1
|
Li Muli SS, Richardson TR, Bacca S. Revisiting the Helium Isotope-Shift Puzzle with Improved Uncertainties from Nuclear Structure Corrections. PHYSICAL REVIEW LETTERS 2025; 134:032502. [PMID: 39927974 DOI: 10.1103/physrevlett.134.032502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/11/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025]
Abstract
Measurements of the difference between the squared charge radii of the helion (^{3}He nucleus) and the α particle (^{4}He nucleus) have been characterized by longstanding tensions recently spotlighted in the 3.6σ discrepancy of the extractions from ordinary atoms versus those from muonic atoms [Karsten Schuhmann et al., arXiv:2305.11679]. Here, we present a novel analysis of uncertainties in nuclear structure corrections that must be supplied by theory to enable the extraction of the difference in radii from spectroscopic experiments. We use modern Bayesian inference techniques to quantify uncertainties stemming from the truncation of the chiral effective field theory expansion of the nuclear force for both muonic and ordinary atoms. With the new nuclear structure input, the helium isotope-shift puzzle cannot be explained, rather, it is reinforced to a 4σ discrepancy.
Collapse
Affiliation(s)
- Simone Salvatore Li Muli
- Johannes Gutenberg-Universität, Institut für Kernphysik and PRISMA, +, Cluster of Excellence, 55128 Mainz, Germany
- Chalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden
| | - Thomas R Richardson
- Johannes Gutenberg-Universität, Institut für Kernphysik and PRISMA, +, Cluster of Excellence, 55128 Mainz, Germany
| | - Sonia Bacca
- Johannes Gutenberg-Universität, Institut für Kernphysik and PRISMA, +, Cluster of Excellence, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
2
|
Gnech A, Fore B, Tropiano AJ, Lovato A. Distilling the Essential Elements of Nuclear Binding via Neural-Network Quantum States. PHYSICAL REVIEW LETTERS 2024; 133:142501. [PMID: 39423417 DOI: 10.1103/physrevlett.133.142501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 08/14/2024] [Indexed: 10/21/2024]
Abstract
To distill the essential elements of nuclear binding, we seek the simplest Hamiltonian capable of modeling atomic nuclei with percent-level accuracy. A critical aspect of this endeavor consists of accurately solving the quantum many-body problem without incurring an exponential computing cost with the number of nucleons. We address this challenge by leveraging a variational Monte Carlo method based on a highly expressive neural-network quantum state ansatz. In addition to computing binding energies and charge radii of nuclei with up to A=20 nucleons, by evaluating their magnetic moments, we demonstrate that neural-network quantum states are able to correctly capture the self-emerging nuclear shell structure. To this end, we introduce a novel computational protocol based on adding an external magnetic field to the nuclear Hamiltonian, which allows the neural network to learn the preferred polarization of the nucleus within the given magnetic field.
Collapse
|
3
|
Roth R, Petri M. Electromagnetic properties of nuclei from first principles: a case for synergies between experiment and theory. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230119. [PMID: 38910404 DOI: 10.1098/rsta.2023.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/23/2024] [Indexed: 06/25/2024]
Abstract
One of the overarching goals in nuclear science is to understand how the nuclear chart emerges from the underlying fundamental interactions. The description of the structure of nuclei from first principles, using ab initio methods for the solution of the many-nucleon problem with inputs from chiral effective field theory, has advanced dramatically over the past two decades. We present an overview over the available ab initio tools with a specific emphasis on electromagnetic observables, such as multipole moments and transition strengths. These observables still pose a challenge for ab initio theory and are one of the most exciting domains to exploit synergies with modern experiments. Precise experimental data are vital for the validation of the theory predictions and the refinement of ab initio methods. We discuss some of the past and future experimental efforts highlighting these synergies. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.
Collapse
Affiliation(s)
- R Roth
- Institut für Kernphysik, Technische Universität Darmstadt , Darmstadt 64289, Germany
- Helmholtz Forschungsakademie Hessen für FAIR (HFHF) , Darmstadt 64291, Germany
| | - M Petri
- School of Physics, Engineering and Technology, University of York , York YO10 5DD, UK
| |
Collapse
|
4
|
Ma YZ, Lin Z, Lu BN, Elhatisari S, Lee D, Li N, Meißner UG, Steiner AW, Wang Q. Structure Factors for Hot Neutron Matter from Ab Initio Lattice Simulations with High-Fidelity Chiral Interactions. PHYSICAL REVIEW LETTERS 2024; 132:232502. [PMID: 38905669 DOI: 10.1103/physrevlett.132.232502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/27/2024] [Accepted: 05/08/2024] [Indexed: 06/23/2024]
Abstract
We present the first ab initio lattice calculations of spin and density correlations in hot neutron matter using high-fidelity interactions at next-to-next-to-next-to-leading order in chiral effective field theory. These correlations have a large impact on neutrino heating and shock revival in core-collapse supernovae and are encapsulated in functions called structure factors. Unfortunately, calculations of structure factors using high-fidelity chiral interactions were well out of reach using existing computational methods. In this Letter, we solve the problem using a computational approach called the rank-one operator (RO) method. The RO method is a general technique with broad applications to simulations of fermionic many-body systems. It solves the problem of exponential scaling of computational effort when using perturbation theory for higher-body operators and higher-order corrections. Using the RO method, we compute the vector and axial static structure factors for hot neutron matter as a function of temperature and density. The ab initio lattice results are in good agreement with virial expansion calculations at low densities but are more reliable at higher densities. Random phase approximation codes used to estimate neutrino opacity in core-collapse supernovae simulations can now be calibrated with ab initio lattice calculations.
Collapse
Affiliation(s)
- Yuan-Zhuo Ma
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (MOE), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
- Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, Michigan 48824, USA
| | | | - Bing-Nan Lu
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | | | | | | | - Ulf-G Meißner
- Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn, Germany
- Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany
- Tbilisi State University, 0186 Tbilisi, Georgia
| | | | - Qian Wang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (MOE), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Pang PTH, Dietrich T, Coughlin MW, Bulla M, Tews I, Almualla M, Barna T, Kiendrebeogo RW, Kunert N, Mansingh G, Reed B, Sravan N, Toivonen A, Antier S, VandenBerg RO, Heinzel J, Nedora V, Salehi P, Sharma R, Somasundaram R, Van Den Broeck C. An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers. Nat Commun 2023; 14:8352. [PMID: 38123551 PMCID: PMC10733434 DOI: 10.1038/s41467-023-43932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙ neutron star to be [Formula: see text] km.
Collapse
Affiliation(s)
- Peter T H Pang
- Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Tim Dietrich
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany.
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Michael W Coughlin
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mattia Bulla
- The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91, Stockholm, Sweden
- Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
- INFN, Sezione di Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
- INAF, Osservatorio Astronomico d'Abruzzo, Via Mentore Maggini snc, 64100, Teramo, Italy
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mouza Almualla
- Department of Physics, American University of Sharjah, PO Box 26666, Sharjah, UAE
| | - Tyler Barna
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ramodgwendé Weizmann Kiendrebeogo
- Laboratoire de Physique et de Chimie de l'Environnement, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, 96 Boulevard de l'Observatoire, F06304, Nice Cedex 4, France
| | - Nina Kunert
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Gargi Mansingh
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Physics, American University, Washington, DC, 20016, USA
| | - Brandon Reed
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Physics and Astronomy, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Niharika Sravan
- Department of Physics, Drexel University, Philadelphia, PA, 19104, USA
| | - Andrew Toivonen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah Antier
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, 96 Boulevard de l'Observatoire, F06304, Nice Cedex 4, France
| | - Robert O VandenBerg
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jack Heinzel
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Vsevolod Nedora
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Pouyan Salehi
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Ritwik Sharma
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rahul Somasundaram
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622, Villeurbanne, France
- Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Chris Van Den Broeck
- Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
6
|
Annala E, Gorda T, Hirvonen J, Komoltsev O, Kurkela A, Nättilä J, Vuorinen A. Strongly interacting matter exhibits deconfined behavior in massive neutron stars. Nat Commun 2023; 14:8451. [PMID: 38114461 PMCID: PMC10730725 DOI: 10.1038/s41467-023-44051-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Neutron-star cores contain matter at the highest densities in our Universe. This highly compressed matter may undergo a phase transition where nuclear matter melts into deconfined quark matter, liberating its constituent quarks and gluons. Quark matter exhibits an approximate conformal symmetry, predicting a specific form for its equation of state (EoS), but it is currently unknown whether the transition takes place inside at least some physical neutron stars. Here, we quantify this likelihood by combining information from astrophysical observations and theoretical calculations. Using Bayesian inference, we demonstrate that in the cores of maximally massive stars, the EoS is consistent with quark matter. We do this by establishing approximate conformal symmetry restoration with high credence at the highest densities probed and demonstrating that the number of active degrees of freedom is consistent with deconfined matter. The remaining likelihood is observed to correspond to EoSs exhibiting phase-transition-like behavior, treated as arbitrarily rapid crossovers in our framework.
Collapse
Affiliation(s)
- Eemeli Annala
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
| | - Tyler Gorda
- Technische Universität Darmstadt, Department of Physics, 64289, Darmstadt, Germany.
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
| | - Joonas Hirvonen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland.
| | - Oleg Komoltsev
- Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Aleksi Kurkela
- Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Joonas Nättilä
- Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, USA.
- Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY, 10027, USA.
| | - Aleksi Vuorinen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
7
|
Raithel CA, Most ER. Degeneracy in the Inference of Phase Transitions in the Neutron Star Equation of State from Gravitational Wave Data. PHYSICAL REVIEW LETTERS 2023; 130:201403. [PMID: 37267559 DOI: 10.1103/physrevlett.130.201403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 06/04/2023]
Abstract
Gravitational wave (GW) detections of binary neutron star inspirals will be crucial for constraining the dense matter equation of state (EOS). We demonstrate a new degeneracy in the mapping from tidal deformability data to the EOS, which occurs for models with strong phase transitions. We find that there exists a new family of EOS with phase transitions that set in at different densities and that predict neutron star radii that differ by up to ∼500 m but that produce nearly identical tidal deformabilities for all neutron star masses. Next-generation GW detectors and advances in nuclear theory may be needed to resolve this degeneracy.
Collapse
Affiliation(s)
- Carolyn A Raithel
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA; Princeton Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, USA and Princeton Gravity Initiative, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, USA
| | - Elias R Most
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA; Princeton Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, USA and Princeton Gravity Initiative, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Keller J, Hebeler K, Schwenk A. Nuclear Equation of State for Arbitrary Proton Fraction and Temperature Based on Chiral Effective Field Theory and a Gaussian Process Emulator. PHYSICAL REVIEW LETTERS 2023; 130:072701. [PMID: 36867798 DOI: 10.1103/physrevlett.130.072701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
We calculate the equation of state of asymmetric nuclear matter at finite temperature based on chiral effective field theory interactions to next-to-next-to-next-to-leading order. Our results assess the theoretical uncertainties from the many-body calculation and the chiral expansion. Using a Gaussian process emulator for the free energy, we derive the thermodynamic properties of matter through consistent derivatives and use the Gaussian process to access arbitrary proton fraction and temperature. This enables a first nonparametric calculation of the equation of state in beta equilibrium, and of the speed of sound and the symmetry energy at finite temperature. Moreover, our results show that the thermal part of the pressure decreases with increasing densities.
Collapse
Affiliation(s)
- J Keller
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - K Hebeler
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Schwenk
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
9
|
Novario SJ, Lonardoni D, Gandolfi S, Hagen G. Trends of Neutron Skins and Radii of Mirror Nuclei from First Principles. PHYSICAL REVIEW LETTERS 2023; 130:032501. [PMID: 36763401 DOI: 10.1103/physrevlett.130.032501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/04/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
The neutron skin of atomic nuclei impacts the structure of neutron-rich nuclei, the equation of state of nucleonic matter, and the size of neutron stars. Here we predict the neutron skin of selected light- and medium-mass nuclei using coupled-cluster theory and the auxiliary field diffusion Monte Carlo method with two- and three-nucleon forces from chiral effective field theory. We find a linear correlation between the neutron skin and the isospin asymmetry in agreement with the liquid-drop model and compare with data. We also extract the linear relationship that describes the difference between neutron and proton radii of mirror nuclei and quantify the effect of charge symmetry breaking terms in the nuclear Hamiltonian. Our results for the mirror-difference charge radii and binding energies per nucleon agree with existing data.
Collapse
Affiliation(s)
- S J Novario
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - D Lonardoni
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
10
|
Huth S, Pang PTH, Tews I, Dietrich T, Le Fèvre A, Schwenk A, Trautmann W, Agarwal K, Bulla M, Coughlin MW, Van Den Broeck C. Constraining neutron-star matter with microscopic and macroscopic collisions. Nature 2022; 606:276-280. [PMID: 35676430 PMCID: PMC9177417 DOI: 10.1038/s41586-022-04750-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Interpreting high-energy, astrophysical phenomena, such as supernova explosions or neutron-star collisions, requires a robust understanding of matter at supranuclear densities. However, our knowledge about dense matter explored in the cores of neutron stars remains limited. Fortunately, dense matter is not probed only in astrophysical observations, but also in terrestrial heavy-ion collision experiments. Here we use Bayesian inference to combine data from astrophysical multi-messenger observations of neutron stars1-9 and from heavy-ion collisions of gold nuclei at relativistic energies10,11 with microscopic nuclear theory calculations12-17 to improve our understanding of dense matter. We find that the inclusion of heavy-ion collision data indicates an increase in the pressure in dense matter relative to previous analyses, shifting neutron-star radii towards larger values, consistent with recent observations by the Neutron Star Interior Composition Explorer mission5-8,18. Our findings show that constraints from heavy-ion collision experiments show a remarkable consistency with multi-messenger observations and provide complementary information on nuclear matter at intermediate densities. This work combines nuclear theory, nuclear experiment and astrophysical observations, and shows how joint analyses can shed light on the properties of neutron-rich supranuclear matter over the density range probed in neutron stars.
Collapse
Affiliation(s)
- Sabrina Huth
- Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| | - Peter T H Pang
- Nikhef, Amsterdam, The Netherlands.
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, The Netherlands.
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tim Dietrich
- Institut für Physik und Astronomie, Universität Potsdam, Potsdam, Germany
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany
| | - Arnaud Le Fèvre
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Achim Schwenk
- Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Heidelberg, Germany
| | | | - Kshitij Agarwal
- Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Mattia Bulla
- The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, Stockholm, Sweden
| | - Michael W Coughlin
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Chris Van Den Broeck
- Nikhef, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Diverse data tighten constraints for neutron stars. Nature 2022; 606:258-259. [PMID: 35676425 DOI: 10.1038/d41586-022-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
The Equation of State of Neutron-Rich Matter at Fourth Order of Chiral Effective Field Theory and the Radius of a Medium-Mass Neutron Star. UNIVERSE 2022. [DOI: 10.3390/universe8020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report neutron star predictions based on our most recent equations of state. These are derived from chiral effective field theory, which allows for a systematic development of nuclear forces, order by order. We utilize high-quality two-nucleon interactions and include all three-nucleon forces up to fourth order in the chiral expansion. Our ab initio predictions are restricted to the domain of applicability of chiral effective field theory. However, stellar matter in the interior of neutron stars can be up to several times denser than normal nuclear matter at saturation, and its composition is essentially unknown. Following established practices, we extend our microscopic predictions to higher densities matching piecewise polytropes. The radius of the average-size neutron star, about 1.4 solar masses, is sensitive to the pressure at normal densities, and thus it is suitable to constrain ab initio theories of the equation of state. For this reason, we focus on the radius of medium-mass stars. We compare our results with other theoretical predictions and recent constraints.
Collapse
|
13
|
Abstract
We report ab initio calculations of the S wave pairing gap in neutron matter calculated using realistic nuclear Hamiltonians that include two- and three-body interactions. We use a trial state, properly optimized to capture the essential pairing correlations, from which we extract ground state properties by means of auxiliary field diffusion Monte Carlo simulations. We extrapolate our results to the thermodynamic limit by studying the finite-size effects in the symmetry-restored projected Bardeen-Cooper-Schrieffer (PBCS) theory and compare our results to other ab initio studies done in the past. Our quantum Monte Carlo results for the pairing gap show a modest suppression with respect to the mean-field BCS values. These results can be connected to cold atom experiments, via the unitarity regime where fermionic superfluidity assumes a unified description, and they are important in the prediction of thermal properties and the cooling of neutron stars.
Collapse
|
14
|
Essick R, Tews I, Landry P, Schwenk A. Astrophysical Constraints on the Symmetry Energy and the Neutron Skin of ^{208}Pb with Minimal Modeling Assumptions. PHYSICAL REVIEW LETTERS 2021; 127:192701. [PMID: 34797158 DOI: 10.1103/physrevlett.127.192701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
The symmetry energy and its density dependence are crucial inputs for many nuclear physics and astrophysics applications, as they determine properties ranging from the neutron-skin thickness of nuclei to the crust thickness and the radius of neutron stars. Recently, PREX-II reported a value of 0.283±0.071 fm for the neutron-skin thickness of ^{208}Pb, implying a slope parameter L=106±37 MeV, larger than most ranges obtained from microscopic calculations and other nuclear experiments. We use a nonparametric equation of state representation based on Gaussian processes to constrain the symmetry energy S_{0}, L, and R_{skin}^{^{208}Pb} directly from observations of neutron stars with minimal modeling assumptions. The resulting astrophysical constraints from heavy pulsar masses, LIGO/Virgo, and NICER clearly favor smaller values of the neutron skin and L, as well as negative symmetry incompressibilities. Combining astrophysical data with PREX-II and chiral effective field theory constraints yields S_{0}=33.0_{-1.8}^{+2.0} MeV, L=53_{-15}^{+14} MeV, and R_{skin}^{^{208}Pb}=0.17_{-0.04}^{+0.04} fm.
Collapse
Affiliation(s)
- Reed Essick
- Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada N2L 2Y5
- Kavli Institute for Cosmological Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Philippe Landry
- Gravitational-Wave Physics & Astronomy Center, California State University, Fullerton, 800 N State College Blvd, Fullerton, California 92831, USA
| | - Achim Schwenk
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
15
|
Al-Mamun M, Steiner AW, Nättilä J, Lange J, O'Shaughnessy R, Tews I, Gandolfi S, Heinke C, Han S. Combining Electromagnetic and Gravitational-Wave Constraints on Neutron-Star Masses and Radii. PHYSICAL REVIEW LETTERS 2021; 126:061101. [PMID: 33635682 DOI: 10.1103/physrevlett.126.061101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
We perform a joint Bayesian inference of neutron-star mass and radius constraints based on GW170817, observations of quiescent low-mass x-ray binaries (QLMXBs), photospheric radius expansion x-ray bursting sources, and x-ray timing observations of J0030+0451. With this dataset, the form of the prior distribution still has an impact on the posterior mass-radius curves and equation of state (EOS), but this impact is smaller than recently obtained when considering QLMXBs alone. We analyze the consistency of the electromagnetic data by including an "intrinsic scattering" contribution to the uncertainties, and find only a slight broadening of the posteriors. This suggests that the gravitational-wave and electromagnetic observations of neutron-star structure are providing a consistent picture of the neutron-star mass-radius curve and the EOS.
Collapse
Affiliation(s)
- Mohammad Al-Mamun
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Andrew W Steiner
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Joonas Nättilä
- Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, New York 10027, USA
- Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
| | - Jacob Lange
- Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623, USA
| | - Richard O'Shaughnessy
- Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, New York 14623, USA
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Stefano Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Craig Heinke
- Department of Physics, CCIS 4-183, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Sophia Han
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
| |
Collapse
|
16
|
Dietrich T, Coughlin MW, Pang PTH, Bulla M, Heinzel J, Issa L, Tews I, Antier S. Multimessenger constraints on the neutron-star equation of state and the Hubble constant. Science 2020; 370:1450-1453. [PMID: 33335061 DOI: 10.1126/science.abb4317] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/27/2020] [Indexed: 11/02/2022]
Abstract
Observations of neutron-star mergers with distinct messengers, including gravitational waves and electromagnetic signals, can be used to study the behavior of matter denser than an atomic nucleus and to measure the expansion rate of the Universe as quantified by the Hubble constant. We performed a joint analysis of the gravitational-wave event GW170817 with its electromagnetic counterparts AT2017gfo and GRB170817A, and the gravitational-wave event GW190425, both originating from neutron-star mergers. We combined these with previous measurements of pulsars using x-ray and radio observations, and nuclear-theory computations using chiral effective field theory, to constrain the neutron-star equation of state. We found that the radius of a 1.4-solar mass neutron star is [Formula: see text] km at 90% confidence and the Hubble constant is [Formula: see text] at 1σ uncertainty.
Collapse
Affiliation(s)
- Tim Dietrich
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany. .,Nikhef, 1098 XG Amsterdam, Netherlands
| | - Michael W Coughlin
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter T H Pang
- Nikhef, 1098 XG Amsterdam, Netherlands.,Department of Physics, Utrecht University, 3584 CC Utrecht, Netherlands
| | - Mattia Bulla
- Nordic Institute for Theoretical Physics (Nordita), 106 91 Stockholm, Sweden
| | - Jack Heinzel
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Physics and Astronomy, Carleton College, Northfield, MN 55057, USA.,Artemis, Université Côte d'Azur, Centre National de la Recherche Scientifique, F-06304 Nice, France
| | - Lina Issa
- Nordic Institute for Theoretical Physics (Nordita), 106 91 Stockholm, Sweden.,École normale supérieure, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sarah Antier
- Astroparticule et Cosmologie, Université de Paris, Centre National de la Recherche Scientifique, F-75013 Paris, France
| |
Collapse
|
17
|
Leonhardt M, Pospiech M, Schallmo B, Braun J, Drischler C, Hebeler K, Schwenk A. Symmetric Nuclear Matter from the Strong Interaction. PHYSICAL REVIEW LETTERS 2020; 125:142502. [PMID: 33064516 DOI: 10.1103/physrevlett.125.142502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 06/12/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
We study the equation of state of symmetric nuclear matter at zero temperature over a wide range of densities using two complementary theoretical approaches. At low densities, up to twice nuclear saturation density, we compute the energy per particle based on modern nucleon-nucleon and three-nucleon interactions derived within chiral effective field theory. For higher densities, we derive for the first time constraints in a Fierz-complete setting directly based on quantum chromodynamics using functional renormalization group techniques. We find remarkable consistency of the results obtained from both approaches as they come together in density and the natural emergence of a maximum in the speed of sound c_{S} at supranuclear densities. The presence of this maximum appears tightly connected to the formation of a diquark gap. Notably, this maximum is observed to exceed the asymptotic value c_{S}^{2}=1/3 while its exact position in terms of the density cannot yet be determined conclusively.
Collapse
Affiliation(s)
- M Leonhardt
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - M Pospiech
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - B Schallmo
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - J Braun
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
| | - C Drischler
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - K Hebeler
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
18
|
Yasin H, Schäfer S, Arcones A, Schwenk A. Equation of State Effects in Core-Collapse Supernovae. PHYSICAL REVIEW LETTERS 2020; 124:092701. [PMID: 32202885 DOI: 10.1103/physrevlett.124.092701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
We investigate the impact of different properties of the nuclear equation of state in core-collapse supernovae, with a focus on the proto-neutron-star contraction and its impact on the shock evolution. To this end, we introduce a range of equations of state that vary the nucleon effective mass, incompressibility, symmetry energy, and nuclear saturation point. This allows us to point to the different effects in changing these properties from the Lattimer and Swesty to the Shen et al. equations of state, the two most commonly used equations of state in simulations. In particular, we trace the contraction behavior to the effective mass, which determines the thermal nucleonic contributions to the equation of state. Larger effective masses lead to lower pressures at nuclear densities and a lower thermal index. This results in a more rapid contraction of the proto-neutron star and consequently higher neutrino energies, which aids the shock evolution to a faster explosion.
Collapse
Affiliation(s)
- H Yasin
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - S Schäfer
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - A Arcones
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
19
|
Tews I. What can neutron stars reveal about the equation of state of dense matter? EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023507002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neutron stars are astrophysical objects of extremes, reaching the highest densities we can observe in the cosmos, and probing matter under conditions that cannot be recreated in terrestrial experiments. In August 2017, the first neutron-star merger has been observed, which provided compelling evidence that these events are an important site for r-process nucleosynthesis. Furthermore, the gravitational-wave signal of such events might shed light upon the nature of strongly interacting matter in the neutron-star core. To understand these remarkable events, reliable nuclear physics input is essential. In this contribution, I explain how to use chiral effective field theory and advanced many-body methods to provide a consistent and systematic approach to strongly inter- acting systems from nuclei to neutron stars with controlled theoretical uncertainties. I will discuss recent results for the equation of state relevant for the nuclear astrophysics of neutron stars and neutron-star mergers.
Collapse
|
20
|
Zanoli S, Roca-Maza X, Colò G, Shen S. Harmonic Potential Theorem: Extension to Spin-, Velocity-, and Density-Dependent Interactions. PHYSICAL REVIEW LETTERS 2019; 123:112501. [PMID: 31573255 DOI: 10.1103/physrevlett.123.112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Indexed: 06/10/2023]
Abstract
One of the few exact results for the description of the time evolution of an inhomogeneous, interacting many-particle system is given by the harmonic potential theorem (HPT). The relevance of this theorem is that it sets a tight constraint on time-dependent many-body approximations. In this contribution, we show that the original formulation of the HPT is valid also for the case of spin-, velocity-, and density-dependent interactions. This result is completely general and relevant, among the rest, for nuclear structure theory both in the case of ab initio and of more phenomenological approaches. As an example, we report on a numerical implementation by testing the small-amplitude limit of the time-dependent Hartree-Fock-also known as the random phase approximation-for the translational frequencies of a neutron system trapped in a harmonic potential.
Collapse
Affiliation(s)
- S Zanoli
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, 20133 Milano, Italy and INFN, Sezione di Milano, 20133 Milano, Italy
| | - X Roca-Maza
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, 20133 Milano, Italy and INFN, Sezione di Milano, 20133 Milano, Italy
| | - G Colò
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, 20133 Milano, Italy and INFN, Sezione di Milano, 20133 Milano, Italy
| | - Shihang Shen
- Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, 20133 Milano, Italy and INFN, Sezione di Milano, 20133 Milano, Italy
| |
Collapse
|
21
|
Idini A, Barbieri C, Navrátil P. Ab Initio Optical Potentials and Nucleon Scattering on Medium Mass Nuclei. PHYSICAL REVIEW LETTERS 2019; 123:092501. [PMID: 31524472 DOI: 10.1103/physrevlett.123.092501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
We derive ab initio optical potentials from self-consistent Green's function theory and compute the elastic scattering of neutrons off oxygen and calcium isotopes. The comparison with scattering data is satisfactory at low scattering energies. The method is benchmarked against the no-core shell model with continuum calculations, showing that virtual excitations of the target are crucial to predict proper fragmentation and absorption at higher energies. This is a significant step toward deriving optical potentials for medium mass nuclei and complex many-body systems in general.
Collapse
Affiliation(s)
- A Idini
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
- Division of Mathematical Physics, Department of Physics, LTH, Lund University, P.O. Box 118, S-22100 Lund, Sweden
| | - C Barbieri
- Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - P Navrátil
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| |
Collapse
|
22
|
Drischler C, Hebeler K, Schwenk A. Chiral Interactions up to Next-to-Next-to-Next-to-Leading Order and Nuclear Saturation. PHYSICAL REVIEW LETTERS 2019; 122:042501. [PMID: 30768314 DOI: 10.1103/physrevlett.122.042501] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 08/16/2018] [Indexed: 06/09/2023]
Abstract
We present an efficient Monte Carlo framework for perturbative calculations of infinite nuclear matter based on chiral two-, three-, and four-nucleon interactions. The method enables the incorporation of all many-body contributions in a straightforward and transparent way, and makes it possible to extract systematic uncertainty estimates by performing order-by-order calculations in the chiral expansion as well as the many-body expansion. The versatility of this new framework is demonstrated by applying it to chiral low-momentum interactions, exhibiting a very good many-body convergence up to fourth order. Following these benchmarks, we explore new chiral interactions up to next-to-next-to-next-to-leading order (N^{3}LO). Remarkably, simultaneous fits to the triton and to saturation properties can be achieved, while all three-nucleon low-energy couplings remain natural. The theoretical uncertainties of nuclear matter are significantly reduced when going from next-to-next-to-leading order to N^{3}LO.
Collapse
Affiliation(s)
- C Drischler
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - K Hebeler
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
23
|
De S, Finstad D, Lattimer JM, Brown DA, Berger E, Biwer CM. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. PHYSICAL REVIEW LETTERS 2018; 121:091102. [PMID: 30230872 DOI: 10.1103/physrevlett.121.091102] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/06/2018] [Indexed: 06/08/2023]
Abstract
We use gravitational-wave observations of the binary neutron star merger GW170817 to explore the tidal deformabilities and radii of neutron stars. We perform a Bayesian parameter estimation with the source location and distance informed by electromagnetic observations. We also assume that the two stars have the same equation of state; we demonstrate that, for stars with masses comparable to the component masses of GW170817, this is effectively implemented by assuming that the stars' dimensionless tidal deformabilities are determined by the binary's mass ratio q by Λ_{1}/Λ_{2}=q^{6}. We investigate different choices of prior on the component masses of the neutron stars. We find that the tidal deformability and 90% credible interval is Λ[over ˜]=222_{-138}^{+420} for a uniform component mass prior, Λ[over ˜]=245_{-151}^{+453} for a component mass prior informed by radio observations of Galactic double neutron stars, and Λ[over ˜]=233_{-144}^{+448} for a component mass prior informed by radio pulsars. We find a robust measurement of the common areal radius of the neutron stars across all mass priors of 8.9≤R[over ^]≤13.2 km, with a mean value of ⟨R[over ^]⟩=10.8 km. Our results are the first measurement of tidal deformability with a physical constraint on the star's equation of state and place the first lower bounds on the deformability and areal radii of neutron stars using gravitational waves.
Collapse
Affiliation(s)
- Soumi De
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Daniel Finstad
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - James M Lattimer
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Duncan A Brown
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Edo Berger
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02139, USA
| | - Christopher M Biwer
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
- Applied Computer Science (CCS-7), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
24
|
Lonardoni D, Carlson J, Gandolfi S, Lynn JE, Schmidt KE, Schwenk A, Wang XB. Properties of Nuclei up to A=16 using Local Chiral Interactions. PHYSICAL REVIEW LETTERS 2018; 120:122502. [PMID: 29694099 DOI: 10.1103/physrevlett.120.122502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
We report accurate quantum Monte Carlo calculations of nuclei up to A=16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in ^{16}O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of binding energies, charge radii, and form factors for all these nuclei, including open-shell systems in A=6 and 12.
Collapse
Affiliation(s)
- D Lonardoni
- Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Carlson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - S Gandolfi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J E Lynn
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - K E Schmidt
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X B Wang
- School of Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
25
|
Piarulli M, Baroni A, Girlanda L, Kievsky A, Lovato A, Lusk E, Marcucci LE, Pieper SC, Schiavilla R, Viviani M, Wiringa RB. Light-Nuclei Spectra from Chiral Dynamics. PHYSICAL REVIEW LETTERS 2018; 120:052503. [PMID: 29481181 DOI: 10.1103/physrevlett.120.052503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Indexed: 06/08/2023]
Abstract
In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A=4-12, accurate to ≤2% of the binding energy, in very satisfactory agreement with experimental data.
Collapse
Affiliation(s)
- M Piarulli
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - A Baroni
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
| | - L Girlanda
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
- INFN-Lecce, 73100 Lecce, Italy
| | | | - A Lovato
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- INFN-Trento, 38050 Povo, Italy
| | - Ewing Lusk
- Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - L E Marcucci
- INFN-Pisa, 56127 Pisa, Italy
- Department of Physics, University of Pisa, 56127 Pisa, Italy
| | - Steven C Pieper
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - R Schiavilla
- Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA
- Theory Center, Jefferson Lab, Newport News, Virginia 23606, USA
| | | | - R B Wiringa
- Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
26
|
Nuclear Equation of State for Compact Stars and Supernovae. THE PHYSICS AND ASTROPHYSICS OF NEUTRON STARS 2018. [DOI: 10.1007/978-3-319-97616-7_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
27
|
Chen JW, Detmold W, Lynn JE, Schwenk A. Short-Range Correlations and the EMC Effect in Effective Field Theory. PHYSICAL REVIEW LETTERS 2017; 119:262502. [PMID: 29328704 DOI: 10.1103/physrevlett.119.262502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 06/07/2023]
Abstract
We show that the empirical linear relation between the magnitude of the EMC effect in deep inelastic scattering on nuclei and the short-range correlation scaling factor a_{2} extracted from high-energy quasielastic scattering at x≥1 is a natural consequence of scale separation and derive the relationship using effective field theory. While the scaling factor a_{2} is a ratio of nuclear matrix elements that individually depend on the calculational scheme, we show that the ratio is independent of this choice. We perform Green's function Monte Carlo calculations with both chiral and Argonne-Urbana potentials to verify this and determine the scaling factors for light nuclei. The resulting values for ^{3}He and ^{4}He are in good agreement with experimental values. We also present results for ^{9}Be and ^{12}C extracted from variational Monte Carlo calculations.
Collapse
Affiliation(s)
- Jiunn-Wei Chen
- Department of Physics, CTS and LeCosPA, National Taiwan University, Taipei 10617, Taiwan
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - William Detmold
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Joel E Lynn
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Achim Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
28
|
|
29
|
Engel J, Menéndez J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:046301. [PMID: 28140335 DOI: 10.1088/1361-6633/aa5bc5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nuclear matrix elements that govern the rate of neutrinoless double beta decay must be accurately calculated if experiments are to reach their full potential. Theorists have been working on the problem for a long time but have recently stepped up their efforts as ton-scale experiments have begun to look feasible. Here we review past and recent work on the matrix elements in a wide variety of nuclear models and discuss work that will be done in the near future. Ab initio nuclear-structure theory, which is developing rapidly, holds out hope of more accurate matrix elements with quantifiable error bars.
Collapse
Affiliation(s)
- Jonathan Engel
- Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27516-3255, United States of America
| | | |
Collapse
|