1
|
Mondal K, Maiti T, Ghosh P. Role of Noise-Modulated Self-Propulsion in Driving Spatiotemporal Orders in Active Systems. J Chem Theory Comput 2025. [PMID: 40243147 DOI: 10.1021/acs.jctc.5c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fluctuations play a pivotal role in driving spatiotemporal order in active matter systems. In this study, we employ a novel analytical framework to investigate the impact of dichotomous noise on the self-propelling velocity of active particle systems such as polymerizing actin filaments or reproducing elongated bacteria. By incorporating dichotomous fluctuations with Ornstein-Zernike correlations into a continuum-based model, we derive a bifurcation condition in the noise parameter space, revealing a noise-induced instability that drives the emergence of traveling waves. This approach demonstrates how specific noise strengths and correlation times expand the instability region by introducing effective new degrees of freedom that alter the system's stability matrix. Advance numerical simulations, meticulously designed to handle the properties of dichotomous noise, validate these theoretical predictions and reveal excellent agreement. A key finding is the observation of wave-reversal behavior, driven by the sign alternation of the noise-modulated advection term and modulated by the relaxation time. Remarkably, we identify a finite parameter range where this reversal is suppressed, offering new insights into noise-induced bifurcations and spatiotemporal dynamics. Our combined analytical and numerical approach provides a deeper understanding of the role of noise in shaping self-organization and pattern formation in biological and synthetic active systems.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Tarpan Maiti
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Yang TD, Park K, Park JS, Lee JH, Choi E, Lee J, Choi W, Choi Y, Lee KJ. Two distinct actin waves correlated with turns-and-runs of crawling microglia. PLoS One 2019; 14:e0220810. [PMID: 31437196 PMCID: PMC6705860 DOI: 10.1371/journal.pone.0220810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/23/2019] [Indexed: 11/24/2022] Open
Abstract
Freely crawling cells are often viewed as randomly moving Brownian particles but they generally exhibit some directional persistence. This property is often related to their zigzag motile behaviors that can be described as a noisy but temporally structured sequence of "runs" and "turns." However, its underlying biophysical mechanism is largely unexplored. Here, we carefully investigate the collective actin wave dynamics associated with the zigzag-crawling movements of microglia (as primary brain immune cells) employing a number of different quantitative imaging modalities including synthetic aperture microscopy and optical diffraction tomography, as well as conventional fluorescence imaging and scanning electron microscopy. Interestingly, we find that microglia exhibit two distinct types of actin waves working at two quite different time scales and locations, and they seem to serve different purposes. One type of actin waves is fast "peripheral ruffles" arising spontaneously with an oscillating period of about 6 seconds at some portion of the leading edge of crawling microglia, where the vigorously biased peripheral ruffles seem to set the direction of a new turn (in 2-D free space). When the cell turning events are inhibited with a physical confinement (in 1-D track), the peripheral ruffles still exist at the leading edge with no bias but showing phase coherence in the cell crawling direction. The other type is "dorsal actin waves" which also exhibits an oscillatory behavior but with a much longer period of around 2 minutes compared to the fast "peripheral ruffles". Dorsal actin waves (whether the cell turning events are inhibited or not) initiate in the lamellipodium just behind the leading edge, travelling down toward the core region of the cell and disappear. Such dorsal wave propagations seem to be correlated with migration of the cell. Thus, we may view the dorsal actin waves are connected with the "run" stage of cell body, whereas the fast ruffles at the leading front are involved in the "turn" stage.
Collapse
Affiliation(s)
- Taeseok Daniel Yang
- School of Biomedical Engineering, Korea University, Seoul, South Korea
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Kwanjun Park
- Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, South Korea
| | - Jang-Hoon Lee
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Eunpyo Choi
- School of Mechanical Engineering, Chonnam National University, Gwangju, South Korea
| | - Jonghwan Lee
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Wonshik Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Korea University, Seoul, South Korea
| | - Youngwoon Choi
- School of Biomedical Engineering, Korea University, Seoul, South Korea
- Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea
| | - Kyoung J. Lee
- Department of Physics, Korea University, Seoul, South Korea
| |
Collapse
|