1
|
Wang K, Zhang B, Yan C, Du L, Wang S. Circular photocurrents in centrosymmetric semiconductors with hidden spin polarization. Nat Commun 2024; 15:9036. [PMID: 39426993 PMCID: PMC11490610 DOI: 10.1038/s41467-024-53425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Centrosymmetric materials with site inversion asymmetries possess hidden spin polarization, which remains challenging to be converted into spin currents because the global inversion symmetry is still conserved. This study demonstrates the spin-polarized circular photocurrents in centrosymmetric transition metal dichalcogenide semiconductors at normal incidence without applying electric bias. The global inversion symmetry is broken by using a spatially-varying circularly polarized light beam, which could generate spin gradient owing to the hidden spin polarization. The dependence of the circular photocurrents on electrode configuration, illumination position, and beam spot size indicates an emergence of circulating electric current under spatially inhomogeneous light, which is associated with the deflection of spin-polarized current through the inverse spin Hall effect. The circular photocurrents is subsequently utilized to probe the spin polarization and the inverse spin Hall effect under different excitation wavelengths and temperatures. The results of this study demonstrate the feasibility of using centrosymmetric materials with hidden spin polarization and non-vanishing Berry curvature for spintronic device applications.
Collapse
Affiliation(s)
- Kexin Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Butian Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chengyu Yan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shun Wang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Beaulieu S, Dong S, Christiansson V, Werner P, Pincelli T, Ziegler JD, Taniguchi T, Watanabe K, Chernikov A, Wolf M, Rettig L, Ernstorfer R, Schüler M. Berry curvature signatures in chiroptical excitonic transitions. SCIENCE ADVANCES 2024; 10:eadk3897. [PMID: 38941460 PMCID: PMC11212730 DOI: 10.1126/sciadv.adk3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The topology of the electronic band structure of solids can be described by its Berry curvature distribution across the Brillouin zone. We theoretically introduce and experimentally demonstrate a general methodology based on the measurement of energy- and momentum-resolved optical transition rates, allowing to reveal signatures of Berry curvature texture in reciprocal space. By performing time- and angle-resolved photoemission spectroscopy of atomically thin WSe2 using polarization-modulated excitations, we demonstrate that excitons become an asset in extracting the quantum geometrical properties of solids. We also investigate the resilience of our measurement protocol against ultrafast scattering processes following direct chiroptical transitions.
Collapse
Affiliation(s)
- Samuel Beaulieu
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405 Talence, France
| | - Shuo Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tommaso Pincelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Jonas D. Ziegler
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Laurenz Rettig
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Ralph Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Michael Schüler
- Laboratory for Materials Simulations, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Watanabe H, Yanase Y. Magnetic parity violation and parity-time-reversal-symmetric magnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:373001. [PMID: 38899401 DOI: 10.1088/1361-648x/ad52dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Parity-time-reversal symmetry (PTsymmetry), a symmetry for the combined operations of space inversion (P) and time reversal (T), is a fundamental concept of physics and characterizes the functionality of materials as well asPandTsymmetries. In particular, thePT-symmetric systems can be found in the centrosymmetric crystals undergoing the parity-violating magnetic order which we call the odd-parity magnetic multipole order. While this spontaneous order leavesPTsymmetry intact, the simultaneous violation ofPandTsymmetries gives rise to various emergent responses that are qualitatively different from those allowed by the nonmagneticP-symmetry breaking or by the ferromagnetic order. In this review, we introduce candidates hosting the intriguing spontaneous order and overview the characteristic physical responses. Various off-diagonal and/or nonreciprocal responses are identified, which are closely related to the unusual electronic structures such as hidden spin-momentum locking and asymmetric band dispersion.
Collapse
Affiliation(s)
- Hikaru Watanabe
- Research Center for Advanced Science and Technology, University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Youichi Yanase
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Cui Q, Zhu Y, Jiang J, Cui P, Yang H, Chang K, Wang K. Anatomy of Hidden Dzyaloshinskii-Moriya Interactions and Topological Spin Textures in Centrosymmetric Crystals. NANO LETTERS 2024. [PMID: 38739551 DOI: 10.1021/acs.nanolett.4c01486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Dzyaloshinskii-Moriya interaction (DMI) is understood to be forbidden by the symmetry of centrosymmetric systems, thus restricting the candidate types for investigating many correlated physical phenomena. Here, we report the hidden DMI existing in centrosymmetric magnets driven by the local inversion symmetry breaking of specific spin sublattices. The opposite DMI spatially localized on the inverse spin sublattice favors the separated spin spiral with opposite chirality. Furthermore, we elucidate that hidden DMI widely exists in many potential candidates, from the first-principles calculations on the mature crystal database. Interestingly, novel topological spin configurations, such as the anti-chirality-locked merons and antiferromagnetic-ferromagnetic meron chains, are stabilized as a consequence of hidden DMI. Our understanding enables the effective control of DMI by symmetry operations at the atomic level and enlarges the range of currently useful magnets for topological magnetism.
Collapse
Affiliation(s)
- Qirui Cui
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yingmei Zhu
- Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311305, China
| | - Jiawei Jiang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Ping Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Yongjiang Laboratory, Ningbo 315202, China
| | - Hongxin Yang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kai Chang
- Center for Quantum Matter, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen R, Sun HP, Gu M, Hua CB, Liu Q, Lu HZ, Xie XC. Layer Hall effect induced by hidden Berry curvature in antiferromagnetic insulators. Natl Sci Rev 2024; 11:nwac140. [PMID: 38264341 PMCID: PMC10804226 DOI: 10.1093/nsr/nwac140] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/25/2024] Open
Abstract
The layer Hall effect describes electrons spontaneously deflected to opposite sides at different layers, which has been experimentally reported in the MnBi2Te4 thin films under perpendicular electric fields. Here, we reveal a universal origin of the layer Hall effect in terms of the so-called hidden Berry curvature, as well as material design principles. Hence, it gives rise to zero Berry curvature in momentum space but non-zero layer-locked hidden Berry curvature in real space. We show that, compared to that of a trivial insulator, the layer Hall effect is significantly enhanced in antiferromagnetic topological insulators. Our universal picture provides a paradigm for revealing the hidden physics as a result of the interplay between the global and local symmetries, and can be generalized in various scenarios.
Collapse
Affiliation(s)
- Rui Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Hai-Peng Sun
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, Würzburg 97074, Germany
| | - Mingqiang Gu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Chun-Bo Hua
- School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai-Zhou Lu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Shenzhen Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - X C Xie
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Mazzola F, Brzezicki W, Mercaldo MT, Guarino A, Bigi C, Miwa JA, De Fazio D, Crepaldi A, Fujii J, Rossi G, Orgiani P, Chaluvadi SK, Chalil SP, Panaccione G, Jana A, Polewczyk V, Vobornik I, Kim C, Miletto-Granozio F, Fittipaldi R, Ortix C, Cuoco M, Vecchione A. Signatures of a surface spin-orbital chiral metal. Nature 2024; 626:752-758. [PMID: 38326617 PMCID: PMC10881390 DOI: 10.1038/s41586-024-07033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.
Collapse
Affiliation(s)
- Federico Mazzola
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy.
| | - Wojciech Brzezicki
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- International Centre for Interfacing Magnetism and Superconductivity with Topological Matter, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anita Guarino
- Istituto SPIN, Consiglio Nazionale delle Ricerche, Fisciano, Italy
| | | | - Jill A Miwa
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Domenico De Fazio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | | | - Jun Fujii
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Giorgio Rossi
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
| | - Pasquale Orgiani
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | | | | | - Giancarlo Panaccione
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Anupam Jana
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Vincent Polewczyk
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Ivana Vobornik
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Changyoung Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | | | | | - Carmine Ortix
- Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, Fisciano, Italy
| | - Mario Cuoco
- Istituto SPIN, Consiglio Nazionale delle Ricerche, Fisciano, Italy.
| | | |
Collapse
|
7
|
Yuan LD, Zhang X, Acosta CM, Zunger A. Uncovering spin-orbit coupling-independent hidden spin polarization of energy bands in antiferromagnets. Nat Commun 2023; 14:5301. [PMID: 37652909 PMCID: PMC10471643 DOI: 10.1038/s41467-023-40877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such 'apparent effects', 'hidden effect X' refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals. Here, we discuss hidden spin polarization effect in collinear antiferromagnets without the requirement for spin-orbit coupling (SOC). Symmetry analysis suggests that antiferromagnets hosting such effect can be classified into six types depending on the global vs local symmetry. We identify which of the possible collinear antiferromagnetic compounds will harbor such hidden polarization and validate these symmetry enabling predictions with first-principles density functional calculations for several representative compounds. This will boost the theoretical and experimental efforts in finding new spin-polarized materials.
Collapse
Affiliation(s)
- Lin-Ding Yuan
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Xiuwen Zhang
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Carlos Mera Acosta
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre, São Paulo, Brazil
| | - Alex Zunger
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
8
|
Kobayashi T, Toichi Y, Yaji K, Nakata Y, Yaoita Y, Iwaoka M, Koga M, Zhang Y, Fujii J, Ono S, Sassa Y, Yoshida Y, Hasegawa Y, Komori F, Shin S, Ichinokura S, Akiyama R, Hasegawa S, Shishidou T, Weinert M, Sakamoto K. Revealing the Hidden Spin-Polarized Bands in a Superconducting Tl Bilayer Crystal. NANO LETTERS 2023; 23:7675-7682. [PMID: 37578323 PMCID: PMC10450804 DOI: 10.1021/acs.nanolett.3c02387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Indexed: 08/15/2023]
Abstract
The interplay of spin-orbit coupling and crystal symmetry can generate spin-polarized bands in materials only a few atomic layers thick, potentially leading to unprecedented physical properties. In the case of bilayer materials with global inversion symmetry, locally broken inversion symmetry can generate degenerate spin-polarized bands, in which the spins in each layer are oppositely polarized. Here, we demonstrate that the hidden spins in a Tl bilayer crystal are revealed by growing it on Ag(111) of sizable lattice mismatch, together with the appearance of a remarkable phenomenon unique to centrosymmetric hidden-spin bilayer crystals: a novel band splitting in both spin and space. The key to success in observing this novel splitting is that the interaction at the interface has just the right strength: it does not destroy the original wave functions of the Tl bilayer but is strong enough to induce an energy separation.
Collapse
Affiliation(s)
- Takahiro Kobayashi
- Department
of Material and Life Science, Osaka University, Osaka 565-0871, Japan
| | - Yuichiro Toichi
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
| | - Koichiro Yaji
- Research
Center for Advanced Measurement and Characterization, National Institute for Materials Science, Ibaraki 305-0047, Japan
| | - Yoshitaka Nakata
- Department
of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Yuchi Yaoita
- Department
of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Mutsuki Iwaoka
- Department
of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Mariko Koga
- Department
of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Yituo Zhang
- Department
of Materials Science, Chiba University, Chiba 263-8522, Japan
| | - Jun Fujii
- Istituto
Officina dei Materiali, Consiglio Nazionale
delle Ricerche (CNR-IOM), I-34149 Trieste, Italy
| | - Shimpei Ono
- Central
Research institute of Electric Power Industry, Yokosuka 240-0196, Japan
| | - Yasmine Sassa
- Department
of Physics, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Yasuo Yoshida
- Institute
for Solid State Physics, The University
of Tokyo, Chiba 277-8581, Japan
| | - Yukio Hasegawa
- Institute
for Solid State Physics, The University
of Tokyo, Chiba 277-8581, Japan
| | - Fumio Komori
- Institute
for Solid State Physics, The University
of Tokyo, Chiba 277-8581, Japan
| | - Shik Shin
- Institute
for Solid State Physics, The University
of Tokyo, Chiba 277-8581, Japan
| | - Satoru Ichinokura
- Department
of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryota Akiyama
- Department
of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shuji Hasegawa
- Department
of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuya Shishidou
- Department
of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, United States
| | - Michael Weinert
- Department
of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, United States
| | - Kazuyuki Sakamoto
- Department
of Applied Physics, Osaka University, Osaka 565-0871, Japan
- Spintronics
Research Network Division, Institute for Open and Transdisciplinary
Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Center
for Spintronics Research Network, Osaka
University, Osaka 560-8531, Japan
| |
Collapse
|
9
|
Fanciulli M, Bresteau D, Gaudin J, Dong S, Géneaux R, Ruchon T, Tcherbakoff O, Minár J, Heckmann O, Richter MC, Hricovini K, Beaulieu S. Ultrafast Hidden Spin Polarization Dynamics of Bright and Dark Excitons in 2H-WSe_{2}. PHYSICAL REVIEW LETTERS 2023; 131:066402. [PMID: 37625042 DOI: 10.1103/physrevlett.131.066402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023]
Abstract
We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Mauro Fanciulli
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - David Bresteau
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - Jérôme Gaudin
- Université de Bordeaux-CNRS-CEA, CELIA, UMR5107, F33405 Talence, France
| | - Shuo Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Romain Géneaux
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - Thierry Ruchon
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | | | - Ján Minár
- University of West Bohemia, New Technologies Research Centre, 301 00 Plzeň, Czech Republic
| | - Olivier Heckmann
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - Maria Christine Richter
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - Karol Hricovini
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- Université Paris-Saclay, CEA, CNRS, LIDYL, Gif-sur-Yvette, 91191, France
| | - Samuel Beaulieu
- Université de Bordeaux-CNRS-CEA, CELIA, UMR5107, F33405 Talence, France
| |
Collapse
|
10
|
Schüler M, Schmitt T, Werner P. Probing magnetic orbitals and Berry curvature with circular dichroism in resonant inelastic X-ray scattering. NPJ QUANTUM MATERIALS 2023; 8:6. [PMID: 38666242 PMCID: PMC11041711 DOI: 10.1038/s41535-023-00538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/04/2023] [Indexed: 04/28/2024]
Abstract
Resonant inelastic X-ray scattering (RIXS) can probe localized excitations at selected atoms in materials, including particle-hole transitions between the valence and conduction bands. These transitions are governed by fundamental properties of the corresponding Bloch wave functions, including orbital and magnetic degrees of freedom, and quantum geometric properties such as the Berry curvature. In particular, orbital angular momentum (OAM), which is closely linked to the Berry curvature, can exhibit a nontrivial momentum dependence. We demonstrate how information on such OAM textures can be extracted from the circular dichroism in RIXS. Based on accurate modeling with a first-principles treatment of the key ingredient-the light-matter interaction-we simulate dichroic RIXS spectra for the prototypical transition-metal dichalcogenide MoSe2 and the two-dimensional topological insulator 1T'-MoS2. Guided by an intuitive picture of the optical selection rules, we discuss how the momentum-dependent OAM manifests itself in the dichroic RIXS signal if one controls the momentum transfer. Our calculations are performed for typical experimental geometries and parameter regimes, and demonstrate the possibility of observing the predicted circular dichroism in forthcoming experiments. Thus, our work establishes a new avenue for observing Berry curvature and topological states in quantum materials.
Collapse
Affiliation(s)
- Michael Schüler
- Condensed Matter Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Laboratory for Materials Simulations, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thorsten Schmitt
- Photon Science Division, Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Chen W, Gu M, Li J, Wang P, Liu Q. Role of Hidden Spin Polarization in Nonreciprocal Transport of Antiferromagnets. PHYSICAL REVIEW LETTERS 2022; 129:276601. [PMID: 36638296 DOI: 10.1103/physrevlett.129.276601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/04/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The discovery of hidden spin polarization (HSP) in centrosymmetric nonmagnetic crystals, i.e., spatially distributed spin polarization originated from local symmetry breaking, has promised an expanded material pool for future spintronics. However, the measurements of such exotic effects have been limited to subtle space- and momentum-resolved techniques, unfortunately, hindering their applications. Here, we theoretically predict macroscopic non-reciprocal transports induced by HSP when coupling another spatially distributed quantity, such as staggered local moments in a space-time PT-symmetric antiferromagnet. By using a four-band model Hamiltonian, we demonstrate that HSP plays a crucial role in determining the asymmetric bands with respect to opposite momenta. Such band asymmetry leads to non-reciprocal nonlinear conductivity, exemplified by tetragonal CuMnAs via first-principles calculations. We further provide the material design principles for large nonlinear conductivity, including two-dimensional nature, multiple band crossings near the Fermi level, and symmetry protected HSP. Our Letter not only reveals direct spintronic applications of HSP (such as Néel order detection), but also sheds light on finding observables of other hidden effects, such as hidden optical polarization and hidden Berry curvature.
Collapse
Affiliation(s)
- Weizhao Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingqiang Gu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayu Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Panshuo Wang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
12
|
Clark OJ, Dowinton O, Bahramy MS, Sánchez-Barriga J. Hidden spin-orbital texture at the
Γ
¯
-located valence band maximum of a transition metal dichalcogenide semiconductor. Nat Commun 2022; 13:4147. [PMID: 35842436 PMCID: PMC9288546 DOI: 10.1038/s41467-022-31539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Finding stimuli capable of driving an imbalance of spin-polarised electrons within a solid is the central challenge in the development of spintronic devices. However, without the aid of magnetism, routes towards this goal are highly constrained with only a few suitable pairings of compounds and driving mechanisms found to date. Here, through spin- and angle-resolved photoemission along with density functional theory, we establish how the p-derived bulk valence bands of semiconducting 1T-HfSe2 possess a local, ground-state spin texture spatially confined within each Se-sublayer due to strong sublayer-localised electric dipoles orientated along the c-axis. This hidden spin-polarisation manifests in a 'coupled spin-orbital texture' with in-equivalent contributions from the constituent p-orbitals. While the overall spin-orbital texture for each Se sublayer is in strict adherence to time-reversal symmetry (TRS), spin-orbital mixing terms with net polarisations at time-reversal invariant momenta are locally maintained. These apparent TRS-breaking contributions dominate, and can be selectively tuned between with a choice of linear light polarisation, facilitating the observation of pronounced spin-polarisations at the Brillouin zone centre for all kz. We discuss the implications for the generation of spin-polarised populations from 1T-structured transition metal dichalcogenides using a fixed energy, linearly polarised light source.
Collapse
Affiliation(s)
- Oliver J. Clark
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Oliver Dowinton
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PY UK
| | - Mohammad Saeed Bahramy
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PY UK
| | - Jaime Sánchez-Barriga
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein-Str. 15, 12489 Berlin, Germany
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
13
|
Hayami S. Square skyrmion crystal in centrosymmetric systems with locally inversion-asymmetric layers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:365802. [PMID: 35738246 DOI: 10.1088/1361-648x/ac7bcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We investigate an instability toward a square-lattice formation of magnetic skyrmions in centrosymmetric layered systems. By focusing on a bilayer square-lattice structure with the inversion center at the interlayer bond instead of the atomic site, we numerically examine the stability of the square skyrmion crystal (SkX) based on an effective spin model with the momentum-resolved interaction in the ground state through the simulated annealing. As a result, we find that a layer-dependent staggered Dzyaloshinskii-Moriya (DM) interaction built in the lattice structure becomes the origin of the square SkX in an external magnetic field irrespective of the sign of the interlayer exchange interaction. The obtained square SkX is constituted of the SkXs with different helicities in each layer due to the staggered DM interaction. Furthermore, we show that the interplay between the staggered DM interaction and the interlayer exchange interaction gives rise to a double-Qstate with a uniform component of the scalar chirality in the low-field region. The present results provide another way of stabilizing the square SkX in centrosymmetric magnets, which will be useful to explore further exotic topological spin textures.
Collapse
Affiliation(s)
- Satoru Hayami
- Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Zhang K, Zhao S, Hao Z, Kumar S, Schwier EF, Zhang Y, Sun H, Wang Y, Hao Y, Ma X, Liu C, Wang L, Wang X, Miyamoto K, Okuda T, Liu C, Mei J, Shimada K, Chen C, Liu Q. Observation of Spin-Momentum-Layer Locking in a Centrosymmetric Crystal. PHYSICAL REVIEW LETTERS 2021; 127:126402. [PMID: 34597091 DOI: 10.1103/physrevlett.127.126402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The spin polarization in nonmagnetic materials is conventionally attributed to the outcome of spin-orbit coupling when the global inversion symmetry is broken. The recently discovered hidden spin polarization indicates that a specific atomic site asymmetry could also induce measurable spin polarization, leading to a paradigm shift in research on centrosymmetric crystals for potential spintronic applications. Here, combining spin- and angle-resolved photoemission spectroscopy and theoretical calculations, we report distinct spin-momentum-layer locking phenomena in a centrosymmetric, layered material, BiOI. The measured spin is highly polarized along the Brillouin zone boundary, while the same effect almost vanishes around the zone center due to its nonsymmorphic crystal structure. Our work demonstrates the existence of momentum-dependent hidden spin polarization and uncovers the microscopic mechanism of spin, momentum, and layer locking to each other, thus shedding light on the design metrics for future spintronic materials.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Physical Science, Graduate School of Science, Hiroshima University, Hiroshima 739-0046, Japan
| | - Shixuan Zhao
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanyang Hao
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shiv Kumar
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
| | - Eike F Schwier
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
- Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Germany
| | - Yingjie Zhang
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyi Sun
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Wang
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yujie Hao
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoming Ma
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cai Liu
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoxiao Wang
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
| | - Koji Miyamoto
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
| | - Taichi Okuda
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Mei
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kenya Shimada
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Hiroshima 739-0046, Japan
| | - Chaoyu Chen
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qihang Liu
- Shenzhen Institute for Quantum Science and Technology and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory for Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Cho S, Park JH, Huh S, Hong J, Kyung W, Park BG, Denlinger JD, Shim JH, Kim C, Park SR. Studying local Berry curvature in 2H-WSe 2 by circular dichroism photoemission utilizing crystal mirror plane. Sci Rep 2021; 11:1684. [PMID: 33462247 PMCID: PMC7814090 DOI: 10.1038/s41598-020-79672-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
It was recently reported that circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES) can be used to observe the Berry curvature in 2H-WSe2 (Cho et al. in Phys Rev Lett 121:186401, 2018). In that study, the mirror plane of the experiment was intentionally set to be perpendicular to the crystal mirror plane, such that the Berry curvature becomes a symmetric function about the experimental mirror plane. In the present study, we performed CD-ARPES on 2H-WSe2 with the crystal mirror plane taken as the experimental mirror plane. Within such an experimental constraint, two experimental geometries are possible for CD-ARPES. The Berry curvature distributions for the two geometries are expected to be antisymmetric about the experimental mirror plane and exactly opposite to each other. Our experimental CD intensities taken with the two geometries were found to be almost opposite near the corners of the 2D projected hexagonal Brillouin zone (BZ) and were almost identical near the center of the BZ. This observation is well explained by taking the Berry curvature or the atomic orbital angular momentum (OAM) into account. The Berry curvature (or OAM) contribution to the CD intensities can be successfully extracted through a comparison of the CD-ARPES data for the two experimental geometries. Thus, the CD-ARPES experimental procedure described provides a method for mapping Berry curvature in the momentum space of topological materials, such as Weyl semimetals.
Collapse
Affiliation(s)
- Soohyun Cho
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.,Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.,CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai, 200050, People's Republic of China
| | - Jin-Hong Park
- Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soonsang Huh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Jisook Hong
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wonshik Kyung
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Byeong-Gyu Park
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - J D Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Physics and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea. .,Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
| | - Seung Ryong Park
- Department of Physics, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
16
|
Beaulieu S, Schusser J, Dong S, Schüler M, Pincelli T, Dendzik M, Maklar J, Neef A, Ebert H, Hricovini K, Wolf M, Braun J, Rettig L, Minár J, Ernstorfer R. Revealing Hidden Orbital Pseudospin Texture with Time-Reversal Dichroism in Photoelectron Angular Distributions. PHYSICAL REVIEW LETTERS 2020; 125:216404. [PMID: 33274965 DOI: 10.1103/physrevlett.125.216404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe_{2} for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint on TRDAD, due to multiple orbital interference effects in photoemission. Our experimental results are in quantitative agreement with both the tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart.
Collapse
Affiliation(s)
- S Beaulieu
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - J Schusser
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
| | - S Dong
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M Schüler
- Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T Pincelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - M Dendzik
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Department of Applied Physics, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 114 19 Stockholm, Sweden
| | - J Maklar
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - A Neef
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - H Ebert
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, 81377 München, Germany
| | - K Hricovini
- Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - M Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - J Braun
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 11, 81377 München, Germany
| | - L Rettig
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - J Minár
- New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
| | - R Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
17
|
Schüler M, De Giovannini U, Hübener H, Rubio A, Sentef MA, Werner P. Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials. SCIENCE ADVANCES 2020; 6:eaay2730. [PMID: 32158939 PMCID: PMC7048418 DOI: 10.1126/sciadv.aay2730] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/04/2019] [Indexed: 06/07/2023]
Abstract
Topologically nontrivial two-dimensional materials hold great promise for next-generation optoelectronic applications. However, measuring the Hall or spin-Hall response is often a challenge and practically limited to the ground state. An experimental technique for tracing the topological character in a differential fashion would provide useful insights. In this work, we show that circular dichroism angle-resolved photoelectron spectroscopy provides a powerful tool that can resolve the topological and quantum-geometrical character in momentum space. In particular, we investigate how to map out the signatures of the momentum-resolved Berry curvature in two-dimensional materials by exploiting its intimate connection to the orbital polarization. A spin-resolved detection of the photoelectrons allows one to extend the approach to spin-Chern insulators. The present proposal can be extended to address topological properties in materials out of equilibrium in a time-resolved fashion.
Collapse
Affiliation(s)
- Michael Schüler
- Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Umberto De Giovannini
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hannes Hübener
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY 10010, USA
| | - Michael A. Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
18
|
Yuan L, Liu Q, Zhang X, Luo JW, Li SS, Zunger A. Uncovering and tailoring hidden Rashba spin-orbit splitting in centrosymmetric crystals. Nat Commun 2019; 10:906. [PMID: 30796227 PMCID: PMC6385307 DOI: 10.1038/s41467-019-08836-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/15/2019] [Indexed: 11/22/2022] Open
Abstract
Hidden Rashba and Dresselhaus spin splittings in centrosymmetric crystals with subunits/sectors having non-centrosymmetric symmetries (the R-2 and D-2 effects) have been predicted theoretically and then observed experimentally, but the microscopic mechanism remains unclear. Here we demonstrate that the spin splitting in the R-2 effect is enforced by specific symmetries, such as non-symmorphic symmetry in the present example, which ensures that the pertinent spin wavefunctions segregate spatially on just one of the two inversion-partner sectors and thus avoid compensation. We further show that the effective Hamiltonian for the conventional Rashba (R-1) effect is also applicable for the R-2 effect, but applying a symmetry-breaking electric field to a R-2 compound produces a different spin-splitting pattern than applying a field to a trivial, non-R-2, centrosymmetric compound. This finding establishes a common fundamental source for the R-1 effect and the R-2 effect, both originating from local sector symmetries rather than from the global crystal symmetry per se.
Collapse
Affiliation(s)
- Linding Yuan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihang Liu
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA
- Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiuwen Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong, 518060, China
| | - Jun-Wei Luo
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
| | - Shu-Shen Li
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Alex Zunger
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
19
|
Cho S, Park JH, Hong J, Jung J, Kim BS, Han G, Kyung W, Kim Y, Mo SK, Denlinger JD, Shim JH, Han JH, Kim C, Park SR. Experimental Observation of Hidden Berry Curvature in Inversion-Symmetric Bulk 2H-WSe_{2}. PHYSICAL REVIEW LETTERS 2018; 121:186401. [PMID: 30444409 DOI: 10.1103/physrevlett.121.186401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/24/2018] [Indexed: 06/09/2023]
Abstract
We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.
Collapse
Affiliation(s)
- Soohyun Cho
- Institute of Physics and Applied Physics, Yonsei University, Seoul 03722, Korea
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jin-Hong Park
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jisook Hong
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jongkeun Jung
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Beom Seo Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Garam Han
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Wonshik Kyung
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Advanced Light Source, Lawrence Berkeley National Laboratory, California 94720, USA
| | - Yeongkwan Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - S-K Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, California 94720, USA
| | - J D Denlinger
- Advanced Light Source, Lawrence Berkeley National Laboratory, California 94720, USA
| | - Ji Hoon Shim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Department of Physics and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jung Hoon Han
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Seung Ryong Park
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
20
|
Weber AP, Rüßmann P, Xu N, Muff S, Fanciulli M, Magrez A, Bugnon P, Berger H, Plumb NC, Shi M, Blügel S, Mavropoulos P, Dil JH. Spin-Resolved Electronic Response to the Phase Transition in MoTe_{2}. PHYSICAL REVIEW LETTERS 2018; 121:156401. [PMID: 30362784 DOI: 10.1103/physrevlett.121.156401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The semimetal MoTe_{2} is studied by spin- and angle-resolved photoemission spectroscopy across the centrosymmetry-breaking structural transition temperature of the bulk. A three-dimensional spin-texture is observed in the bulk Fermi surface in the low temperature, noncentrosymmetric phase that is consistent with first-principles calculations. The spin texture and two types of surface Fermi arc are not completely suppressed above the bulk transition temperature. The lifetimes of quasiparticles forming the Fermi arcs depend on thermal history and lengthen considerably upon cooling toward the bulk structural transition. The results indicate that a new form of polar instability exists near the surface when the bulk is largely in a centrosymmetric phase.
Collapse
Affiliation(s)
- Andrew P Weber
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
- Donostia International Physics Center, 20018 Donostia, Gipuzkoa, Spain
| | - Philipp Rüßmann
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Nan Xu
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Stefan Muff
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Mauro Fanciulli
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Arnaud Magrez
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Philippe Bugnon
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Helmuth Berger
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicholas C Plumb
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Ming Shi
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Stefan Blügel
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Phivos Mavropoulos
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Department of Physics, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - J Hugo Dil
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| |
Collapse
|
21
|
Eickholt P, Sanders C, Dendzik M, Bignardi L, Lizzit D, Lizzit S, Bruix A, Hofmann P, Donath M. Spin Structure of K Valleys in Single-Layer WS_{2} on Au(111). PHYSICAL REVIEW LETTERS 2018; 121:136402. [PMID: 30312046 DOI: 10.1103/physrevlett.121.136402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Indexed: 06/08/2023]
Abstract
The spin structure of the valence and conduction bands at the K[over ¯] and K[over ¯]^{'} valleys of single-layer WS_{2} on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the K[over ¯] and the K[over ¯]^{'} high-symmetry points. The first observation explains "dark" excitons discussed in optical experiments; the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).
Collapse
Affiliation(s)
- Philipp Eickholt
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Charlotte Sanders
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Maciej Dendzik
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Luca Bignardi
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Daniel Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Trieste, Italy
| | - Albert Bruix
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Philip Hofmann
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Markus Donath
- Physikalisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
22
|
Hsu MC, Yao LZ, Tan SG, Chang CR, Liang G, Jalil MBA. Inherent orbital spin textures in Rashba effect and their implications in spin-orbitronics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:285502. [PMID: 29809165 DOI: 10.1088/1361-648x/aac86f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Rashba effect gives rise to the key feature of chiral spin texture. Recently it was demonstrated that the orbital angular momentum (OAM) texture forms the underlying basis for Rashba spin texture. Here we solve a model Hamiltonian of a generic p-orbital system in the presence of crystal field, internal spin-orbit coupling (SOC) and inversion symmetry breaking (ISB), and demonstrate, in addition to OAM and spin texture, the existence of orbital projection (OP) of the spin texture in a general Rashba system. The unique form of the OP pattern follows from the same condition for the existence of chirality of the spin texture. From the analytical results, we obtained the spin polarization as a function of parameters such as the SOC strength, crystal field splitting and degree of ISB, and compare them with those from numerical solutions and ab initio calculations. All three methods yield highly consistent results. Our results suggest means of external modulation, and elucidate the multi-orbital nature of the Rashba effect and the underlying OP of the spin texture. The understanding has potential applications in fields such as spin-orbitronics that requires delicate control between orbital occupancy and spin momentum.
Collapse
Affiliation(s)
- Ming-Chien Hsu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore. Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Guimarães MHD, Koopmans B. Spin Accumulation and Dynamics in Inversion-Symmetric van der Waals Crystals. PHYSICAL REVIEW LETTERS 2018; 120:266801. [PMID: 30004759 DOI: 10.1103/physrevlett.120.266801] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Inversion-symmetric materials are forbidden to show an overall spin texture in their band structure in the presence of time-reversal symmetry. However, in van der Waals materials which lack inversion symmetry within a single layer, it has been proposed that a layer-dependent spin texture can arise leading to a coupled spin-layer degree of freedom. Here we use time-resolved Kerr rotation in inversion-symmetric WSe_{2} and MoSe_{2} bulk crystals to study this spin-layer polarization and unveil its dynamics. Our measurements show that the spin-layer relaxation time in WSe_{2} is limited by phonon scattering at high temperatures and that the interlayer hopping can be tuned by a small in-plane magnetic field at low temperatures, enhancing the relaxation rates. We find a significantly lower lifetime for MoSe_{2} which agrees with theoretical expectations of a spin-layer polarization stabilized by the larger spin-orbit coupling in WSe_{2}.
Collapse
Affiliation(s)
- M H D Guimarães
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, Netherlands
| | - B Koopmans
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
24
|
Jolie W, Lux J, Pörtner M, Dombrowski D, Herbig C, Knispel T, Simon S, Michely T, Rosch A, Busse C. Suppression of Quasiparticle Scattering Signals in Bilayer Graphene Due to Layer Polarization and Destructive Interference. PHYSICAL REVIEW LETTERS 2018; 120:106801. [PMID: 29570315 DOI: 10.1103/physrevlett.120.106801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
We study chemically gated bilayer graphene using scanning tunneling microscopy and spectroscopy complemented by tight-binding calculations. Gating is achieved by intercalating Cs between bilayer graphene and Ir(111), thereby shifting the conduction band minima below the chemical potential. Scattering between electronic states (both intraband and interband) is detected via quasiparticle interference. However, not all expected processes are visible in our experiment. We uncover two general effects causing this suppression: first, intercalation leads to an asymmetrical distribution of the states within the two layers, which significantly reduces the scanning tunneling spectroscopy signal of standing waves mainly present in the lower layer; second, forward scattering processes, connecting points on the constant energy contours with parallel velocities, do not produce pronounced standing waves due to destructive interference. We present a theory to describe the interference signal for a general n-band material.
Collapse
Affiliation(s)
- Wouter Jolie
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Jonathan Lux
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Mathias Pörtner
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Daniela Dombrowski
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Charlotte Herbig
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Timo Knispel
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Sabina Simon
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Thomas Michely
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Achim Rosch
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Carsten Busse
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Department Physik, Universität Siegen, 57068 Siegen, Germany
| |
Collapse
|
25
|
Cheng C, Sun JT, Chen XR, Meng S. Hidden spin polarization in the 1T-phase layered transition-metal dichalcogenides MX 2 (M = Zr, Hf; X = S, Se, Te). Sci Bull (Beijing) 2018; 63:85-91. [PMID: 36658929 DOI: 10.1016/j.scib.2017.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 01/21/2023]
Abstract
The recent discovery of hidden spin polarization emerging in layered materials of specific nonmagnetic crystal is a fascinating phenomenon, though hardly explored yet. Here, we have studied hidden spin textures in layered nonmagnetic 1T-phase transition-metal dichalcogenides MX2 (M = Zr, Hf; X = S, Se, Te) by using first-principles calculations. Spin-layer locking effect, namely, energy-degenerate opposite spins spatially separated in the top and bottom layer respectively, has been identified. In particular, the hidden spin polarization of β-band can be easily probed, which is strongly affected by the strength of spin-orbit coupling. The hidden spin polarization of ξ-band locating at high symmetry M point (conduction band minimum) has a strong anisotropy. In the bilayer, the hidden spin polarization is preserved at the upmost Se layer, while being suppressed if the ZrSe2 layer is taken as the symmetry partner. Our results on hidden spin polarization in 1T-phase dichalcogenides, verifiable by spin-resolved and angle-resolved photoemission spectroscopy (ARPES), enrich our understanding of spin physics and provide important clues to search for specific spin polarization in two dimensional materials for spintronic and quantum information applications.
Collapse
Affiliation(s)
- Cai Cheng
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Tao Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Rong Chen
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Sheng Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|