1
|
Qian S, Ye H, Zhu DZ, Lin J, Hu K, Feng J. Experimental study of liquid drop impact on granular medium: Drop spreading/splashing and particle ejection. WATER RESEARCH 2024; 267:122486. [PMID: 39326184 DOI: 10.1016/j.watres.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
The impact of a liquid drop on a granular medium is a common phenomenon in nature and engineering. The possible splashing droplets and ejected particles could pose a risk of pathogen transmission if the water source or granular medium is contaminated. This work studies the liquid drop impact on the granular medium using high-speed photography and considers the effects of liquid properties, drop impact characteristics, and granular medium properties. Four flow regimes, including direct penetration, prompt splashing, spreading, and corona splashing, are observed and a regime map is created to identify their thresholds. The spreading regime can eject a large number of particles, and the corona splashing regime can produce splashing droplets in addition to the ejected particles. For the splashing droplets, their median diameters and velocities are in the ranges 0.11 to 0.21 and 0.15 to 0.37 of the diameter and velocity of the impact drop, and their median splashing angles range from 14° to 27°. Two particle ejection mechanisms are observed, falling squeeze and forward collision, driven by the collapsing and forward spreading of the liquid lamella, respectively. The particles ejected by the latter mechanism have larger ejection velocities, angles and distances from the impact center, which can facilitate their long-range transmission. In addition, the process of spreading and retracting of the lamella formed by the drop impact is also studied, and it is found that the maximum spreading diameter of the lamella is proportional to the crater diameter. These results improve the understanding of the phenomenon after the drop impact on the granular medium and the characteristics of the splashing droplets and ejected particles, contributing to the prediction and risk assessment of contaminated particle transmission.
Collapse
Affiliation(s)
- Shangtuo Qian
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Han Ye
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - David Z Zhu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Junqiang Lin
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Hu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Jiangang Feng
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China.
| |
Collapse
|
2
|
Zhang W, Katsuragi H, Yamamoto K. Drop impact on wet granular beds: effects of water-content on cratering. SOFT MATTER 2024; 20:6120-6130. [PMID: 38932633 DOI: 10.1039/d4sm00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Drop impact events on a wet granular bed show a rich variety by changing the substrate composition. We observe the drop impact onto dry/wet granular substrates with different grain sizes (50-400 μm) and water contents (0-22 vol%). Despite the fixed impactor conditions (impact velocity: 4.0 m s-1, water drop radius: 1.8 mm), the experiment reveals that the post-impact behaviors of both the impactor and target are strongly influenced by the substrate composition. We categorize these behaviors into several phases concerning liquid splashing and crater shapes left after the event. As these phases are relevant to each other, we measure the mechanical characteristics of the substrates and find that the onset of splashing and particle ejection is explained via the fracture of the substrate. Furthermore, we discuss several timescales of the event to understand the phase separations in more detail. Consequently, we find that the splashing phase and the crater shape are determined by competition among the timescales of impact, penetration, and contact.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Hiroaki Katsuragi
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | - Ken Yamamoto
- Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
- Water Frontier Research Center (WaTUS), Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
3
|
Shah P, Driscoll MM. Drop impact dynamics of complex fluids: a review. SOFT MATTER 2024; 20:4839-4858. [PMID: 38873962 DOI: 10.1039/d4sm00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The impact of fluid drops on solid substrates has widespread interest in many industrial coating and spraying applications, such as ink-jet printing and agricultural pesticide sprays. Many of the fluids used in these applications are non-Newtonian, that is they contain particulate or polymeric additives that strongly modify their flow behaviour. While a large body of experimental and theoretical work has been done to understand the impact dynamics of Newtonian fluids, we as a community have much progress to make to understand how these dynamics are modified when the impact fluid has non-Newtonian rheology. In this review, we outline recent experimental, theoretical, and computational advances in the study of impact dynamics of complex fluids on solid surfaces. Here, we provide an overview of this field that is geared towards a multidisciplinary audience. Our discussion is segmented by two principal material constitutions: polymeric fluids and particulate suspensions. Throughout, we highlight promising future directions, as well as ongoing experimental and theoretical challenges in the field.
Collapse
Affiliation(s)
- Phalguni Shah
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| | - Michelle M Driscoll
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
5
|
Zhao SC, Zhang HJ, Li Y. Cold granular targets slow the bulk freezing of an impacting droplet. Proc Natl Acad Sci U S A 2024; 121:e2311930121. [PMID: 38175861 PMCID: PMC10786308 DOI: 10.1073/pnas.2311930121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
When making contact with an undercooled target, a drop freezes. The colder the target is, the more rapid the freezing is supposed to be. In this research, we explore the impact of droplets on cold granular material. As the undercooling degree increases, the bulk freezing of the droplet is delayed by at least an order of magnitude. The postponement of the overall solidification is accompanied by substantial changes in dynamics, including the spreading-retraction process, satellite drop generation, and cratering in the target. The solidification of the wetted pores in the granular target primarily causes these effects. The freezing process over the pore dimension occurs rapidly enough to match the characteristic timescales of impact dynamics at moderate undercooling degrees. As a result, the hydrophilic impact appears "hydrophobic," and the dimension of the solidified droplet shrinks. A monolayer of cold grains on a surface can reproduce these consequences. Our research presents a potential approach to regulate solidified morphology for subfreezing drop impacts. It additionally sheds light on the impact scenario of strong coupling between the dynamics and solidification.
Collapse
Affiliation(s)
- Song-Chuan Zhao
- Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Hao-Jie Zhang
- Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| | - Yudong Li
- Department of Engineering Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an710049, China
| |
Collapse
|
6
|
Droplet impact on a hydrophobic surface integrated with electrowetting technique. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Song M, Zhao H, Wang T, Wang S, Wan J, Qin X, Wang Z. A new scaling number reveals droplet dynamics on vibratory surfaces. J Colloid Interface Sci 2021; 608:2414-2420. [PMID: 34753623 DOI: 10.1016/j.jcis.2021.10.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
HYPOTHESIS Droplet spreading on surfaces is a ubiquitous phenomenon in nature and is relevant with a wide range of applications. In practical scenarios, surfaces are usually associated with certain levels of vibration. Although vertical or horizontal modes of vibration have been used to promote droplet dewetting, bouncing from immiscible medium, directional transport, etc., a quantitative understanding of how external vibration mediates the droplet behaviors remains to be revealed. METHODS We studied droplets impacting on stationary and vibratory surfaces, respectively. In analogy to the Weber number We=ρUi2D0/γWe = ρUi2D0/γ, we define the vibration Weber number We*=ρUv2D0/γ to quantitively analyze the vibration-induced dynamic pressure on droplet behaviors on vibratory surfaces, where ρ,γ,D0,UiandUv are liquid density, surface tension, initial droplet diameter, impact velocity of the droplet, and velocity amplitude of vibration, respectively. FINDINGS We demonstrate that the effect of vibration on promoting droplet spreading can be captured by a new scaling number expressed as We*/[We1\2sin(θ/2)], leading to (Dm - Dm0)/Dm0 ∝ We*/[We1\2sin(θ/2)], where θ is the contact angle, and Dm0 and Dm are the maximum diameter of the droplet on stationary and vibratory surfaces, respectively. The scaling number illustrates the relative importance of vibration-induced dynamic pressure compared to inertial force and surface tension. Together with other well-established non-dimensional numbers, this scaling number provides a new dimension and framework for understanding and controlling droplet dynamics. Our findings can also find applications such as improving the power generation efficiency, intensifying the deposition of paint, and enhancing the heat transfer of droplets.
Collapse
Affiliation(s)
- Mingkai Song
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China; Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130025, PR China.
| | - Ting Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Shunbo Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Jie Wan
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China
| | - Xuezhi Qin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, PR China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, PR China.
| |
Collapse
|
8
|
de Jong R, Zhao SC, Garcia-Gonzalez D, Verduijn G, van der Meer D. Impact cratering in sand: comparing solid and liquid intruders. SOFT MATTER 2021; 17:120-125. [PMID: 33155013 DOI: 10.1039/d0sm01579b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How does the impact of a deformable droplet on a granular bed differ from that caused by a solid impactor of similar size and density? Here, we experimentally study this question and focus on the effect of intruder deformability on the crater shape. For comparable impact energies, we show that the crater diameter is larger for droplets than for solid intruders but that the impact of the latter results in deeper craters. Interestingly, for initially dense beds of packing fractions larger than 0.58, we find that the resultant excavated crater volume is independent of the intruder deformability, suggesting an impactor-independent dissipation mechanism within the sand for these dense beds.
Collapse
Affiliation(s)
- Rianne de Jong
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Sharma M, Gopu M, George JE, Gupta S, Mampallil D. Drop impact on thin powder layers: pattern formation by air entrapment. SOFT MATTER 2020; 16:1342-1348. [PMID: 31934709 DOI: 10.1039/c9sm01887e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Impact of drops on thin powder layers displaces the powder particles radially outward producing shallow craters with thick rims, for example, as observed on dust layers on the floor. Here, we report that the patterns formed on thin powder layers by drop impact are not limited to such crater-like ones. Instead, depending upon the layer properties, disc or disc-plus-ring shaped patterns are formed at the impact point. We show that air entrapment and micro-bubble formation during the drop impact result in the formation of such patterns. Based on high-speed imaging, scaling analyses, and measurements with various liquids and powder layers, we propose a mechanism for the formation of such patterns. The phenomenon that we report can open further investigations on drop impact on the granular matter.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Indian Institute of Science Education & Research Tirupati, Mangalam P. O. PIN 517507, Tirupati, AP, India.
| | | | | | | | | |
Collapse
|
10
|
Quetzeri-Santiago MA, Castrejón-Pita AA, Castrejón-Pita JR. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets. Sci Rep 2019; 9:15030. [PMID: 31636321 PMCID: PMC6803702 DOI: 10.1038/s41598-019-51490-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/02/2019] [Indexed: 12/02/2022] Open
Abstract
Whether a droplet splashes upon impact onto a solid is known to depend not only on the fluid properties and its speed, but also on the substrate characteristics. Past research has shown that splashing is heavily influenced by the substrate roughness. Indeed, in this manuscript, we demonstrate that splashing is ruled by the surface roughness, the splashing ratio, and the dynamic contact angle. Experiments consist of water and ethanol droplets impacting onto solid substrates with varying degrees of roughness. High speed imaging is used to extract the dynamic contact angle as a function of the spreading speed for these impacting droplets. During the spreading phase, the dynamic contact angle achieves an asymptotic maximum value, which depends on the substrate roughness and the liquid properties. We found that this maximum dynamic contact angle, together with the liquid properties, the ratio of the peak to peak roughness and the surface feature mean width, determines the splashing to no-splashing threshold. In addition, these parameters consistently differentiate the splashing behaviour of impacts onto smooth hydrophilic, hydrophobic and superhydrophobic surfaces.
Collapse
Affiliation(s)
| | | | - J Rafael Castrejón-Pita
- Queen Mary University of London, School of Engineering and Materials Science, London, E1 4NS, UK.
| |
Collapse
|
11
|
Mozhi Devan Padmanathan A, Sneha Ravi A, Choudhary H, Varanakkottu SN, Dalvi SV. Predictive Framework for the Spreading of Liquid Drops and the Formation of Liquid Marbles on Hydrophobic Particle Bed. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6657-6668. [PMID: 31039316 DOI: 10.1021/acs.langmuir.9b00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we have developed a model to describe the behavior of liquid drops upon impaction on hydrophobic particle bed and verified it experimentally. Poly(tetrafluoroethylene) (PTFE) particles were used to coat drops of water, aqueous solutions of glycerol (20, 40, and 60% v/v), and ethanol (5 and 12% v/v). The experiments were conducted for Weber number ( We) ranging from 8 to 130 and Reynolds number ( Re) ranging from 370 to 4460. The bed porosity was varied from 0.8 to 0.6. The experimental values of βmax (ratio of the diameter at the maximum spreading condition to the initial drop diameter) were estimated from the time-lapsed images captured using a high-speed camera. The theoretical βmax was estimated by making energy balances on the liquid drop. The proposed model accounts for the energy losses due to viscous dissipation and crater formation along with a change in kinetic energy and surface energy. A good agreement was obtained between the experimental βmax and the estimated theoretical βmax. The proposed model yielded a least % absolute average relative deviation (% AARD) of 5.5 ± 4.3 compared to other models available in the literature. Further, it was found that the liquid drops impacting on particle bed are completely coated with PTFE particles with βmax values greater than 2.
Collapse
Affiliation(s)
| | - Apoorva Sneha Ravi
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| | - Hema Choudhary
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| | | | - Sameer V Dalvi
- Chemical Engineering , Indian Institute of Technology Gandhinagar , Palaj, Gandhinagar 382355 , Gujarat , India
| |
Collapse
|
12
|
Abstract
The impact of droplets on a heated powder bed involves a wide range of phenomena with increasing complexity from spreading of liquid, to bubble nucleation, to more complex ones such as splashing, crater formation, and fluidization. In this study, we focus on the impact behaviors caused by elevation in temperature of the powder bed. We experimentally characterize the impact behaviors for wide ranges of the impact velocity and surface temperature of the powder bed. We reveal several phenomena specific to the impact on a heated powder bed such as rebound, ruptures of expanding liquid films, bubble nucleation, and fluidization. We also show that the maximum spreading diameter increases with the surface temperature of the powder bed and propose an empirical scaling law to describe such a relation.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | |
Collapse
|
13
|
Gao T, Singaravelu ASS, Oka S, Ramachandran R, Štepánek F, Chawla N, Emady HN. Granule formation and structure from single drop impact on heterogeneous powder beds. Int J Pharm 2018; 552:56-66. [DOI: 10.1016/j.ijpharm.2018.09.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 11/15/2022]
|
14
|
de Jong R, Zhao SC, van der Meer D. Crater formation during raindrop impact on sand. Phys Rev E 2017; 95:042901. [PMID: 28505774 DOI: 10.1103/physreve.95.042901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/07/2022]
Abstract
After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.
Collapse
Affiliation(s)
- Rianne de Jong
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Song-Chuan Zhao
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Devaraj van der Meer
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|