1
|
Asmara TC, Green RJ, Suter A, Wei Y, Zhang W, Knez D, Harris G, Tseng Y, Yu T, Betto D, Garcia-Fernandez M, Agrestini S, Klein YM, Kumar N, Galdino CW, Salman Z, Prokscha T, Medarde M, Müller E, Soh Y, Brookes NB, Zhou KJ, Radovic M, Schmitt T. Emergence of Interfacial Magnetism in Strongly-Correlated Nickelate-Titanate Superlattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310668. [PMID: 39101291 DOI: 10.1002/adma.202310668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/21/2024] [Indexed: 08/06/2024]
Abstract
Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO3, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO3/LaTiO3 superlattice, where an interlayer electron transfer has been observed from LaTiO3 into LaNiO3 leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO3/LaTiO3 interface is presented. As the magnetism is purely interfacial, a single LaNiO3/LaTiO3 interface can essentially behave as an atomically thin strongly-correlated quasi-2D antiferromagnet, potentially allowing its technological utilization in advanced spintronic devices. Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an S→1 spin state instead.
Collapse
Affiliation(s)
- Teguh Citra Asmara
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
- European X-Ray Free-Electron Laser Facility GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robert J Green
- Department of Physics & Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, SK, S7N 5E2, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Andreas Suter
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Yuan Wei
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Wenliang Zhang
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Daniel Knez
- Institute of Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz, 8010, Austria
| | - Grant Harris
- Department of Physics & Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Yi Tseng
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Tianlun Yu
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Davide Betto
- European Synchrotron Radiation Facility, 71, avenue des Martyrs, Cedex 9, Grenoble, F-38043, France
| | - Mirian Garcia-Fernandez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Stefano Agrestini
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Yannick Maximilian Klein
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Neeraj Kumar
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Carlos William Galdino
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Zaher Salman
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Thomas Prokscha
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Marisa Medarde
- Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Elisabeth Müller
- Electron Microscopy Facility, Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Yona Soh
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Nicholas B Brookes
- European Synchrotron Radiation Facility, 71, avenue des Martyrs, Cedex 9, Grenoble, F-38043, France
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Milan Radovic
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| | - Thorsten Schmitt
- PSI Center for Photon Science, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland
| |
Collapse
|
2
|
Yadav R, Xu L, Pizzochero M, van den Brink J, Katsnelson MI, Yazyev OV. Electronic excitations and spin interactions in chromium trihalides from embedded many-body wavefunctions. NPJ 2D MATERIALS AND APPLICATIONS 2024; 8:56. [PMID: 39219845 PMCID: PMC11364507 DOI: 10.1038/s41699-024-00494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Although chromium trihalides are widely regarded as a promising class of two-dimensional magnets for next-generation devices, an accurate description of their electronic structure and magnetic interactions has proven challenging to achieve. Here, we quantify electronic excitations and spin interactions in CrX 3 (X = Cl, Br, I) using embedded many-body wavefunction calculations and fully generalized spin Hamiltonians. We find that the three trihalides feature comparable d-shell excitations, consisting of a high-spin 4 A 2 ( t 2 g 3 e g 0 ) ground state lying 1.5-1.7 eV below the first excited state 4 T 2 (t 2 g 2 e g 1 ). CrCl3 exhibits a single-ion anisotropy A sia = - 0.02 meV, while the Cr spin-3/2 moments are ferromagnetically coupled through bilinear and biquadratic exchange interactions of J 1 = - 0.97 meV and J 2 = - 0.05 meV, respectively. The corresponding values for CrBr3 and CrI3 increase to A sia = -0.08 meV and A sia= - 0.12 meV for the single-ion anisotropy, J 1 = -1.21 meV, J 2 = -0.05 meV and J 1 = -1.38 meV, J 2 = -0.06 meV for the exchange couplings, respectively. We find that the overall magnetic anisotropy is defined by the interplay between A sia and A dip due to magnetic dipole-dipole interaction that favors in-plane orientation of magnetic moments in ferromagnetic monolayers and bulk layered magnets. The competition between the two contributions sets CrCl3 and CrI3 as the easy-plane (A sia + A dip >0) and easy-axis (A sia + A dip <0) ferromagnets, respectively. The differences between the magnets trace back to the atomic radii of the halogen ligands and the magnitude of spin-orbit coupling. Our findings are in excellent agreement with recent experiments, thus providing reference values for the fundamental interactions in chromium trihalides.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lei Xu
- Institute for Theoretical Solid State Physics, IFW Dresden, Dresden, Germany
- Present Address: Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Michele Pizzochero
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Jeroen van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Dresden, Germany
- Institute for Theoretical Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, Dresden, Germany
| | - Mikhail I. Katsnelson
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Oleg V. Yazyev
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
He W, Shen Y, Wohlfeld K, Sears J, Li J, Pelliciari J, Walicki M, Johnston S, Baldini E, Bisogni V, Mitrano M, Dean MPM. Magnetically propagating Hund's exciton in van der Waals antiferromagnet NiPS 3. Nat Commun 2024; 15:3496. [PMID: 38664432 PMCID: PMC11045826 DOI: 10.1038/s41467-024-47852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3 with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund's exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund's exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3 exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle.
Collapse
Affiliation(s)
- W He
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Y Shen
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - K Wohlfeld
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, PL-02093, Poland
| | - J Sears
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Walicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, PL-02093, Poland
| | - S Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
| | - E Baldini
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Mitrano
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - M P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
4
|
Fabbris G, Meyers D, Shen Y, Bisogni V, Zhang J, Mitchell JF, Norman MR, Johnston S, Feng J, Chiuzbăian GS, Nicolaou A, Jaouen N, Dean MPM. Resonant inelastic x-ray scattering data for Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates. Sci Data 2023; 10:174. [PMID: 36991033 PMCID: PMC10060392 DOI: 10.1038/s41597-023-02079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Ruddlesden-Popper and reduced Ruddlesden-Popper nickelates are intriguing candidates for mimicking the properties of high-temperature superconducting cuprates. The degree of similarity between these nickelates and cuprates has been the subject of considerable debate. Resonant inelastic x-ray scattering (RIXS) has played an important role in exploring their electronic and magnetic excitations, but these efforts have been stymied by inconsistencies between different samples and the lack of publicly available data for detailed comparison. To address this issue, we present open RIXS data on La4Ni3O10 and La4Ni3O8.
Collapse
Affiliation(s)
- G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois, 60439, USA.
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - J Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
- Institute of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - M R Norman
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, USA
| | - S Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee, 37966, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - J Feng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris, France
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - G S Chiuzbăian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005, Paris, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - A Nicolaou
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - N Jaouen
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| |
Collapse
|
5
|
Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet. Nat Commun 2022; 13:2327. [PMID: 35484168 PMCID: PMC9051120 DOI: 10.1038/s41467-022-30065-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.
Collapse
|
6
|
Wu L, Shen Y, Barbour AM, Wang W, Prabhakaran D, Boothroyd AT, Mazzoli C, Tranquada JM, Dean MPM, Robinson IK. Real Space Imaging of Spin Stripe Domain Fluctuations in a Complex Oxide. PHYSICAL REVIEW LETTERS 2021; 127:275301. [PMID: 35061416 DOI: 10.1103/physrevlett.127.275301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La_{2-x}Sr_{x}NiO_{4+δ} (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries.
Collapse
Affiliation(s)
- Longlong Wu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Yao Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Andi M Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Wei Wang
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Dharmalingam Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - Andrew T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - Claudio Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - John M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Mark P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Ian K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- London Centre for Nanotechnology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Lu H, Rossi M, Nag A, Osada M, Li DF, Lee K, Wang BY, Garcia-Fernandez M, Agrestini S, Shen ZX, Been EM, Moritz B, Devereaux TP, Zaanen J, Hwang HY, Zhou KJ, Lee WS. Magnetic excitations in infinite-layer nickelates. Science 2021; 373:213-216. [DOI: 10.1126/science.abd7726] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 05/21/2021] [Indexed: 11/03/2022]
Affiliation(s)
- H. Lu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - M. Rossi
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - A. Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - M. Osada
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - D. F. Li
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - K. Lee
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - B. Y. Wang
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - S. Agrestini
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - Z. X. Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - E. M. Been
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - B. Moritz
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - T. P. Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - J. Zaanen
- Instituut-Lorentz for theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, Netherlands
| | - H. Y. Hwang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, UK
| | - W. S. Lee
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
8
|
Lin JQ, Villar Arribi P, Fabbris G, Botana AS, Meyers D, Miao H, Shen Y, Mazzone DG, Feng J, Chiuzbăian SG, Nag A, Walters AC, García-Fernández M, Zhou KJ, Pelliciari J, Jarrige I, Freeland JW, Zhang J, Mitchell JF, Bisogni V, Liu X, Norman MR, Dean MPM. Strong Superexchange in a d^{9-δ} Nickelate Revealed by Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:087001. [PMID: 33709756 DOI: 10.1103/physrevlett.126.087001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.
Collapse
Affiliation(s)
- J Q Lin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - P Villar Arribi
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A S Botana
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - J Feng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - S G Chiuzbăian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M García-Fernández
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Junjie Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - M R Norman
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
9
|
Lander GH, Sundermann M, Springell R, Walters AC, Nag A, Garcia-Fernandez M, Zhou KJ, van der Laan G, Caciuffo R. Resonant inelastic x-ray spectroscopy on UO 2 as a test case for actinide materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:06LT01. [PMID: 33325375 DOI: 10.1088/1361-648x/abc4d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Resonant inelastic x-ray spectroscopy at the uranium N4 absorption edge at 778 eV has been used to reveal the excitations in UO2 up to 1 eV. The earlier (1989) studies by neutron inelastic scattering of the crystal-field states within the 3H4 multiplet are confirmed. In addition, the first excited state of the 3F2 multiplet at ∼520 meV has been established, and there is a weak signal corresponding to the next excited state at ∼920 meV. This represents a successful application of soft x-ray spectroscopy to an actinide sample, and resolves an open question in UO2 that has been discussed for 50 years. The technique is described and important caveats are drawn about possible future applications.
Collapse
Affiliation(s)
- G H Lander
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
- Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - M Sundermann
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, D-50937 Cologne, Germany
- Max Planck Institute for Chemical Physics of Solids, Nöthnizer Straße 40, 01187 Dresden, Germany
| | - R Springell
- Interface Analysis Centre, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - M Garcia-Fernandez
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - K J Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - G van der Laan
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom
| | - R Caciuffo
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
| |
Collapse
|
10
|
Merritt AM, Christianson AD, Banerjee A, Gu GD, Mishchenko AS, Reznik D. Giant electron-phonon coupling of the breathing plane oxygen phonons in the dynamic stripe phase of
La
1.67
Sr
0.33
NiO
4
. Sci Rep 2020; 10:11426. [PMID: 32651413 PMCID: PMC7351770 DOI: 10.1038/s41598-020-67963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
Doped antiferromagnets host a vast array of physical properties and learning how to control them is one of the biggest challenges of condensed matter physics.La 1.67 Sr 0.33 NiO 4 (LSNO) is a classic example of such a material. At low temperatures holes introduced via substitution of La by Sr segregate into lines to form boundaries between magnetically ordered domains in the form of stripes. The stripes become dynamic at high temperatures, but LSNO remains insulating presumably because an interplay between magnetic correlations and electron-phonon coupling localizes charge carriers. Magnetic degrees of freedom have been extensively investigated in this system, but phonons are almost completely unexplored. We searched for electron-phonon anomalies in LSNO by inelastic neutron scattering. Giant renormalization of plane Ni-O bond-stretching modes that modulate the volume around Ni appears on entering the dynamic charge stripe phase. Other phonons are a lot less sensitive to stripe melting. Dramatic overdamping of the breathing modes indicates that dynamic stripe phase may host small polarons. We argue that this feature sets electron-phonon coupling in nickelates apart from that in cuprates where breathing phonons are not overdamped and point out remarkable similarities with the colossal magnetoresistance manganites.
Collapse
Affiliation(s)
- A. M. Merritt
- Department of Physics, University of Colorado-Boulder, Boulder, CO 80309 USA
| | - A. D. Christianson
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - A. Banerjee
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - G. D. Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - A. S. Mishchenko
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. Reznik
- Department of Physics, University of Colorado-Boulder, Boulder, CO 80309 USA
- Center for Experiments on Quantum Materials, University of Colorado-Boulder, Boulder, CO 80309 USA
| |
Collapse
|
11
|
Nag A, Robarts HC, Wenzel F, Li J, Elnaggar H, Wang RP, Walters AC, García-Fernández M, de Groot FMF, Haverkort MW, Zhou KJ. Many-Body Physics of Single and Double Spin-Flip Excitations in NiO. PHYSICAL REVIEW LETTERS 2020; 124:067202. [PMID: 32109129 DOI: 10.1103/physrevlett.124.067202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/16/2020] [Indexed: 05/27/2023]
Abstract
Understanding many-body physics of elementary excitations has advanced our control over material properties. Here, we study spin-flip excitations in NiO using Ni L_{3}-edge resonant inelastic x-ray scattering (RIXS) and present a strikingly different resonant energy behavior between single and double spin-flip excitations. Comparing our results with single-site full-multiplet ligand field theory calculations we find that the spectral weight of the double-magnon excitations originates primarily from the double spin-flip transition of the quadrupolar RIXS process within a single magnetic site. Quadrupolar spin-flip processes are among the least studied excitations, despite being important for multiferroic or spin-nematic materials due to their difficult detection. We identify intermediate state multiplets and intra-atomic core-valence exchange interactions as the key many-body factors determining the fate of such excitations. RIXS resonant energy dependence can act as a convincing proof of existence of nondipolar higher-ranked magnetic orders in systems for which, only theoretical predictions are available.
Collapse
Affiliation(s)
- Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - H C Robarts
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - F Wenzel
- Institute for theoretical physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - J Li
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hebatalla Elnaggar
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Ru-Pan Wang
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | | | - F M F de Groot
- Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - M W Haverkort
- Institute for theoretical physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
12
|
Cao Y, Mazzone DG, Meyers D, Hill JP, Liu X, Wall S, Dean MPM. Ultrafast dynamics of spin and orbital correlations in quantum materials: an energy- and momentum-resolved perspective. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170480. [PMID: 30929631 PMCID: PMC6452052 DOI: 10.1098/rsta.2017.0480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 05/07/2023]
Abstract
Many remarkable properties of quantum materials emerge from states with intricate coupling between the charge, spin and orbital degrees of freedom. Ultrafast photo-excitation of these materials holds great promise for understanding and controlling the properties of these states. Here, we introduce time-resolved resonant inelastic X-ray scattering (tr-RIXS) as a means of measuring the charge, spin and orbital excitations out of equilibrium. These excitations encode the correlations and interactions that determine the detailed properties of the states generated. After outlining the basic principles and instrumentations of tr-RIXS, we review our first observations of transient antiferromagnetic correlations in quasi two dimensions in a photo-excited Mott insulator and present possible future routes of this fast-developing technique. The increasing number of X-ray free electron laser facilities not only enables tackling long-standing fundamental scientific problems, but also promises to unleash novel inelastic X-ray scattering spectroscopies. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Y. Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - D. G. Mazzone
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - D. Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J. P. Hill
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - X. Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - S. Wall
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - M. P. M. Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
13
|
Hariki A, Winder M, Kuneš J. Continuum Charge Excitations in High-Valence Transition-Metal Oxides Revealed by Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2018; 121:126403. [PMID: 30296146 DOI: 10.1103/physrevlett.121.126403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/18/2018] [Indexed: 06/08/2023]
Abstract
We present a theoretical investigation of the origin of Raman-like and fluorescencelike (FL) features of resonant inelastic x-ray scattering (RIXS) spectra. Using a combination of local-density approximation+dynamical mean-field theory and a configuration interaction solver for Anderson impurity model, we calculate the L-edge RIXS and x-ray absorption spectra of high-valence transition-metal oxides LaCuO_{3} and NaCuO_{2}. We analyze in detail the behavior of the FL feature and show how it is connected to the details of electronic and crystal structure. On the studied compounds we demonstrate how material details determine whether the electron-hole continuum can be excited in the L-edge RIXS process.
Collapse
Affiliation(s)
- Atsushi Hariki
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
| | - Mathias Winder
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
| | - Jan Kuneš
- Institute for Solid State Physics, TU Wien, 1040 Vienna, Austria
- Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
| |
Collapse
|
14
|
Van Kuiken BE, Hahn AW, Nayyar B, Schiewer CE, Lee SC, Meyer F, Weyhermüller T, Nicolaou A, Cui YT, Miyawaki J, Harada Y, DeBeer S. Electronic Spectra of Iron–Sulfur Complexes Measured by 2p3d RIXS Spectroscopy. Inorg Chem 2018; 57:7355-7361. [DOI: 10.1021/acs.inorgchem.8b01010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Benjamin E. Van Kuiken
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Anselm W. Hahn
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Brahamjot Nayyar
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Christine E. Schiewer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Sonny C. Lee
- Department of Chemistry, University of Waterloo, Waterloo N2L 3G1, Canada
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077 Göttingen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | | | - Yi-Tao Cui
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Jun Miyawaki
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Huang Z, Mongan S, Datta T, Yao DX. Indirect K-edge bimagnon resonant inelastic x-ray scattering spectrum of α-FeTe. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:505802. [PMID: 29125474 DOI: 10.1088/1361-648x/aa99c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We calculate the K-edge indirect bimagnon resonant inelastic x-ray scattering (RIXS) intensity spectra of the bicollinear antiferromagnetic order known to occur in the α-FeTe chalcogenide system. Utilizing linear spin wave theory for this large-S spin system we find that the bimagnon spectrum contains four scattering channels (two intraband and two interband). We find from our calculations that for suitable energy-momentum combination the RIXS spectra can exhibit a one-, two- or three- peak structure. The number of peaks provides a clue on the various bimagnon excitation processes that can be supported both in and within the acoustic and optical magnon branches of the bicollinear antiferromagnet. Unlike the RIXS response of the antiferromagnetic or the collinear antiferromagnetic spin ordering, the RIXS intensity spectrum of the bicollinear antiferromagnet does not vanish at the magnetic ordering wave vector [Formula: see text]. It is also sensitive to next-next nearest neighbor and biquadratic coupling interactions. Our predicted RIXS spectrum can be utilized to understand the role of multi-channel bimagnon spin excitations present in the α-FeTe chalcogenide.
Collapse
Affiliation(s)
- Zengye Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Measurement of the Resonant Magneto-Optical Kerr Effect Using a Free Electron Laser. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7070662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|