the detection of weak forces, as it allows us to fully utilize the quantum noise reduction under the conditions of strong force sensitivity.
Collapse
Affiliation(s)
- C F Ockeloen-Korppi
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - E Damskägg
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - G S Paraoanu
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - F Massel
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| | - M A Sillanpää
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| |
Collapse
|
37
|
Li J, Zhu SY, Agarwal GS. Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. PHYSICAL REVIEW LETTERS 2018; 121:203601. [PMID: 30500215 DOI: 10.1103/physrevlett.121.203601] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 06/09/2023]
Abstract
We show how to generate tripartite entanglement in a cavity magnomechanical system which consists of magnons, cavity microwave photons, and phonons. The magnons are embodied by a collective motion of a large number of spins in a macroscopic ferrimagnet, and are driven directly by an electromagnetic field. The cavity photons and magnons are coupled via magnetic dipole interaction, and the magnons and phonons are coupled via magnetostrictive (radiation pressurelike) interaction. We show optimal parameter regimes for achieving the tripartite entanglement where magnons, cavity photons, and phonons are entangled with each other, and we further prove that the steady state of the system is a genuinely tripartite entangled state. The entanglement is robust against temperature. Our results indicate that cavity magnomechanical systems could provide a promising platform for the study of macroscopic quantum phenomena.
Collapse
Affiliation(s)
- Jie Li
- Department of Physics, Zhejiang University, Hangzhou 310027, China
- Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Shi-Yao Zhu
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - G S Agarwal
- Institute for Quantum Science and Engineering and Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas 77843, USA
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
38
|
Gu WJ, Yi Z, Sun LH, Yan Y. Generation of mechanical squeezing and entanglement via mechanical modulations. OPTICS EXPRESS 2018; 26:30773-30785. [PMID: 30469969 DOI: 10.1364/oe.26.030773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
We discuss the generation of strong stationary mechanical squeezing and entanglement in the modulated two-and three-mode optomechanics. Following the reservoir engineering scheme, the beam-splitter and parametric optomechanical interactions can be simultaneously achieved through appropriately choosing the modulation frequency on mechanical motion, which is essential to strong squeezing and entanglement. In the two-mode modulated optomechanics, squeezing is tunable by the relative ratio of parametric and beam-splitter couplings, and also robust to thermal noise due to the simultaneously optically induced cooling process. In the three-mode modulated optomechanics, strong EPR-type entanglement is also attainable, which can surpass the 3dB limit of nondegenerate parametric interaction. However, the ideal entanglement is impossible since only one of mechanical Bogoliubov modes is cooled by the cavity mode, which also makes the entanglement fragile to the mechanical noise.
Collapse
|
39
|
Stabilized entanglement of massive mechanical oscillators. Nature 2018; 556:478-482. [DOI: 10.1038/s41586-018-0038-x] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/02/2018] [Indexed: 11/08/2022]
|
40
|
Huang J, Karim MF, Wu J, Chen T, Liu A. Parametric Excitation of Optomechanical Resonators by Periodical Modulation. MICROMACHINES 2018; 9:mi9040193. [PMID: 30424126 PMCID: PMC6187312 DOI: 10.3390/mi9040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 01/23/2023]
Abstract
Optical excitation of mechanical resonators has long been a research interest, since it has great applications in the physical and engineering field. Previous optomechanical methods rely on the wavelength-dependent, optical anti-damping effects, with the working range limited to the blue-detuning range. In this study, we experimentally demonstrated the excitation of optomechanical resonators by periodical modulation. The wavelength working range was extended from the blue-detuning to red-detuning range. This demonstration will provide a new way to excite mechanical resonators and benefit practical applications, such as optical mass sensors and gyroscopes with an extended working range.
Collapse
Affiliation(s)
- Jianguo Huang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Muhammad Faeyz Karim
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jiuhui Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Tianning Chen
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Aiqun Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
41
|
Malz D, Tóth LD, Bernier NR, Feofanov AK, Kippenberg TJ, Nunnenkamp A. Quantum-Limited Directional Amplifiers with Optomechanics. PHYSICAL REVIEW LETTERS 2018; 120:023601. [PMID: 29376677 DOI: 10.1103/physrevlett.120.023601] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/15/2017] [Indexed: 05/16/2023]
Abstract
Directional amplifiers are an important resource in quantum-information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation of phase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators; we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.
Collapse
Affiliation(s)
- Daniel Malz
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - László D Tóth
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Nathan R Bernier
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Alexey K Feofanov
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andreas Nunnenkamp
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
42
|
Abstract
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry–Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 105 times slower mechanical waves. In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.
Collapse
|
43
|
Hong S, Riedinger R, Marinković I, Wallucks A, Hofer SG, Norte RA, Aspelmeyer M, Gröblacher S. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 2017; 358:203-206. [DOI: 10.1126/science.aan7939] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/30/2017] [Indexed: 11/02/2022]
|
44
|
Leijssen R, La Gala GR, Freisem L, Muhonen JT, Verhagen E. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nat Commun 2017; 8:ncomms16024. [PMID: 28685755 PMCID: PMC5504350 DOI: 10.1038/ncomms16024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/19/2017] [Indexed: 01/19/2023] Open
Abstract
Although the interaction between light and motion in cavity optomechanical systems is inherently nonlinear, experimental demonstrations to date have allowed a linearized description in all except highly driven cases. Here, we demonstrate a nanoscale optomechanical system in which the interaction between light and motion is so large (single-photon cooperativity C0≈103) that thermal motion induces optical frequency fluctuations larger than the intrinsic optical linewidth. The system thereby operates in a fully nonlinear regime, which pronouncedly impacts the optical response, displacement measurement and radiation pressure backaction. Specifically, we measure an apparent optical linewidth that is dominated by thermo-mechanically induced frequency fluctuations over a wide temperature range, and show that in this regime thermal displacement measurements cannot be described by conventional analytical models. We perform a proof-of-concept demonstration of exploiting the nonlinearity to conduct sensitive quadratic readout of nanomechanical displacement. Finally, we explore how backaction in this regime affects the mechanical fluctuation spectra.
Collapse
Affiliation(s)
- Rick Leijssen
- Centre for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Giada R. La Gala
- Centre for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Lars Freisem
- Centre for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Juha T. Muhonen
- Centre for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ewold Verhagen
- Centre for Nanophotonics, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
45
|
Abstract
We consider transfer of a highly nonclassical quantum state through an optomechanical system. That is we investigate a protocol consisting of sequential upload, storage and reading out of the quantum state from a mechanical mode of an optomechanical system. We show that provided the input state is in a test-bed single-photon Fock state, the Wigner function of the recovered state can have negative values at the origin, which is a manifest of nonclassicality of the quantum state of the macroscopic mechanical mode and the overall transfer protocol itself. Moreover, we prove that the recovered state is quantum non-Gaussian for wide range of setup parameters. We verify that current electromechanical and optomechanical experiments can test this complete transfer of single photon.
Collapse
|
46
|
Kouh T, Hanay MS, Ekinci KL. Nanomechanical Motion Transducers for Miniaturized Mechanical Systems. MICROMACHINES 2017. [PMCID: PMC6189927 DOI: 10.3390/mi8040108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Taejoon Kouh
- Department of Physics, Kookmin University, Seoul 136-702, Korea
- Correspondence: ; Tel.: +82-2-910-4873
| | - M. Selim Hanay
- Department of Mechanical Engineering, and the National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey;
| | - Kamil L. Ekinci
- Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, MA 02215, USA;
| |
Collapse
|
47
|
Joshi C, Irish EK, Spiller TP. Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model. Sci Rep 2017; 7:45587. [PMID: 28358025 PMCID: PMC5372368 DOI: 10.1038/srep45587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities.
Collapse
Affiliation(s)
- Chaitanya Joshi
- Department of Physics and York Centre for Quantum Technologies, University of York, Heslington, York, YO10 5DD, UK
| | - Elinor K Irish
- Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Timothy P Spiller
- Department of Physics and York Centre for Quantum Technologies, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
48
|
Ockeloen-Korppi CF, Damskägg E, Pirkkalainen JM, Heikkilä TT, Massel F, Sillanpää MA. Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations. PHYSICAL REVIEW LETTERS 2017; 118:103601. [PMID: 28339232 DOI: 10.1103/physrevlett.118.103601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Indexed: 06/06/2023]
Abstract
A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. The device also strongly squeezes microwave radiation by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.
Collapse
Affiliation(s)
- C F Ockeloen-Korppi
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - E Damskägg
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - J-M Pirkkalainen
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - T T Heikkilä
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL) FI-40014 University of Jyväskylä, Finland
| | - F Massel
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL) FI-40014 University of Jyväskylä, Finland
| | - M A Sillanpää
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| |
Collapse
|
49
|
Rashid M, Tufarelli T, Bateman J, Vovrosh J, Hempston D, Kim MS, Ulbricht H. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics. PHYSICAL REVIEW LETTERS 2016; 117:273601. [PMID: 28084746 DOI: 10.1103/physrevlett.117.273601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Indexed: 06/06/2023]
Abstract
We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.
Collapse
Affiliation(s)
- Muddassar Rashid
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Tommaso Tufarelli
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - James Bateman
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
- Department of Physics, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Jamie Vovrosh
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David Hempston
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - M S Kim
- QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
| | - Hendrik Ulbricht
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
50
|
Ockeloen-Korppi CF, Damskägg E, Pirkkalainen JM, Clerk AA, Woolley MJ, Sillanpää MA. Quantum Backaction Evading Measurement of Collective Mechanical Modes. PHYSICAL REVIEW LETTERS 2016; 117:140401. [PMID: 27740800 DOI: 10.1103/physrevlett.117.140401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum backaction of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the backaction and be made with arbitrary precision. Here we demonstrate quantum backaction evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.
Collapse
Affiliation(s)
- C F Ockeloen-Korppi
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - E Damskägg
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - J-M Pirkkalainen
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| | - A A Clerk
- Department of Physics, McGill University, 3600 rue University, Montréal, Quebec H3A 2T8, Canada
| | - M J Woolley
- School of Engineering and Information Technology, UNSW Canberra, Australian Capital Territory 2600, Australia
| | - M A Sillanpää
- Department of Applied Physics, Aalto University, P.O. Box 15100, FI-00076 AALTO, Finland
| |
Collapse
|