1
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
2
|
Thiagarajan R, Inamdar MM, Riveline D. Interplay between cell height variations and planar pulsations in epithelial monolayers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:49. [PMID: 35587840 DOI: 10.1140/epje/s10189-022-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Biological tissues change their shapes through collective interactions of cells. This coordination sets length and time scales for dynamics where precision is essential, in particular during morphogenetic events. However, how these scales emerge remains unclear. Here, we address this question using the pulsatile domains observed in confluent epithelial MDCK monolayers where cells exhibit synchronous contraction and extension cycles of [Formula: see text] h duration and [Formula: see text] length scale. We report that the monolayer thickness changes gradually in space and time by more than twofold in order to counterbalance the contraction and extension of the incompressible cytoplasm. We recapitulate these pulsatile dynamics using a continuum model and show that incorporation of cell stiffness dependent height variations is critical both for generating temporal pulsations and establishing the domain size. We propose that this feedback between height and mechanics could be important in coordinating the length scales of tissue dynamics.
Collapse
Affiliation(s)
- Raghavan Thiagarajan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Daniel Riveline
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
- Laboratory of Cell Physics ISIS/IGBMC, CNRS, Université de Strasbourg, Strasbourg, France.
- UMR7104, Centre National de la Recherche Scientifique, Illkirch, France.
- U964, Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
| |
Collapse
|
3
|
Day TC, Höhn SS, Zamani-Dahaj SA, Yanni D, Burnetti A, Pentz J, Honerkamp-Smith AR, Wioland H, Sleath HR, Ratcliff WC, Goldstein RE, Yunker PJ. Cellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law. eLife 2022; 11:e72707. [PMID: 35188101 PMCID: PMC8860445 DOI: 10.7554/elife.72707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.
Collapse
Affiliation(s)
- Thomas C Day
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Stephanie S Höhn
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Seyed A Zamani-Dahaj
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Quantitative Biosciences Graduate Program, Georgia Institute of TechnologyAtlantaUnited States
| | - David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Jennifer Pentz
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Aurelia R Honerkamp-Smith
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hugo Wioland
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hannah R Sleath
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
4
|
Ghosh S, Gutti S, Chaudhuri D. Pattern formation, localized and running pulsation on active spherical membranes. SOFT MATTER 2021; 17:10614-10627. [PMID: 34605510 DOI: 10.1039/d1sm00937k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.
Collapse
Affiliation(s)
- Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb, Croatia.
| | - Sashideep Gutti
- BITS Pilani Hyderabad Campus, Hyderabad 500078, Telengana, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Sinha S, Malmi-Kakkada AN. Interparticle Adhesion Regulates the Surface Roughness of Growing Dense Three-Dimensional Active Particle Aggregates. J Phys Chem B 2021; 125:10445-10451. [PMID: 34499496 DOI: 10.1021/acs.jpcb.1c02758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Activity and self-generated motion are fundamental features observed in many living and nonliving systems. Given that interparticle adhesive forces can regulate particle dynamics, we investigate how interparticle adhesion strength controls the boundary growth and roughness of active particle aggregates. Using particle based simulations incorporating both activity (birth, death, and growth) and systematic physical interactions (elasticity and adhesion), we establish that interparticle adhesion strength (fad) controls the surface roughness of a densely packed three-dimensional(3D) active particle aggregate expanding into a highly viscous medium. We discover that the surface roughness of a 3D active particle aggregate increases in proportion to the interparticle adhesion strength (fad) and show that asymmetry in the radial and transverse active particle mean-squared displacement (MSD) suppresses 3D surface roughness at lower adhesion strengths. By analyzing the statistical properties of particle displacements at the aggregate periphery, we determine that the 3D surface roughness is driven by the movement of active particle toward the core at high interparticle adhesion strengths. Our results elucidate the physics controlling the expansion of adhesive 3D active particle collectives into a highly viscous medium, with implications into understanding stochastic interface growth in active matter systems characterized by self-generation of particles.
Collapse
Affiliation(s)
- Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas 78712, United States
| | - Abdul N Malmi-Kakkada
- Department of Chemistry and Physics, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
6
|
Williamson JJ, Salbreux G. Stability and Roughness of Interfaces in Mechanically Regulated Tissues. PHYSICAL REVIEW LETTERS 2018; 121:238102. [PMID: 30576196 PMCID: PMC6420071 DOI: 10.1103/physrevlett.121.238102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell division and death can be regulated by the mechanical forces within a tissue. We study the consequences for the stability and roughness of a propagating interface by analyzing a model of mechanically regulated tissue growth in the regime of small driving forces. For an interface driven by homeostatic pressure imbalance or leader-cell motility, long and intermediate-wavelength instabilities arise, depending, respectively, on an effective viscosity of cell number change, and on substrate friction. A further mechanism depends on the strength of directed motility forces acting in the bulk. We analyze the fluctuations of a stable interface subjected to cell-level stochasticity, and find that mechanical feedback can help preserve reproducibility at the tissue scale. Our results elucidate mechanisms that could be important for orderly interface motion in developing tissues.
Collapse
Affiliation(s)
- John J Williamson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
7
|
Kalziqi A, Yanni D, Thomas J, Ng SL, Vivek S, Hammer BK, Yunker PJ. Immotile Active Matter: Activity from Death and Reproduction. PHYSICAL REVIEW LETTERS 2018; 120:018101. [PMID: 29350941 DOI: 10.1103/physrevlett.120.018101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Unlike equilibrium atomic solids, biofilms-soft solids composed of bacterial cells-do not experience significant thermal fluctuations at the constituent level. However, living cells stochastically reproduce and die, provoking a mechanical response. We investigate the mechanical consequences of cellular death and reproduction by measuring surface-height fluctuations of biofilms containing two mutually antagonistic strains of Vibrio cholerae that kill one another on contact via the type VI secretion system. While studies of active matter typically focus on activity via constituent mobility, here, activity is mediated by reproduction and death events in otherwise immobilized cells. Biofilm surface topography is measured in the nearly homeostatic limit via white light interferometry. Although biofilms are far from equilibrium systems, measured surface-height fluctuation spectra resemble the spectra of thermal permeable membranes but with an activity-mediated effective temperature, as predicted by Risler, Peilloux, and Prost [Phys. Rev. Lett. 115, 258104 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.258104]. By comparing the activity of killer strains of V. cholerae with that of genetically modified strains that cannot kill each other and validating with individual-based simulations, we demonstrate that extracted effective temperatures increase with the amount of death and reproduction and that death and reproduction can fluidize biofilms. Together, these observations demonstrate the unique physical consequences of activity mediated by death and reproduction events.
Collapse
Affiliation(s)
- Arben Kalziqi
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - David Yanni
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jacob Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Skanda Vivek
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
8
|
McNally L, Bernardy E, Thomas J, Kalziqi A, Pentz J, Brown SP, Hammer BK, Yunker PJ, Ratcliff WC. Killing by Type VI secretion drives genetic phase separation and correlates with increased cooperation. Nat Commun 2017; 8:14371. [PMID: 28165005 PMCID: PMC5303878 DOI: 10.1038/ncomms14371] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022] Open
Abstract
By nature of their small size, dense growth and frequent need for extracellular metabolism, microbes face persistent public goods dilemmas. Genetic assortment is the only general solution stabilizing cooperation, but all known mechanisms structuring microbial populations depend on the availability of free space, an often unrealistic constraint. Here we describe a class of self-organization that operates within densely packed bacterial populations. Through mathematical modelling and experiments with Vibrio cholerae, we show how killing adjacent competitors via the Type VI secretion system (T6SS) precipitates phase separation via the 'Model A' universality class of order-disorder transition mediated by killing. We mathematically demonstrate that T6SS-mediated killing should favour the evolution of public goods cooperation, and empirically support this prediction using a phylogenetic comparative analysis. This work illustrates the twin role played by the T6SS, dealing death to local competitors while simultaneously creating conditions potentially favouring the evolution of cooperation with kin.
Collapse
Affiliation(s)
- Luke McNally
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Eryn Bernardy
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Jacob Thomas
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Arben Kalziqi
- School of Physics, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Jennifer Pentz
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology. Atlanta, Georgia 30332, USA
| |
Collapse
|
9
|
Doostmohammadi A, Thampi SP, Yeomans JM. Defect-Mediated Morphologies in Growing Cell Colonies. PHYSICAL REVIEW LETTERS 2016; 117:048102. [PMID: 27494503 DOI: 10.1103/physrevlett.117.048102] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Indexed: 05/27/2023]
Abstract
Morphological trends in growing colonies of living cells are at the core of physiological and evolutionary processes. Using active gel equations, which include cell division, we show that shape changes during the growth can be regulated by the dynamics of topological defects in the orientation of cells. The friction between the dividing cells and underlying substrate drives anisotropic colony shapes toward more isotropic morphologies, by mediating the number density and velocity of topological defects. We show that the defects interact with the interface at a specific interaction range, set by the vorticity length scale of flows within the colony, and that the cells predominantly reorient parallel to the interface due to division-induced active stresses.
Collapse
Affiliation(s)
- Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Sumesh P Thampi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|