1
|
Meech SR, Bull JN, Bressan G. Two-dimensional electronic spectroscopy of Betaine-30. J Chem Phys 2025; 162:184302. [PMID: 40337935 DOI: 10.1063/5.0268084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Betaine-30 is well-established as a standard dye for solvatochromism and has long been studied by ultrafast spectroscopy. Electronic excitation leads to rapid intramolecular electron transfer, while the decay of the resulting state corresponds to back electron transfer to the electronic ground state. Thus, Betaine-30's photophysics offers a route to probing the role that vibrational excitation and solvent dynamics play in electron transfer reaction rates. Here, we probe the excited state dynamics of Betaine-30 in two solvents (ethanol and acetonitrile) by means of two-dimensional electronic spectroscopy. Population dynamics in ethanol are measured at two pump wavelengths, and global analysis reveals a wavelength dependence of the electron transfer rate. This is assigned to excitation of distinct ground state conformers, which is confirmed by quantum chemical calculations. "Beatmaps" of coherently excited vibrations are recovered and analyzed in terms of the contribution of Raman active modes in ground and excited states. The contribution of modes in the excited state is a strong function of the rate of the electron transfer reaction.
Collapse
Affiliation(s)
- Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
2
|
Gajo C, Jordan CJC, Oliver TAA. Two-Dimensional Electronic Spectroscopy of Rhodamine 700 Using an 8 fs Ultrabroadband Laser Source and Full-Wavelength Reference Detection. J Phys Chem A 2025; 129:3537-3551. [PMID: 40043307 PMCID: PMC12010339 DOI: 10.1021/acs.jpca.4c08494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 04/18/2025]
Abstract
Two-dimensional electronic spectroscopy (2DES) is one of the premier tools for investigating photoinduced condensed phase dynamics, combining high temporal and spectral resolution to probe ultrafast phenomena. We have coupled an ultrabroadband laser source generated with a hollow-core fiber, compressing pulses to have a pulse duration of 8 fs, with a boxcars 2DES interferometer constructed from only conventional optics. The resulting ultrabroad bandwidth and high temporal resolution allow for superior spectral coverage of the typically broad molecular line shapes in the near-IR/visible region in room temperature solutions, and the exploration of the excited state dynamics at the earliest time epoch in complex systems. The new spectrometer is characterized by examining the dynamics of the dye molecule Rhodamine 700 in methanol solution. These data exhibit rich vibrational wavepacket dynamics, with 2DES data unraveling key molecular vibronic couplings between multiple vibrational modes. For the first time in a degenerate broadband 2DES experiment, we demonstrate the implementation of full-wavelength reference detection to correct wavelength-dependent laser intensity fluctuations. The net result is a 4-5× increased signal-to-noise (S/N) ratio compared to data acquired without reference detection, yielding a typical S/N ratio = 28. The increased S/N ratio facilitates more rapid data acquisition and examination of samples at lower optical densities, and thus concentrations, than typically used in 2DES experiments. These advances will help to alleviate the typical high demands on precious samples in 2DES measurements.
Collapse
|
3
|
Bressan G, Chambrier I, Cammidge AN, Meech SR. Symmetry-Breaking Charge-Separation in a Subphthalocyanine Dimer Resolved by Two-Dimensional Electronic Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:1069-1077. [PMID: 39839069 PMCID: PMC11744789 DOI: 10.1021/acs.jpcc.4c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025]
Abstract
Understanding the role of structural and environmental dynamics in the excited state properties of strongly coupled chromophores is of paramount importance in molecular photonics. Ultrafast, coherent, and multidimensional spectroscopies have been utilized to investigate such dynamics in the simplest model system, the molecular dimer. Here, we present a half-broadband two-dimensional electronic spectroscopy (HB2DES) study of the previously reported ultrafast symmetry-breaking charge separation (SB-CS) in the subphthalocyanine oxo-bridged homodimer μ-OSubPc2. Electronic structure calculations and 2D cross-peaks reveal the dimer's excitonic structure, while ultrafast evolution of the multidimensional spectra unveils subtle features of structural relaxation, solvation dynamics, and inhomogeneous broadening in the SB-CS. Analysis of coherently excited vibrational motions reveals dimer-specific low-frequency Raman active modes coupled to higher-frequency vibrations localized on the SubPc cores. Finally, beatmap amplitude distributions characteristic of excitonic dimers with multiple bright states are reported and analyzed.
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry, University
of East Anglia, Norwich NR4 7TJ, U.K.
| | | | | | - Stephen R. Meech
- School of Chemistry, University
of East Anglia, Norwich NR4 7TJ, U.K.
| |
Collapse
|
4
|
Milloch A, Filippi U, Franceschini P, Mor S, Pagliara S, Ferrini G, Camargo FVA, Cerullo G, Baranov D, Manna L, Giannetti C. Fate of Optical Excitons in FAPbI 3 Nanocube Superlattices. ACS PHOTONICS 2024; 11:3511-3520. [PMID: 39310294 PMCID: PMC11414601 DOI: 10.1021/acsphotonics.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024]
Abstract
Understanding the nature of the photoexcitation and ultrafast charge dynamics pathways in organic halide perovskite nanocubes and their aggregation into superlattices is key for potential applications as tunable light emitters, photon-harvesting materials, and light-amplification systems. In this work, we apply two-dimensional coherent electronic spectroscopy (2DES) to track in real time the formation of near-infrared optical excitons and their ultrafast relaxation in CH(NH2)2PbI3 nanocube superlattices. Our results unveil that the coherent ultrafast dynamics is limited by the combination of the inherent short exciton decay time (≃40 fs) and the dephasing due to the coupling with selective optical phonon modes at higher temperatures. On the picosecond time scale, we observe the progressive formation of long-lived localized trap states. The analysis of the temperature dependence of the excitonic intrinsic line width, as extracted by the antidiagonal components of the 2D spectra, unveils a dramatic change of the excitonic coherence time across the cubic to tetragonal structural transition. Our results offer a new way to control and enhance the ultrafast coherent dynamics of photocarrier generation in hybrid halide perovskite synthetic solids.
Collapse
Affiliation(s)
- Alessandra Milloch
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- Department
of Physics and Astronomy, KU Leuven, B-3001 Leuven, Belgium
| | | | - Paolo Franceschini
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
- Department
of Information Engineering, University of
Brescia, Brescia I-25123, Italy
| | - Selene Mor
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Stefania Pagliara
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | - Gabriele Ferrini
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
| | | | - Giulio Cerullo
- IFN-CNR, Piazza Leonardo da Vinci 32, I-20133, Milano, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Dmitry Baranov
- Italian
Institute of Technology (IIT), Genova 16163, Italy
- Division
of Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Liberato Manna
- Italian
Institute of Technology (IIT), Genova 16163, Italy
| | - Claudio Giannetti
- Department
of Mathematics and Physics, Università
Cattolica del Sacro Cuore, Brescia I-25133, Italy
- ILAMP
(Interdisciplinary Laboratories for Advanced Materials Physics), Università Cattolica del Sacro Cuore, Brescia I-25133, Italy
- CNR-INO
(National Institute of Optics), via Branze 45, 25123 Brescia, Italy
| |
Collapse
|
5
|
Pios SV, Gelin MF, Luis Vasquez, Hauer J, Chen L. On-the-Fly Simulation of Two-Dimensional Fluorescence-Excitation Spectra. J Phys Chem Lett 2024; 15:8728-8735. [PMID: 39162319 DOI: 10.1021/acs.jpclett.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Two-dimensional (2D) fluorescence-excitation (2D-FLEX) spectroscopy is a recently proposed nonlinear femtosecond technique for the detection of photoinduced dynamics. The method records a time-resolved fluorescence signal in its excitation- and detection-frequency dependence and hence combines the exclusive detection of excited state dynamics (fluorescence) with signals resolved in both excitation and emission frequencies (2D electronic spectroscopy). In this work, we develop an on-the-fly protocol for the simulation of 2D-FLEX spectra of molecular systems, which is based on interfacing the classical doorway-window representation of spectroscopic responses with trajectory surface hopping simulations. Applying this methodology to gas-phase pyrazine, we show that femtosecond 2D-FLEX spectra can deliver detailed information that is otherwise obtainable via attosecond spectroscopy.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | |
Collapse
|
6
|
Green D, Bressan G, Heisler IA, Meech SR, Jones GA. Vibrational coherences in half-broadband 2D electronic spectroscopy: Spectral filtering to identify excited state displacements. J Chem Phys 2024; 160:234104. [PMID: 38884412 DOI: 10.1063/5.0214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
Collapse
Affiliation(s)
- Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
7
|
Zhu R, Li W, Zhen Z, Zou J, Liao G, Wang J, Wang Z, Chen H, Qin S, Weng Y. Quantum phase synchronization via exciton-vibrational energy dissipation sustains long-lived coherence in photosynthetic antennas. Nat Commun 2024; 15:3171. [PMID: 38609379 PMCID: PMC11015008 DOI: 10.1038/s41467-024-47560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The lifetime of electronic coherences found in photosynthetic antennas is known to be too short to match the energy transfer time, rendering the coherent energy transfer mechanism inactive. Exciton-vibrational coherence time in excitonic dimers which consist of two chromophores coupled by excitation transfer interaction, can however be much longer. Uncovering the mechanism for sustained coherences in a noisy biological environment is challenging, requiring the use of simpler model systems as proxies. Here, via two-dimensional electronic spectroscopy experiments, we present compelling evidence for longer exciton-vibrational coherence time in the allophycocyanin trimer, containing excitonic dimers, compared to isolated pigments. This is attributed to the quantum phase synchronization of the resonant vibrational collective modes of the dimer, where the anti-symmetric modes, coupled to excitonic states with fast dephasing, are dissipated. The decoupled symmetric counterparts are subject to slower energy dissipation. The resonant modes have a predicted nearly 50% reduction in the vibrational amplitudes, and almost zero amplitude in the corresponding dynamical Stokes shift spectrum compared to the isolated pigments. Our findings provide insights into the mechanisms for protecting coherences against the noisy environment.
Collapse
Affiliation(s)
- Ruidan Zhu
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhanghe Zhen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China
| | - Jiading Zou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guohong Liao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jiayu Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Zhuan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, P.R. China.
| |
Collapse
|
8
|
Bressan G, Green D, Jones GA, Heisler IA, Meech SR. Two-Dimensional Electronic Spectroscopy Resolves Relative Excited-State Displacements. J Phys Chem Lett 2024; 15:2876-2884. [PMID: 38447068 PMCID: PMC10945572 DOI: 10.1021/acs.jpclett.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 ← S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn ← S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
Collapse
Affiliation(s)
- Giovanni Bressan
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Dale Green
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Garth A. Jones
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Ismael A. Heisler
- Instituto
de Fisica, Universidade Federal do Rio Grande
do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R. Meech
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| |
Collapse
|
9
|
Nagahara T, Camargo FVA, Xu F, Ganzer L, Russo M, Zhang P, Perri A, de la Cruz Valbuena G, Heisler IA, D’Andrea C, Polli D, Müllen K, Feng X, Mai Y, Cerullo G. Electronic Structure of Isolated Graphene Nanoribbons in Solution Revealed by Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2024; 24:797-804. [PMID: 38189787 PMCID: PMC10811683 DOI: 10.1021/acs.nanolett.3c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.
Collapse
Affiliation(s)
- Tetsuhiko Nagahara
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Department
of Chemistry and Materials Technology, Kyoto
Institute of Technology, 606-8585 Kyoto, Japan
| | | | - Fugui Xu
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Lucia Ganzer
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Mattia Russo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Pengfei Zhang
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Antonio Perri
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | | | - Ismael A. Heisler
- Departamento
de Física, Universidade Federal do
Paraná, Caixa
Postal 19044, 81531-990 Curitiba, Paraná, Brazil
| | - Cosimo D’Andrea
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Dario Polli
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Klaus Müllen
- Max Planck
Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Technische
Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Yiyong Mai
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules, Shanghai Jiao
Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- IFN-CNR, Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Whaley-Mayda L, Guha A, Tokmakoff A. Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. II. Analysis of early-time signals. J Chem Phys 2023; 159:194202. [PMID: 37966136 DOI: 10.1063/5.0171946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Developing fluorescence-encoded infrared (FEIR) vibrational spectroscopy for single-molecule applications requires a detailed understanding of how the molecular response and external experimental parameters manifest in the detected signals. In Paper I [L. Whaley-Mayda, A. Guha, and A. Tokmakoff, J. Chem. Phys. 159, 194201 (2023)] we introduced a nonlinear response function theory to describe vibrational dynamics, vibronic coupling, and transition dipole orientation in FEIR experiments with ultrashort pulses. In this second paper, we apply the theory to investigate the role of intermode vibrational coherence, the orientation of vibrational and electronic transition dipoles, and the effects of finite pulse durations in experimental measurements. We focus on measurements at early encoding delays-where signal sizes are largest and therefore of most value for single-molecule experiments, but where many of these phenomena are most pronounced and can complicate the appearance of data. We compare experiments on coumarin dyes with finite-pulse response function simulations to explain the time-dependent behavior of FEIR spectra. The role of the orientational response is explored by analyzing polarization-dependent experiments and their ability to resolve relative dipole angles in the molecular frame. This work serves to demonstrate the molecular information content of FEIR experiments, and develop insight and guidelines for their interpretation.
Collapse
Affiliation(s)
- Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
11
|
Zou J, Zhu R, Wang J, Meng H, Wang Z, Chen H, Weng YX. Coherent Phonon-Mediated Many-Body Interaction in Monolayer WSe 2. J Phys Chem Lett 2023; 14:4657-4665. [PMID: 37167104 DOI: 10.1021/acs.jpclett.3c00870] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Due to the strong Coulomb interaction, the optical and electrical properties of two-dimensional transition metal dichalcogenides (TMDCs) are greatly determined by the emergence of many-body complexes such as excitons or trions. To fully realize the potential functionalities of these atomically thin materials, a comprehensive understanding of their many-body interaction mechanism is essential. Here, using the advanced femtosecond two-dimensional electronic spectroscopy technique combined with broadband transient absorption spectroscopy, a strong electron-exciton coupling effect in monolayer WSe2 following the ultrafast photoexcitation is revealed. We demonstrate that such many-body complexes can be generated effectively through the band-edge optical excitation, with a ∼1.5 ps stabilization process. The coherent optical phonon plays a dominant role in this electron-exciton interaction, and the coherence of the electron (exciton)-phonon coupling can last for ∼4.5 ps. This finding offers new insight into the formation mechanism of photoinduced many-body complexes in TMDCs.
Collapse
Affiliation(s)
- Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanting Meng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Brosseau P, Seiler H, Palato S, Sonnichsen C, Baker H, Socie E, Strandell D, Kambhampati P. Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals. J Chem Phys 2023; 158:084201. [PMID: 36859087 DOI: 10.1063/5.0138252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Etienne Socie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
13
|
Leng X, Yan Y, Zhu R, Zou J, Zhang W, Shi Q. Revealing Intermolecular Electronic and Vibronic Coherence with Polarization-Dependent Two-Dimensional Beating Maps. J Phys Chem Lett 2023; 14:838-845. [PMID: 36656105 DOI: 10.1021/acs.jpclett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has been widely employed as an efficient tool to reveal the impact of intermolecular electronic and/or vibronic quantum coherence on excitation energy transfer in light-harvesting complexes. However, intramolecular vibrational coherence would also contribute to oscillating signals in 2D spectra, along with the intermolecular coherence signals that are directly related to energy transfer. In this work, the possibility of screening the vibrational coherence signals is explored through polarization-dependent 2DES. The all-parallel (AP) and double-crossed (DC) polarization-dependent two-dimensional rephasing spectra (2DRS) are simulated for a minimalist heterodimer model with vibrational coupling. By combining the DC-2DRS and the 2D beating maps, we demonstrate that the population and vibrational coherence signals can be largely suppressed, resulting in highlighted intermolecular electronic and vibronic coherence signals. Moreover, the AP- and DC-2DBMs show rather different patterns at the vibrational frequency, indicating a possible way to identify pure vibrational coherence.
Collapse
Affiliation(s)
- Xuan Leng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Kim T, Lin C, Schultz JD, Young RM, Wasielewski MR. π-Stacking-Dependent Vibronic Couplings Drive Excited-State Dynamics in Perylenediimide Assemblies. J Am Chem Soc 2022; 144:11386-11396. [PMID: 35699940 DOI: 10.1021/jacs.2c03993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vibronic coupling, the interplay of electronic and nuclear vibrational motion, is considered a critical mechanism in photoinduced reactions such as energy transfer, charge transfer, and singlet fission. However, our understanding of how particular vibronic couplings impact excited-state dynamics is lacking due to the limited number of experimental studies of model molecular systems. Herein, we use two-dimensional electronic spectroscopy (2DES) to launch and interrogate a range of vibronic coherences in two distinct types of perylenediimide slip stacks─along the short and long molecular axes, which form either an excimer or a mixed state between the Frenkel exciton (FE) and charge transfer states. We explore the functionality of these vibronic coherences using quantum beatmaps, which display the Fourier amplitude signal oscillations as a function of pump and probe frequencies, along with knowledge of the characteristic signatures of the FE, ionic, and excimer species. We find that a low-frequency vibrational mode of the short-axis slip stack appears concomitantly with the formation of the excimer state, survives 2-fold longer than in the FE state in the reference monomer, and shows a phase shift compared to other modes. For the long-axis slip stacks, a pair of low-frequency modes coupled to a high-frequency coordinate of the FE state were found to play a critical role in mixed-state generation. Our findings thus experimentally reveal the complex and varying roles of vibronic couplings in tightly packed multimers undergoing a range of photoinduced processes.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chenjian Lin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
15
|
Zhu R, Ruan M, Li H, Leng X, Zou J, Wang J, Chen H, Wang Z, Weng Y. Vibrational and vibronic coherences in the energy transfer process of light-harvesting complex II revealed by two-dimensional electronic spectroscopy. J Chem Phys 2022; 156:125101. [DOI: 10.1063/5.0082280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The presence of quantum coherence in light-harvesting complex II (LHCII) as a mechanism to understand the efficiency of the light-harvesting function in natural photosynthetic systems is still debated due to its structural complexity and weak-amplitude coherent oscillations. Here, we revisit the coherent dynamics and clarify different types of coherences in the energy transfer processes of LHCII using a joint method of the high-S/N transient grating and two-dimensional electronic spectroscopy. We find that the electronic coherence decays completely within 50 fs at room temperature. The vibrational coherences of chlorophyll a dominate over oscillations within 1 ps, whereas a low-frequency mode of 340 cm−1 with a vibronic mixing character may participate in vibrationally assisted energy transfer between chlorophylls a. Our results may suggest that vibronic mixing is relevant for rapid energy transfer processes among chlorophylls in LHCII.
Collapse
Affiliation(s)
- Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meixia Ruan
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Li
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Leng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayu Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
16
|
Humphries BS, Green D, Jones GA. The influence of a Hamiltonian vibration vs a bath vibration on the 2D electronic spectra of a homodimer. J Chem Phys 2022; 156:084103. [DOI: 10.1063/5.0077404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We elucidate the influence of the system–bath boundary placement within an open quantum system, with emphasis on the two-dimensional electronic spectra, through the application of the hierarchical equations of motion formalism for an exciton system. We apply two different models, the Hamiltonian vibration model (HVM) and bath vibration model (BVM), to a monomer and a homodimer. In the HVM, we specifically include the vibronic states in the Hamiltonian capturing vibronic quenching, whereas in the BVM, all vibrational details are contained within the bath and described by an underdamped spectral density. The resultant spectra are analyzed in terms of energetic peak position and thermodynamic broadening precision in order to evaluate the efficacy of the two models. The HVM produces 2D spectra with accurate peak positional information, while the BVM is well suited to modeling dynamic peak broadening. For the monomer, both models produce equivalent spectra in the limit where additional damping associated with the underdamped vibration in the BVM approaches zero. This is supported by analytical results. However, for the homodimer, the BVM spectra are redshifted with respect to the HVM due to an absence of vibronic quenching in the BVM. The computational efficiency of the two models is also discussed in order to inform us of the most appropriate use of each method.
Collapse
Affiliation(s)
- Ben S. Humphries
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Dale Green
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Garth A. Jones
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
17
|
Bressan G, Jirasek M, Roy P, Anderson HL, Meech SR, Heisler IA. Population and Coherence Dynamics in Large Conjugated Porphyrin Nanorings. Chem Sci 2022; 13:9624-9636. [PMID: 36091893 PMCID: PMC9400675 DOI: 10.1039/d2sc01971j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
In photosynthesis, nature exploits the distinctive electronic properties of chromophores arranged in supramolecular rings for efficient light harvesting. Among synthetic supramolecular cyclic structures, porphyrin nanorings have attracted considerable attention as they have a resemblance to naturally occurring light-harvesting structures but offer the ability to control ring size and the level of disorder. Here, broadband femtosecond transient absorption spectroscopy, with pump pulses in resonance with either the high or the low energy sides of the inhomogeneously broadened absorption spectrum, is used to study the population dynamics and ground and excited state vibrational coherence in large porphyrin nanorings. A series of fully conjugated, alkyne bridged, nanorings constituted of between ten and forty porphyrin units is studied. Pump-wavelength dependent fast spectral evolution is found. A fast rise or decay of the stimulated emission is found when large porphyrin nanorings are excited on, respectively, the high or low energy side of the absorption spectrum. Such dynamics are consistent with the hypothesis of a variation in transition dipole moment across the inhomogeneously broadened ground state ensemble. The observed dynamics indicate the interplay of nanoring conformation and oscillator strength. Oscillatory dynamics on the sub-ps time domain are observed in both pumping conditions. A combined analysis of the excitation wavelength-dependent transient spectra along with the amplitude and phase evolution of the oscillations allows assignment to vibrational wavepackets evolving on either ground or excited states electronic potential energy surfaces. Even though porphyrin nanorings support highly delocalized electronic wavefunctions, with coherence length spanning tens of chromophores, the measured vibrational coherences remain localised on the monomers. The main contributions to the beatings are assigned to two vibrational modes localised on the porphyrin cores: a Zn–N stretching mode and a skeletal methinic/pyrrolic C–C stretching and in-plane bending mode. Pump wavelength-dependent, ultrafast excited state dynamics arising from inhomogeneous broadening and ground and excited state nuclear wavepackets were observed for a series of Zn porphyrin nanorings made of 10 to 40 repeating units.![]()
Collapse
Affiliation(s)
- Giovanni Bressan
- School of Chemistry Norwich Research Park, University of East Anglia Norwich NR4 7TJ UK
| | - Michael Jirasek
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Palas Roy
- School of Chemistry Norwich Research Park, University of East Anglia Norwich NR4 7TJ UK
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory Oxford OX1 3TA UK
| | - Stephen R Meech
- School of Chemistry Norwich Research Park, University of East Anglia Norwich NR4 7TJ UK
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul Avenida Bento Gonçalves, 9500, CEP 91501-970 Porto Alegre Brazil
| |
Collapse
|
18
|
Camargo FA, Ben-Shahar Y, Nagahara T, Panfil YE, Russo M, Banin U, Cerullo G. Visualizing Ultrafast Electron Transfer Processes in Semiconductor-Metal Hybrid Nanoparticles: Toward Excitonic-Plasmonic Light Harvesting. NANO LETTERS 2021; 21:1461-1468. [PMID: 33481610 PMCID: PMC7883410 DOI: 10.1021/acs.nanolett.0c04614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, it was demonstrated that charge separation in hybrid metal-semiconductor nanoparticles (HNPs) can be obtained following photoexcitation of either the semiconductor or of the localized surface plasmon resonance (LSPR) of the metal. This suggests the intriguing possibility of photocatalytic systems benefiting from both plasmon and exciton excitation, the main challenge being to outcompete other ultrafast relaxation processes. Here we study CdSe-Au HNPs using ultrafast spectroscopy with high temporal resolution. We describe the complete pathways of electron transfer for both semiconductor and LSPR excitation. In the former, we distinguish hot and band gap electron transfer processes in the first few hundred fs. Excitation of the LSPR reveals an ultrafast (<30 fs) electron transfer to CdSe, followed by back-transfer from the semiconductor to the metal within 210 fs. This study establishes the requirements for utilization of the combined excitonic-plasmonic contribution in HNPs for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Franco
V. A. Camargo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Yuval Ben-Shahar
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department
of Physical Chemistry, Israel Institute
for Biological Research, P.O. Box 19, Ness-Ziona 74100, Israel
| | - Tetsuhiko Nagahara
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Chemistry and Materials Technology, Kyoto
Institute of Technology, Matsugasaki, Kyoto 6068585, Japan
| | - Yossef E. Panfil
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mattia Russo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| | - Uri Banin
- Institute
of Chemistry and Center for Nanoscience & Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Giulio Cerullo
- Dipartimento
di Fisica, IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133, Italy
| |
Collapse
|
19
|
Zhu R, Zou J, Wang Z, Chen H, Weng Y. Electronic State-Resolved Multimode-Coupled Vibrational Wavepackets in Oxazine 720 by Two-Dimensional Electronic Spectroscopy. J Phys Chem A 2020; 124:9333-9342. [PMID: 33136407 DOI: 10.1021/acs.jpca.0c06559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The difference between the excited- and ground-state vibrational wavepackets remains to be fully explored when multiple vibrational modes are coherently excited simultaneously by femtosecond pulses. In this work, we present a series of one- and two-dimensional electronic spectroscopy for studying multimode wavepackets of oxazine 720 in solution. Fourier transform (FT) maps combined with time-frequency transform (TFT) are employed to unambiguously distinguish the origin of low-frequency vibrational wavepackets, that is, an excited-state vibrational wavepacket of 586 cm-1 with a dephasing time of 0.7 ps and a ground-state vibrational wavepacket of 595 cm-1 with a dephasing time of 1.3-1.7 ps. We also found the additional low-frequency vibrational wavepackets resulting from the coupling of the 595 cm-1 mode to a series of high-frequency modes centered at 1150 cm-1 via electronic transitions. The combined use of FT maps and TFT analysis allows us to reveal the potential vibrational coupling of wavepackets and offers the possibility of disentangling the coupling between the electronic and vibrational degrees of freedom in condensed-phase systems.
Collapse
Affiliation(s)
- Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
20
|
Marcus M, Knee GC, Datta A. Towards a spectroscopic protocol for unambiguous detection of quantum coherence in excitonic energy transport. Faraday Discuss 2020; 221:110-132. [DOI: 10.1039/c9fd00068b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We propose a witness for quantum coherence in EET that can be extracted directly from two-pulse pump–probe spectroscopy experimental data.
Collapse
Affiliation(s)
- Max Marcus
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | - Animesh Datta
- Department of Physics
- University of Warwick
- Coventry
- UK
| |
Collapse
|
21
|
Wang L, Allodi MA, Engel GS. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Zhu R, Yue S, Li H, Leng X, Wang Z, Chen H, Weng Y. Correction of spectral distortion in two-dimensional electronic spectroscopy arising from the wedge-based delay line. OPTICS EXPRESS 2019; 27:15474-15484. [PMID: 31163743 DOI: 10.1364/oe.27.015474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Unlike the probe wavelength, which is spectrally resolved by monochromator, the excitation wavelength in two-dimensional electronic spectroscopy is retrieved by means of Fourier transform of the interference signal introduced by the coherence delay time between the first and second excitation laser pulses. Hence, the calibration of delay lines would determine its accuracy. In this work, we showed that an inaccurate calibration factor of wedge-based delay line would result in a global peak shift and asymmetric spectral twists along the excitation axis. Both theoretical analysis and experiments have shown that such spectral distortions can be corrected by an accurately predetermined calibration factor. The relative accuracy of calibration factor reaches 3 × 10-5 in our setup. The dispersion effect of wedges also has been considered for the broadband excitation.
Collapse
|
23
|
Gelzinis A, Augulis R, Butkus V, Robert B, Valkunas L. Two-dimensional spectroscopy for non-specialists. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:271-285. [DOI: 10.1016/j.bbabio.2018.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/14/2018] [Accepted: 12/08/2018] [Indexed: 12/20/2022]
|
24
|
van Thor JJ. Coherent two-dimensional electronic and infrared crystallography. J Chem Phys 2019; 150:124113. [PMID: 30927871 DOI: 10.1063/1.5079319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The two-dimensional electronic and infrared spectroscopy of oriented single crystals is sensitive to structure and point group symmetry. The third order response of crystals is generally different from measurements of isotropic solutions because each coherence path that contributes to the measured field scales to the ensemble average of the four-point correlation functions of the four field-dipole interactions involved in the respective Feynman paths. An analytical evaluation of 2D optical crystallography which depends on the crystal symmetry, laboratory orientation, and the orientation in the crystallographic frame is presented. Applying a symmetry operator in the basis of the allowed polarised radiation modes provides a method for evaluation of non-zero fourth rank tensor elements alternative to direct inspection methods. Uniaxial and biaxial systems are distinguished and the contributions to the rephasing and non-rephasing directions are evaluated for isolated and coupled oscillators. By exploiting coordinate analysis, the extension of non-linear electronic and infrared crystallography for coupled oscillators demonstrates the structural, directional, and symmetry dependent selection of coherences to the four-wave mixing signal.
Collapse
Affiliation(s)
- Jasper J van Thor
- Molecular Biophysics, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
25
|
Policht VR, Niedringhaus A, Ogilvie JP. Characterization of Vibrational Coherence in Monomeric Bacteriochlorophyll a by Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2018; 9:6631-6637. [PMID: 30376340 DOI: 10.1021/acs.jpclett.8b02691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacteriochlorophyll a (BChla) is the most abundant pigment found in the Bacterial Reaction Center (BRC) and light-harvesting proteins of photosynthetic purple and green bacteria. Recent two-dimensional electronic spectroscopy (2DES) studies of photosynthetic pigment-protein complexes including the BRC and the Fenna-Matthews-Olson (FMO) complex have shown oscillatory signals, or coherences, whose physical origin has been hotly debated. To better understand the observations of coherence in larger photosynthetic systems, it is important to carefully characterize the spectroscopic signatures of the monomeric pigments. Prior spectroscopic studies of BChla have differed significantly in their observations, with some studies reporting little to no coherence. Here we present evidence of strong coherences in monomeric BChla in isopropanol using 2DES at 77 K. We resolve many modes with frequencies that correspond well with known vibrational modes. We confirm their vibrational origin by comparing the 2D spectroscopic signatures with expectations based on a purely vibrational model.
Collapse
Affiliation(s)
- Veronica R Policht
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48108 , United States
| | - Andrew Niedringhaus
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48108 , United States
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48108 , United States
| |
Collapse
|
26
|
Segatta F, Gdor I, Réhault J, Taioli S, Friedman N, Sheves M, Rivalta I, Ruhman S, Cerullo G, Garavelli M. Ultrafast Carotenoid to Retinal Energy Transfer in Xanthorhodopsin Revealed by the Combination of Transient Absorption and Two-Dimensional Electronic Spectroscopy. Chemistry 2018; 24:12084-12092. [PMID: 30048017 DOI: 10.1002/chem.201803525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Indexed: 11/10/2022]
Abstract
By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.
Collapse
Affiliation(s)
- Francesco Segatta
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK), 38123, Trento, Italy.,Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Itay Gdor
- Department of Physical Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Julien Réhault
- Department für Chemie und Biochemie, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Simone Taioli
- European Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*-FBK), 38123, Trento, Italy
| | - Noga Friedman
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ivan Rivalta
- Laboratoire de Chimie UMR 5182, Université Lyon, ENS de Lyon, CNRS, Unversité Lyon 1, Allée d'Italie 46, FR-69342, Lyon, France
| | - Sanford Ruhman
- Department of Physical Chemistry, The Hebrew University, Jerusalem, 9190401, Israel
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Marco Garavelli
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
27
|
Green D, V A Camargo F, Heisler IA, Dijkstra AG, Jones GA. Spectral Filtering as a Tool for Two-Dimensional Spectroscopy: A Theoretical Model. J Phys Chem A 2018; 122:6206-6213. [PMID: 29985004 DOI: 10.1021/acs.jpca.8b03339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional optical spectroscopy is a powerful technique for the probing of coherent quantum superpositions. Recently, the finite width of the laser spectrum has been employed to selectively tune experiments for the study of particular coherences. This involves the exclusion of certain transition frequencies, which results in the elimination of specific Liouville pathways. The rigorous analysis of such experiments requires the use of ever more sophisticated theoretical models for the optical spectroscopy of electronic and vibronic systems. Here we develop a nonimpulsive and non-Markovian model, which combines an explicit definition of the laser spectrum, via the equation of motion-phase matching approach (EOM-PMA), with the hierarchical equations of motion (HEOM). This theoretical framework is capable of simulating the 2D spectroscopy of vibronic systems with low frequency modes, coupled to environments of intermediate and slower time scales. In order to demonstrate the spectral filtering of vibronic coherences, we examine the elimination of lower energy peaks from the 2D spectra of a zinc porphyrin monomer upon blue-shifting the laser spectrum. The filtering of Liouville pathways is revealed through the disappearance of peaks from the amplitude spectra for a coupled vibrational mode.
Collapse
Affiliation(s)
- Dale Green
- School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , U.K
| | - Franco V A Camargo
- School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , U.K.,CAPES Foundation , Ministry of Education of Brazil , Brasilia DF 70040-202 , Brazil
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , U.K
| | | | - Garth A Jones
- School of Chemistry , University of East Anglia , Norwich Research Park, Norwich NR4 7TJ , U.K
| |
Collapse
|
28
|
Gaynor JD, Khalil M. Signatures of vibronic coupling in two-dimensional electronic-vibrational and vibrational-electronic spectroscopies. J Chem Phys 2018; 147:094202. [PMID: 28886647 DOI: 10.1063/1.4991745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Two-Dimensional Electronic-Vibrational (2D EV) spectroscopy and Two-Dimensional Vibrational-Electronic (2D VE) spectroscopy are new coherent four-wave mixing spectroscopies that utilize both electronically resonant and vibrationally resonant field-matter interactions to elucidate couplings between electronic and vibrational degrees of freedom. A system Hamiltonian is developed here to lay a foundation for interpreting the 2D EV and 2D VE signals that arise from a vibronically coupled molecular system in the condensed phase. A molecular system consisting of one anharmonic vibration and two electronic states is modeled. Equilibrium displacement of the vibrational coordinate and vibrational frequency shifts upon excitation to the first electronic excited state are included in our Hamiltonian through linear and quadratic vibronic coupling terms. We explicitly consider the nuclear dependence of the electronic transition dipole moment and demonstrate that these spectroscopies are sensitive to non-Condon effects. A series of simulations of 2D EV and 2D VE spectra obtained by varying parameters of the system, system-bath, and interaction Hamiltonians demonstrate that one of the following conditions must be met to observe signals: (1) non-zero linear and/or quadratic vibronic coupling in the electronic excited state, (2) vibrational-coordinate dependence of the electronic transition dipole moment, or (3) electronic-state-dependent vibrational dephasing dynamics. We explore how these vibronic interactions are manifested in the positions, amplitudes, and line shapes of the peaks in 2D EV and 2D VE spectroscopies.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Jonas DM. Vibrational and Nonadiabatic Coherence in 2D Electronic Spectroscopy, the Jahn–Teller Effect, and Energy Transfer. Annu Rev Phys Chem 2018; 69:327-352. [DOI: 10.1146/annurev-physchem-052516-050602] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David M. Jonas
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
30
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, van Grondelle R. Vibronic Coherence in the Charge Separation Process of the Rhodobacter sphaeroides Reaction Center. J Phys Chem Lett 2018; 9:1827-1832. [PMID: 29584941 PMCID: PMC6023262 DOI: 10.1021/acs.jpclett.8b00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Two-dimensional electronic spectroscopy was applied to a variant of the reaction center (RC) of purple bacterium Rhodobacter sphaeroides lacking the primary acceptor ubiquinone in order to understand the ultrafast separation and transfer of charge between the bacteriochlorin cofactors. For the first time, characteristic 2D spectra were obtained for the participating excited and charge-transfer states, and the electron-transfer cascade (including two different channels, the P* and B* channels) was fully mapped. By analyzing quantum beats using 2D frequency maps, excited-state vibrational modes at 153 and 33 cm-1 were identified. We speculate that these modes couple to the charge separation (CS) process and collectively optimize the CS and are responsible for the superhigh efficiency.
Collapse
Affiliation(s)
- Fei Ma
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Elisabet Romero
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| | - Michael R Jones
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk, Bristol BS8 1TD , United Kingdom
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology , Moscow State University , Leninskie Gory , 119992 Moscow , Russia
| | - Rienk van Grondelle
- Department of Physics and Astronomy , Faculty of Sciences, VU University Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands
| |
Collapse
|
31
|
Spencer AP, Hutson WO, Irgen-Gioro S, Harel E. Exciton-Phonon Spectroscopy of Quantum Dots Below the Single-Particle Homogeneous Line Width. J Phys Chem Lett 2018; 9:1503-1508. [PMID: 29510628 DOI: 10.1021/acs.jpclett.8b00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate that high-dimensionality coherent spectroscopy yields "super-resolved" spectra whereby peaks may be localized far below their homogeneous line width by resolving them across multiple, coherently coupled dimensions. We implement this technique using a fifth-order photon-echo spectroscopy called Gradient-Assisted Multidimensional Electronic-Raman Spectroscopy (GAMERS) that combines resonant and nonresonant excitation to disperse the optical response across three spectral dimensions: two involving excitonic transitions and one that encodes phonon energies. In analogy to super-resolution localization microscopies, which separate spatially overlapping signals in time, GAMERS isolates signals spectrally using combined electronic and nuclear resolution. Optical phonon lines in a colloidal solution of CdSe quantum dots at room temperature separated by less than 150 μeV are resolved despite the homogeneous line width of these transitions being nearly an order of magnitude broader. The frequency difference between these phonon modes is attributed to softening of the longitudinal phonon mode upon excitation to the lowest exciton state. Further, such phonon mode selectivity yields spectra with electronic line widths that approach the single particle limit. Through this enhanced spectral resolution, the GAMERS method yields insights into the nature of coupling between longitudinal optical and acoustic phonons and specific excitonic transitions that were previously hidden.
Collapse
Affiliation(s)
- Austin P Spencer
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - William O Hutson
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Shawn Irgen-Gioro
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Elad Harel
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
32
|
Wang R, Huang XY, Zhang CF, Wang XY, Xiao M. Coherent Exciton-Phonon Coupling in CdSe/ZnS Nanocrystals Studied by Two-Dimensional Electronic Spectroscopy. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Rui Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xin-yu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-feng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiao-yong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
33
|
Kowalska P, Peeks MD, Roliński T, Anderson HL, Waluk J. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism. Phys Chem Chem Phys 2017; 19:32556-32565. [PMID: 29188834 DOI: 10.1039/c7cp07348h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.
Collapse
Affiliation(s)
- Patrycja Kowalska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
34
|
Meneghin E, Leonardo C, Volpato A, Bolzonello L, Collini E. Mechanistic insight into internal conversion process within Q-bands of chlorophyll a. Sci Rep 2017; 7:11389. [PMID: 28900171 PMCID: PMC5595816 DOI: 10.1038/s41598-017-11621-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/29/2017] [Indexed: 11/08/2022] Open
Abstract
The non-radiative relaxation of the excitation energy from higher energy states to the lowest energy state in chlorophylls is a crucial preliminary step for the process of photosynthesis. Despite the continuous theoretical and experimental efforts to clarify the ultrafast dynamics of this process, it still represents the object of an intense investigation because the ultrafast timescale and the congestion of the involved states makes its characterization particularly challenging. Here we exploit 2D electronic spectroscopy and recently developed data analysis tools to provide more detailed insights into the mechanism of internal conversion within the Q-bands of chlorophyll a. The measurements confirmed the timescale of the overall internal conversion rate (170 fs) and captured the presence of a previously unidentified ultrafast (40 fs) intermediate step, involving vibronic levels of the lowest excited state.
Collapse
Affiliation(s)
- Elena Meneghin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Leonardo
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Andrea Volpato
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Luca Bolzonello
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
35
|
Butkus V, Alster J, Bašinskaitė E, Augulis RN, Neuhaus P, Valkunas L, Anderson HL, Abramavicius D, Zigmantas D. Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring. J Phys Chem Lett 2017; 8:2344-2349. [PMID: 28493708 DOI: 10.1021/acs.jpclett.7b00612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The role of quantum coherence in photochemical functions of molecular systems such as photosynthetic complexes is a broadly debated topic. Coexistence and intermixing of electronic and vibrational coherences has been proposed to be responsible for the observed long-lived coherences and high energy transfer efficiency. However, clear experimental evidence of coherences with different origins operating at the same time has been elusive. In this work, multidimensional spectra obtained from a six-porphyrin nanoring system are analyzed in detail with support from theoretical modeling. We uncover a great diversity of separable electronic, vibrational, and mixed coherences and show their cooperation in shaping the spectroscopic response. The results permit direct assignment of electronic and vibronic states and characterization of the excitation dynamics. The clear disentanglement of coherences in molecules with extended π-conjugation opens up new avenues for exploring coherent phenomena and understanding their importance for the function of complex systems.
Collapse
Affiliation(s)
- Vytautas Butkus
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
| | - Jan Alster
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Eglė Bašinskaitė
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Ramu Nas Augulis
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| | - Patrik Neuhaus
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Leonas Valkunas
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
- Center for Physical Sciences and Technology , Sauletekio Avenue 3, 10257 Vilnius, Lithuania
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory , Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Darius Abramavicius
- Department of Theoretical Physics, Faculty of Physics, Vilnius University , Sauletekio Avenue 9-III, 10222 Vilnius, Lithuania
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University , P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|