1
|
Van Benschoten WZ, Shepherd JJ. Removing Basis Set Incompleteness Error in Finite-Temperature Electronic Structure Calculations: Two-Electron Systems. J Phys Chem A 2024; 128:10659-10672. [PMID: 39585915 DOI: 10.1021/acs.jpca.4c03769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
We investigate the basis-set-size dependence for quantities related to interacting electrons in the canonical ensemble. Calculations are performed using exact diagonalization (finite temperature full configuration interaction method) on two-electron model systems─the uniform electron gas (UEG) and the helium atom. Our data reproduce previous observations of a competition for how the internal energy converges between the ground-state correlation energy and the high-temperature kinetic energy. We explore how this can be related to component parts of the internal energy including kinetic, exchange, and correlation energies and show there is surprising nuance in how this can be broken down into mostly monotonically converging quantities. We also show that separation of the free energy into a free energy with/without correlation allows for monotonic convergence with basis set size due to the variational principle. We find that the free energy convergence matches the previously observed convergence properties of the internal energy. We discuss the free energy divergence that happens when converging a finite basis analytical hydrogen atom to the complete basis set limit and compare this to the energies of a helium atom in a large periodic box. Reducing the box size, we saw convergence trends for the helium atom that were similar to the UEG.
Collapse
Affiliation(s)
| | - James J Shepherd
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
2
|
Dornheim T, Schwalbe S, Moldabekov ZA, Vorberger J, Tolias P. Ab Initio Path Integral Monte Carlo Simulations of the Uniform Electron Gas on Large Length Scales. J Phys Chem Lett 2024; 15:1305-1313. [PMID: 38285536 PMCID: PMC10860150 DOI: 10.1021/acs.jpclett.3c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
The accurate description of non-ideal quantum many-body systems is of prime importance for a host of applications within physics, quantum chemistry, materials science, and related disciplines. At finite temperatures, the gold standard is given by ab initio path integral Monte Carlo (PIMC) simulations, which do not require any empirical input but exhibit an exponential increase in the required computation time for Fermionic systems with an increase in system size N. Very recently, computing Fermionic properties without this bottleneck based on PIMC simulations of fictitious identical particles has been suggested. In our work, we use this technique to perform very large (N ≤ 1000) PIMC simulations of the warm dense electron gas and demonstrate that it is capable of providing a highly accurate description of the investigated properties, i.e., the static structure factor, the static density response function, and the local field correction, over the entire range of length scales.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Zhandos A. Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Panagiotis Tolias
- Space
and Plasma Physics, Royal Institute of Technology
(KTH), Stockholm SE-100 44, Sweden
| |
Collapse
|
3
|
Moldabekov Z, Schwalbe S, Böhme MP, Vorberger J, Shao X, Pavanello M, Graziani FR, Dornheim T. Bound-State Breaking and the Importance of Thermal Exchange-Correlation Effects in Warm Dense Hydrogen. J Chem Theory Comput 2024; 20:68-78. [PMID: 38133546 PMCID: PMC10782774 DOI: 10.1021/acs.jctc.3c00934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Hydrogen at extreme temperatures and pressures is of key relevance for cutting-edge technological applications, with inertial confinement fusion research being a prime example. In addition, it is ubiquitous throughout our universe and naturally occurs in a variety of astrophysical objects. In the present work, we present exact ab initio path integral Monte Carlo (PIMC) results for the electronic density of warm dense hydrogen along a line of constant degeneracy across a broad range of densities. Using the well-known concept of reduced density gradients, we develop a new framework to identify the breaking of bound states due to pressure ionization in bulk hydrogen. Moreover, we use our PIMC results as a reference to rigorously assess the accuracy of a variety of exchange-correlation (XC) functionals in density functional theory calculations for different density regions. Here, a key finding is the importance of thermal XC effects for the accurate description of density gradients in high-energy-density systems. Our exact PIMC test set is freely available online and can be used to guide the development of new methodologies for the simulation of warm dense matter and beyond.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Sebastian Schwalbe
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| | - Xuecheng Shao
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Michele Pavanello
- Department
of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
- Department
of Physics, Rutgers University, Newark, New Jersey 07102, United States
| | - Frank R. Graziani
- Lawrence
Livermore National Laboratory (LLNL), Livermore 94550, California, United States
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), Görlitz D-02826, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Dresden D-01328, Germany
| |
Collapse
|
4
|
Dornheim T, Tolias P, Groth S, Moldabekov ZA, Vorberger J, Hirshberg B. Fermionic physics from ab initio path integral Monte Carlo simulations of fictitious identical particles. J Chem Phys 2023; 159:164113. [PMID: 37888764 DOI: 10.1063/5.0171930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
The ab initio path integral Monte Carlo (PIMC) method is one of the most successful methods in statistical physics, quantum chemistry and related fields, but its application to quantum degenerate Fermi systems is severely hampered by an exponential computational bottleneck: the notorious fermion sign problem. Very recently, Xiong and Xiong [J. Chem. Phys. 157, 094112 (2022)] have suggested to partially circumvent the sign problem by carrying out simulations of fictitious systems guided by an interpolating continuous variable ξ ∈ [-1, 1], with the physical Fermi- and Bose-statistics corresponding to ξ = -1 and ξ = 1. It has been proposed that information about the fermionic limit might be obtained by calculations within the bosonic sector ξ > 0 combined with an extrapolation throughout the fermionic sector ξ < 0, essentially bypassing the sign problem. Here, we show how the inclusion of the artificial parameter ξ can be interpreted as an effective penalty on the formation of permutation cycles in the PIMC simulation. We demonstrate that the proposed extrapolation method breaks down for moderate to high quantum degeneracy. Instead, the method constitutes a valuable tool for the description of large Fermi-systems of weak quantum degeneracy. This is demonstrated for electrons in a 2D harmonic trap and for the uniform electron gas (UEG), where we find excellent agreement (∼0.5%) with exact configuration PIMC results in the high-density regime while attaining a speed-up exceeding 11 orders of magnitude. Finally, we extend the idea beyond the energy and analyze the radial density distribution (2D trap), as well as the static structure factor and imaginary-time density-density correlation function (UEG).
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Panagiotis Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm SE-100 44, Sweden
| | - Simon Groth
- Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Dornheim T, Böhme MP, Moldabekov ZA, Vorberger J. Electronic density response of warm dense hydrogen on the nanoscale. Phys Rev E 2023; 108:035204. [PMID: 37849144 DOI: 10.1103/physreve.108.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/11/2023] [Indexed: 10/19/2023]
Abstract
The properties of hydrogen at warm dense matter (WDM) conditions are of high importance for the understanding of astrophysical objects and technological applications such as inertial confinement fusion. In this work, we present extensive ab initio path integral Monte Carlo results for the electronic properties in the Coulomb potential of a fixed ionic configuration. This gives us unique insights into the complex interplay between the electronic localization around the protons with their density response to an external harmonic perturbation. We find qualitative agreement between our simulation data and a heuristic model based on the assumption of a local uniform electron gas model, but important trends are not captured by this simplification. In addition to being interesting in their own right, we are convinced that our results will be of high value for future projects, such as the rigorous benchmarking of approximate theories for the simulation of WDM, most notably density functional theory.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian P Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
6
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
7
|
Shen T, Barghathi H, Yu J, Del Maestro A, Rubenstein BM. Stable recursive auxiliary field quantum Monte Carlo algorithm in the canonical ensemble: Applications to thermometry and the Hubbard model. Phys Rev E 2023; 107:055302. [PMID: 37329093 DOI: 10.1103/physreve.107.055302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Many experimentally accessible, finite-sized interacting quantum systems are most appropriately described by the canonical ensemble of statistical mechanics. Conventional numerical simulation methods either approximate them as being coupled to a particle bath or use projective algorithms which may suffer from nonoptimal scaling with system size or large algorithmic prefactors. In this paper, we introduce a highly stable, recursive auxiliary field quantum Monte Carlo approach that can directly simulate systems in the canonical ensemble. We apply the method to the fermion Hubbard model in one and two spatial dimensions in a regime known to exhibit a significant "sign" problem and find improved performance over existing approaches including rapid convergence to ground-state expectation values. The effects of excitations above the ground state are quantified using an estimator-agnostic approach including studying the temperature dependence of the purity and overlap fidelity of the canonical and grand canonical density matrices. As an important application, we show that thermometry approaches often exploited in ultracold atoms that employ an analysis of the velocity distribution in the grand canonical ensemble may be subject to errors leading to an underestimation of extracted temperatures with respect to the Fermi temperature.
Collapse
Affiliation(s)
- Tong Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Hatem Barghathi
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - Jiangyong Yu
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Adrian Del Maestro
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Tolias P, Lucco Castello F, Dornheim T. Quantum version of the integral equation theory-based dielectric scheme for strongly coupled electron liquids. J Chem Phys 2023; 158:141102. [PMID: 37061474 DOI: 10.1063/5.0145687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
A novel dielectric scheme is proposed for strongly coupled electron liquids, which handles quantum mechanical effects beyond the random phase approximation level and treats electronic correlations within the integral equation theory of classical liquids. The self-consistent scheme features a complicated dynamic local field correction functional and its formulation is guided by ab initio path integral Monte Carlo simulations. Remarkably, our scheme is capable of providing unprecedently accurate results for the static structure factor with the exception of the Wigner crystallization vicinity, despite the absence of adjustable or empirical parameters.
Collapse
Affiliation(s)
- Panagiotis Tolias
- Space and Plasma Physics - Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | | | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
9
|
Böhme M, Moldabekov ZA, Vorberger J, Dornheim T. Ab initio path integral Monte Carlo simulations of hydrogen snapshots at warm dense matter conditions. Phys Rev E 2023; 107:015206. [PMID: 36797933 DOI: 10.1103/physreve.107.015206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
We combine ab initio path integral Monte Carlo (PIMC) simulations with fixed ion configurations from density functional theory molecular dynamics (DFT-MD) simulations to solve the electronic problem for hydrogen under warm dense matter conditions [Böhme et al., Phys. Rev. Lett. 129, 066402 (2022)0031-900710.1103/PhysRevLett.129.066402]. The problem of path collapse due to the Coulomb attraction is avoided by utilizing the pair approximation, which is compared against the simpler Kelbg pair potential. We find very favorable convergence behavior towards the former. Since we do not impose any nodal restrictions, our PIMC simulations are afflicted with the notorious fermion sign problem, which we analyze in detail. While computationally demanding, our results constitute an exact benchmark for other methods and approximations within DFT. Our setup gives us the unique capability to study important properties of warm dense hydrogen such as the electronic static density response and exchange-correlation kernel without any model assumptions, which will be very valuable for a variety of applications such as the interpretation of experiments and the development of new XC functionals.
Collapse
Affiliation(s)
- Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
- Technische Universität Dresden, Institute of Theoretical Physics, D-01062 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiation Physics, D-01328 Dresden, Germany
| |
Collapse
|
10
|
Dornheim T, Tolias P, Moldabekov ZA, Cangi A, Vorberger J. Effective electronic forces and potentials from ab initio path integral Monte Carlo simulations. J Chem Phys 2022; 156:244113. [PMID: 35778089 DOI: 10.1063/5.0097768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rigorous description of correlated quantum many-body systems constitutes one of the most challenging tasks in contemporary physics and related disciplines. In this context, a particularly useful tool is the concept of effective pair potentials that take into account the effects of the complex many-body medium consistently. In this work, we present extensive, highly accurate ab initio path integral Monte Carlo (PIMC) results for the effective interaction and the effective force between two electrons in the presence of the uniform electron gas. This gives us a direct insight into finite-size effects, thereby, opening up the possibility for novel domain decompositions and methodological advances. In addition, we present unassailable numerical proof for an effective attraction between two electrons under moderate coupling conditions, without the mediation of an underlying ionic structure. Finally, we compare our exact PIMC results to effective potentials from linear-response theory, and we demonstrate their usefulness for the description of the dynamic structure factor. All PIMC results are made freely available online and can be used as a thorough benchmark for new developments and approximations.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Panagiotis Tolias
- Space and Plasma Physics, Royal Institute of Technology (KTH), Stockholm SE-100 44, Sweden
| | | | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
11
|
Van Benschoten WZ, Shepherd JJ. Piecewise Interaction Picture Density Matrix Quantum Monte Carlo. J Chem Phys 2022; 156:184107. [DOI: 10.1063/5.0094290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The density matrix quantum Monte Carlo (DMQMC) set of methods stochastically samples the exact $N$-body density matrix for interacting electrons at finite temperature. We introduce a simple modification to the interaction picture DMQMC method (IP-DMQMC) which overcomes the limitation of only sampling one inverse temperature point at a time, instead allowing for the sampling of a temperature range within a single calculation thereby reducing the computational cost. At the target inverse temperature, instead of ending the simulation, we incorporate a change of picture away from the interaction picture. The resulting equations of motion have piecewise functions and use the interaction picture in the first phase of a simulation, followed by the application of the Bloch equation once the target inverse temperature is reached. We find that the performance of this method is similar to or better than the DMQMC and IP-DMQMC algorithms in a variety of molecular test systems.
Collapse
|
12
|
Dornheim T, Vorberger J, Militzer B, Moldabekov ZA. Momentum distribution of the uniform electron gas at finite temperature: Effects of spin polarization. Phys Rev E 2021; 104:055206. [PMID: 34942706 DOI: 10.1103/physreve.104.055206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas (UEG) at finite temperature for different values of the spin-polarization ξ. This allows us to unambiguously quantify the impact of spin effects on the momentum distribution function n(k) and related properties. We find that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum state n(0) substantially depend on ξ. Our results further advance the current understanding of the UEG as a fundamental model system, and are of practical relevance for the description of transport properties of warm dense matter in an external magnetic field. All PIMC results are freely available online and can be used as a benchmark for the development of methods and applications.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.,Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
13
|
Fantoni R. Jellium at finite temperature. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1996648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Riccardo Fantoni
- Dipartimento di Fisica, Università di Trieste, Grignano (Trieste), Italy
| |
Collapse
|
14
|
Petras HR, Van Benschoten WZ, Ramadugu SK, Shepherd JJ. The Sign Problem in Density Matrix Quantum Monte Carlo. J Chem Theory Comput 2021; 17:6036-6052. [PMID: 34546738 PMCID: PMC8515812 DOI: 10.1021/acs.jctc.1c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Density matrix quantum Monte Carlo (DMQMC) is a recently developed method for stochastically sampling the N-particle thermal density matrix to obtain exact-on-average energies for model and ab initio systems. We report a systematic numerical study of the sign problem in DMQMC based on simulations of atomic and molecular systems. In DMQMC, the density matrix is written in an outer product basis of Slater determinants. In principle, this means that DMQMC needs to sample a space that scales in the system size, N, as O[(exp(N))2]. In practice, removing the sign problem requires a total walker population that exceeds a system-dependent critical walker population (Nc), imposing limitations on both storage and compute time. We establish that Nc for DMQMC is the square of Nc for FCIQMC. By contrast, the minimum Nc in the interaction picture modification of DMQMC (IP-DMQMC) is only linearly related to the Nc for FCIQMC. We find that this difference originates from the difference in propagation of IP-DMQMC versus canonical DMQMC: the former is asymmetric, whereas the latter is symmetric. When an asymmetric mode of propagation is used in DMQMC, there is a much greater stochastic error and is thus prohibitively expensive for DMQMC without the interaction picture adaptation. Finally, we find that the equivalence between IP-DMQMC and FCIQMC seems to extend to the initiator approximation, which is often required to study larger systems with large basis sets. This suggests that IP-DMQMC offers a way to ameliorate the cost of moving between a Slater determinant space and an outer product basis.
Collapse
Affiliation(s)
- Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | | | - Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
15
|
Tolias P, Lucco Castello F, Dornheim T. Integral equation theory based dielectric scheme for strongly coupled electron liquids. J Chem Phys 2021; 155:134115. [PMID: 34625000 DOI: 10.1063/5.0065988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a recent paper, Lucco Castello et al. (arXiv:2107.03537) provided an accurate parameterization of classical one-component plasma bridge functions that was embedded in a novel dielectric scheme for strongly coupled electron liquids. Here, this approach is rigorously formulated, its set of equations is formally derived, and its numerical algorithm is scrutinized. A systematic comparison with available and new path integral Monte Carlo simulations reveals a rather unprecedented agreement especially in terms of the interaction energy and the long wavelength limit of the static local field correction.
Collapse
Affiliation(s)
- P Tolias
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - F Lucco Castello
- Space and Plasma Physics-Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - T Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
16
|
Hirata S. Finite-temperature many-body perturbation theory for electrons: Algebraic recursive definitions, second-quantized derivation, linked-diagram theorem, general-order algorithms, and grand canonical and canonical ensembles. J Chem Phys 2021; 155:094106. [PMID: 34496596 DOI: 10.1063/5.0061384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comprehensive and detailed account is presented for the finite-temperature many-body perturbation theory for electrons that expands in power series all thermodynamic functions on an equal footing. Algebraic recursions in the style of the Rayleigh-Schrödinger perturbation theory are derived for the grand potential, chemical potential, internal energy, and entropy in the grand canonical ensemble and for the Helmholtz energy, internal energy, and entropy in the canonical ensemble, leading to their sum-over-states analytical formulas at any arbitrary order. For the grand canonical ensemble, these sum-over-states formulas are systematically transformed to sum-over-orbitals reduced analytical formulas by the quantum-field-theoretical techniques of normal-ordered second quantization and Feynman diagrams extended to finite temperature. It is found that the perturbation corrections to energies entering the recursions have to be treated as a nondiagonal matrix, whose off-diagonal elements are generally nonzero within a subspace spanned by degenerate Slater determinants. They give rise to a unique set of linked diagrams-renormalization diagrams-whose resolvent lines are displaced upward, which are distinct from the well-known anomalous diagrams of which one or more resolvent lines are erased. A linked-diagram theorem is introduced that proves the size-consistency of the finite-temperature many-body perturbation theory at any order. General-order algorithms implementing the recursions establish the convergence of the perturbation series toward the finite-temperature full-configuration-interaction limit unless the series diverges. The normal-ordered Hamiltonian at finite temperature sheds light on the relationship between the finite-temperature Hartree-Fock and first-order many-body perturbation theories.
Collapse
Affiliation(s)
- So Hirata
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Dornheim T, Moldabekov ZA, Vorberger J. Nonlinear density response from imaginary-time correlation functions: Ab initio path integral Monte Carlo simulations of the warm dense electron gas. J Chem Phys 2021; 155:054110. [PMID: 34364322 DOI: 10.1063/5.0058988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCFs). For example, the well-known density-density ITCF F(q, τ) allows one to estimate the linear response of a given system for all wave vectors q from a single simulation of the unperturbed system. Moreover, it constitutes the basis for the reconstruction of the dynamic structure factor S(q, ω)-a key quantity in state-of-the-art scattering experiments. In this work, we present analogous relations between the nonlinear density response in the quadratic and cubic order of the perturbation strength and generalized ITCFs measuring correlations between up to four imaginary-time arguments. As a practical demonstration of our new approach, we carry out simulations of the warm dense electron gas and find excellent agreement with previous PIMC results that had been obtained with substantially larger computational effort. In addition, we give a relation between a cubic ITCF and the triple dynamic structure factor S(q1, ω1; q2, ω2), which evokes the enticing possibility to study dynamic three-body effects on an ab initio level.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | | | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
18
|
Dornheim T, Vorberger J. Overcoming finite-size effects in electronic structure simulations at extreme conditions. J Chem Phys 2021; 154:144103. [DOI: 10.1063/5.0045634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
19
|
Lee J, Morales MA, Malone FD. A phaseless auxiliary-field quantum Monte Carlo perspective on the uniform electron gas at finite temperatures: Issues, observations, and benchmark study. J Chem Phys 2021; 154:064109. [DOI: 10.1063/5.0041378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Joonho Lee
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
20
|
Dornheim T, Invernizzi M, Vorberger J, Hirshberg B. Attenuating the fermion sign problem in path integral Monte Carlo simulations using the Bogoliubov inequality and thermodynamic integration. J Chem Phys 2020; 153:234104. [DOI: 10.1063/5.0030760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Michele Invernizzi
- Institute of Computational Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials MARVEL, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Physics, ETH Zurich, 8092 Zurich, Switzerland
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Barak Hirshberg
- Institute of Computational Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Dornheim T, Vorberger J. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Phys Rev E 2020; 102:063301. [PMID: 33466040 DOI: 10.1103/physreve.102.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
We systematically investigate finite-size effects in the dynamic structure factor S(q,ω) of the uniform electron gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time density-density correlation function F(q,τ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121, 255001 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255001], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as N=14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic density response of correlated electrons, which is of high importance for many applications in WDM theory and beyond.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
22
|
Filinov VS, Larkin AS, Levashov PR. Uniform electron gas at finite temperature by fermionic-path-integral Monte Carlo simulations. Phys Rev E 2020; 102:033203. [PMID: 33075865 DOI: 10.1103/physreve.102.033203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 11/07/2022]
Abstract
In this paper we study thermodynamic properties of uniform electron gas (UEG) over wide density and temperature range, using the improved fermionic-path-integral Monte Carlo (FPIMC) method. This method demonstrates a significant reduction of the "fermionic sign problem," which takes place in standard path-integral Monte Carlo simulations of degenerate fermionic systems. We introduce three basic improvements. The first one is the improved treatment of exchange interaction, achieved by the proper change of variables in the path-integral measure. The second improvement is the inclusion of long-range Coulomb effects into an angle-averaged effective potential, as proposed by Yakub and Ronchi [J. Chem. Phys. 119, 11556 (2003)JCPSA60021-960610.1063/1.1624364]. The third improvement is the angle-averaging of an exchange determinant, describing the fermionic exchange interaction not only between particles in the main Monte Carlo cell, but also with electrons in the nearest periodic images. The FPIMC shows very good agreement with analytical data for ideal Fermi gas. For strongly coupled UEG under warm dense matter conditions we compare our total and exchange-correlation energy results with other Monte Carlo approaches.
Collapse
Affiliation(s)
- V S Filinov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
| | - A S Larkin
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
| | - P R Levashov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia.,Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
23
|
Yilmaz A, Hunger K, Dornheim T, Groth S, Bonitz M. Restricted configuration path integral Monte Carlo. J Chem Phys 2020; 153:124114. [DOI: 10.1063/5.0022800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- A. Yilmaz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - K. Hunger
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T. Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|
24
|
Guther K, Anderson RJ, Blunt NS, Bogdanov NA, Cleland D, Dattani N, Dobrautz W, Ghanem K, Jeszenszki P, Liebermann N, Manni GL, Lozovoi AY, Luo H, Ma D, Merz F, Overy C, Rampp M, Samanta PK, Schwarz LR, Shepherd JJ, Smart SD, Vitale E, Weser O, Booth GH, Alavi A. NECI: N-Electron Configuration Interaction with an emphasis on state-of-the-art stochastic methods. J Chem Phys 2020; 153:034107. [DOI: 10.1063/5.0005754] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Kai Guther
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Robert J. Anderson
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Nick S. Blunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nikolay A. Bogdanov
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | | | - Nike Dattani
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Werner Dobrautz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Khaldoon Ghanem
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Peter Jeszenszki
- Centre for Theoretical Chemistry and Physics, NZ Institute for Advanced Study, Massey University, Auckland, New Zealand
- Dodd-Walls Centre for Photonic and Quantum Technologies, P.O. Box 56, Dunedin 9056, New Zealand
| | - Niklas Liebermann
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Giovanni Li Manni
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Alexander Y. Lozovoi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Hongjun Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Dongxia Ma
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Florian Merz
- Lenovo HPC and AI Innovation Center, Meitnerstr. 9, 70563 Stuttgart, Germany
| | - Catherine Overy
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Markus Rampp
- Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, 85748 Garching, Germany
| | - Pradipta Kumar Samanta
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Lauretta R. Schwarz
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - James J. Shepherd
- Department of Chemistry and Informatics Institute, University of Iowa, Iowa City, Iowa 52242, USA
| | - Simon D. Smart
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Eugenio Vitale
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Oskar Weser
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - Ali Alavi
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
25
|
White AF, Kin-Lic Chan G. Finite-temperature coupled cluster: Efficient implementation and application to prototypical systems. J Chem Phys 2020; 152:224104. [DOI: 10.1063/5.0009845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
26
|
Liu Y, Shen T, Zhang H, Rubenstein B. Unveiling the Finite Temperature Physics of Hydrogen Chains via Auxiliary Field Quantum Monte Carlo. J Chem Theory Comput 2020; 16:4298-4314. [DOI: 10.1021/acs.jctc.0c00288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tong Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hang Zhang
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Brenda Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
27
|
Wang X, Berkelbach TC. Excitons in Solids from Periodic Equation-of-Motion Coupled-Cluster Theory. J Chem Theory Comput 2020; 16:3095-3103. [DOI: 10.1021/acs.jctc.0c00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Wang
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| | - Timothy C. Berkelbach
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
28
|
Petras HR, Ramadugu SK, Malone FD, Shepherd JJ. Using Density Matrix Quantum Monte Carlo for Calculating Exact-on-Average Energies for ab Initio Hamiltonians in a Finite Basis Set. J Chem Theory Comput 2020; 16:1029-1038. [DOI: 10.1021/acs.jctc.9b01080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, United States
| | | |
Collapse
|
29
|
Dornheim T, Vorberger J, Groth S, Hoffmann N, Moldabekov ZA, Bonitz M. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. J Chem Phys 2019; 151:194104. [DOI: 10.1063/1.5123013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- T. Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J. Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - N. Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Zh. A. Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Al-Farabi Str. 71, 050040 Almaty, Kazakhstan
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
30
|
Dornheim T. Fermion sign problem in path integral Monte Carlo simulations: Quantum dots, ultracold atoms, and warm dense matter. Phys Rev E 2019; 100:023307. [PMID: 31574603 DOI: 10.1103/physreve.100.023307] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 11/07/2022]
Abstract
The ab initio thermodynamic simulation of correlated Fermi systems is of central importance for many applications, such as warm dense matter, electrons in quantum dots, and ultracold atoms. Unfortunately, path integral Monte Carlo (PIMC) simulations of fermions are severely restricted by the notorious fermion sign problem (FSP). In this paper, we present a hands-on discussion of the FSP and investigate in detail its manifestation with respect to temperature, system size, interaction-strength and -type, and the dimensionality of the system. Moreover, we analyze the probability distribution of fermionic expectation values, which can be non-Gaussian and fat-tailed when the FSP is severe. As a practical application, we consider electrons and dipolar atoms in a harmonic confinement, and the uniform electron gas in the warm dense matter regime. In addition, we provide extensive PIMC data, which can be used as a reference for the development of new methods and as a benchmark for approximations.
Collapse
Affiliation(s)
- T Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| |
Collapse
|
31
|
Lee J, Malone FD, Morales MA. An auxiliary-Field quantum Monte Carlo perspective on the ground state of the dense uniform electron gas: An investigation with Hartree-Fock trial wavefunctions. J Chem Phys 2019. [DOI: 10.1063/1.5109572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joonho Lee
- College of Chemistry, University of California, Berkeley, California 94720, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| | - Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA
| |
Collapse
|
32
|
Dornheim T, Groth S, Filinov AV, Bonitz M. Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties. J Chem Phys 2019; 151:014108. [DOI: 10.1063/1.5093171] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| | - A. V. Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13, Moscow, Russia
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| |
Collapse
|
33
|
Mihm TN, McIsaac AR, Shepherd JJ. An optimized twist angle to find the twist-averaged correlation energy applied to the uniform electron gas. J Chem Phys 2019; 150:191101. [PMID: 31117769 DOI: 10.1063/1.5091445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at, instead of integrating over many random points or a grid. We introduce the concept of connectivity, a quantity derived from the nonzero four-index integrals in an MP2 calculation. This allows us to find a special twist angle that provides appropriate connectivity in the energy equation, which yields results comparable to full twist averaging. This special twist angle effectively makes the finite electron number CCD calculation represent the TDL more accurately, reducing the cost of twist-averaged CCD over Ns twist angles from Ns CCD calculations to Ns MP2 calculations plus one CCD calculation.
Collapse
Affiliation(s)
- Tina N Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1002, USA
| | - Alexandra R McIsaac
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1002, USA
| |
Collapse
|
34
|
Xuan F, Chai JD, Su H. Local Density Approximation for the Short-Range Exchange Free Energy Functional. ACS OMEGA 2019; 4:7675-7683. [PMID: 31459859 PMCID: PMC6648272 DOI: 10.1021/acsomega.9b00303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/17/2019] [Indexed: 06/01/2023]
Abstract
Analytical expressions for the exchange free energy per particle of the uniform electron gas (UEG) associated with the short-range (SR) interelectronic interaction at the low- and high-temperature limits are examined, yielding an accurate analytical parametrization for the SR exchange free energy per particle of the UEG as a function of the uniform electron density, temperature, and range-separation parameter. This parametrization constitutes the local density approximation for the SR exchange free energy functional, which can be the first step toward finding generally accurate range-separated hybrid functionals in both finite-temperature density functional theory and thermally assisted-occupation density functional theory.
Collapse
Affiliation(s)
- Fengyuan Xuan
- Centre
for Advanced 2D Materials, National University
of Singapore, Block S16, Level 6, 6 Science Drive 2, Singapore 117546, Singapore
| | - Jeng-Da Chai
- Department of Physics, Center for Theoretical Physics, and Center for Quantum Science and
Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Haibin Su
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
35
|
Spencer JS, Blunt NS, Choi S, Etrych J, Filip MA, Foulkes WMC, Franklin RST, Handley WJ, Malone FD, Neufeld VA, Di Remigio R, Rogers TW, Scott CJC, Shepherd JJ, Vigor WA, Weston J, Xu R, Thom AJW. The HANDE-QMC Project: Open-Source Stochastic Quantum Chemistry from the Ground State Up. J Chem Theory Comput 2019; 15:1728-1742. [DOI: 10.1021/acs.jctc.8b01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Spencer
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Nick S. Blunt
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- St. John’s College, St. John’s Street, Cambridge, CB2 1TP, United Kingdom
| | - Seonghoon Choi
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jiří Etrych
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Maria-Andreea Filip
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W. M. C. Foulkes
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Department of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ruth S. T. Franklin
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Will J. Handley
- Astrophysics Group, Cavendish Laboratory, Cambridge, CB3 OHE, United Kingdom
- Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA, United Kingdom
- Gonville & Caius College, Trinity Street, Cambridge, CB2 1TA, United Kingdom
| | - Fionn D. Malone
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Verena A. Neufeld
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Roberto Di Remigio
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas W. Rogers
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Charles J. C. Scott
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | - William A. Vigor
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Joseph Weston
- Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - RuQing Xu
- Department of Modern Physics, University of Science and Technology, Hefei, Anhui 230026, China
| | - Alex J. W. Thom
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
36
|
White AF, Chan GKL. A Time-Dependent Formulation of Coupled-Cluster Theory for Many-Fermion Systems at Finite Temperature. J Chem Theory Comput 2018; 14:5690-5700. [DOI: 10.1021/acs.jctc.8b00773] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
37
|
Liu Y, Cho M, Rubenstein B. Ab Initio Finite Temperature Auxiliary Field Quantum Monte Carlo. J Chem Theory Comput 2018; 14:4722-4732. [DOI: 10.1021/acs.jctc.8b00569] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Liu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Minsik Cho
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Brenda Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
38
|
Blunt NS. Communication: An efficient and accurate perturbative correction to initiator full configuration interaction quantum Monte Carlo. J Chem Phys 2018; 148:221101. [DOI: 10.1063/1.5037923] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nick S. Blunt
- University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
39
|
Diaw A, Murillo MS. A viscous quantum hydrodynamics model based on dynamic density functional theory. Sci Rep 2017; 7:15352. [PMID: 29127308 PMCID: PMC5681597 DOI: 10.1038/s41598-017-14414-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Dynamic density functional theory (DDFT) is emerging as a useful theoretical technique for modeling the dynamics of correlated systems. We extend DDFT to quantum systems for application to dense plasmas through a quantum hydrodynamics (QHD) approach. The DDFT-based QHD approach includes correlations in the the equation of state self-consistently, satisfies sum rules and includes irreversibility arising from collisions. While QHD can be used generally to model non-equilibrium, heterogeneous plasmas, we employ the DDFT-QHD framework to generate a model for the electronic dynamic structure factor, which offers an avenue for measuring hydrodynamic properties, such as transport coefficients via x-ray Thomson scattering.
Collapse
Affiliation(s)
- Abdourahmane Diaw
- Department of Computational Mathematics, Science and Engineering, Michigan State University East Lansing, Michigan, 48823, USA.
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University East Lansing, Michigan, 48823, USA
| |
Collapse
|
40
|
Groth S, Dornheim T, Sjostrom T, Malone FD, Foulkes WMC, Bonitz M. Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions. PHYSICAL REVIEW LETTERS 2017; 119:135001. [PMID: 29341671 DOI: 10.1103/physrevlett.119.135001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 06/07/2023]
Abstract
In a recent Letter [T. Dornheim et al., Phys. Rev. Lett. 117, 156403 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.156403], we presented the first quantum Monte Carlo (QMC) results for the warm dense electron gas in the thermodynamic limit. However, a complete parametrization of the exchange-correlation free energy with respect to density, temperature, and spin polarization remained out of reach due to the absence of (i) accurate QMC results below θ=k_{B}T/E_{F}=0.5 and (ii) QMC results for spin polarizations different from the paramagnetic case. Here we overcome both remaining limitations. By closing the gap to the ground state and by performing extensive QMC simulations for different spin polarizations, we are able to obtain the first completely ab initio exchange-correlation free energy functional; the accuracy achieved is an unprecedented ∼0.3%. This also allows us to quantify the accuracy and systematic errors of various previous approximate functionals.
Collapse
Affiliation(s)
- Simon Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Tobias Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Travis Sjostrom
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Fionn D Malone
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- Physics Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA
| | - W M C Foulkes
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|
41
|
Dornheim T, Groth S, Sjostrom T, Malone FD, Foulkes WMC, Bonitz M. Ab Initio Quantum Monte Carlo Simulation of the Warm Dense Electron Gas in the Thermodynamic Limit. PHYSICAL REVIEW LETTERS 2016; 117:156403. [PMID: 27768371 DOI: 10.1103/physrevlett.117.156403] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 06/06/2023]
Abstract
We perform ab initio quantum Monte Carlo (QMC) simulations of the warm dense uniform electron gas in the thermodynamic limit. By combining QMC data with the linear response theory, we are able to remove finite-size errors from the potential energy over the substantial parts of the warm dense regime, overcoming the deficiencies of the existing finite-size corrections by Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)]. Extensive new QMC results for up to N=1000 electrons enable us to compute the potential energy V and the exchange-correlation free energy F_{xc} of the macroscopic electron gas with an unprecedented accuracy of |ΔV|/|V|,|ΔF_{xc}|/|F|_{xc}∼10^{-3}. A comparison of our new data to the recent parametrization of F_{xc} by Karasiev et al. [Phys. Rev. Lett. 112, 076403 (2014)] reveals significant deviations to the latter.
Collapse
Affiliation(s)
- Tobias Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Simon Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | - Travis Sjostrom
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Fionn D Malone
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - W M C Foulkes
- Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Michael Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| |
Collapse
|