1
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Kas JJ, Vila FD, Tan TS, Rehr JJ. Ab initio calculation of X-ray and related core-level spectroscopies: Green's function approaches. Phys Chem Chem Phys 2022; 24:13461-13473. [PMID: 35616020 DOI: 10.1039/d2cp01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-Ray and related spectroscopies are powerful probes of atomic, vibrational, and electronic structure. In order to unlock the full potential of such experimental techniques, accurate and efficient theoretical and computational approaches are essential. Here we review the status of a variety of first-principles and nearly first principles techniques for X-ray spectroscopies such as X-ray absorption, X-ray emission, and X-ray photoemission, with a focus on Green's function based methods. In particular, we describe the current state of multiple scattering Green's function techniques available in the FEFF10 code and cumulant Green's function techniques for including the effects of many-body electronic excitations. Illustrative examples are shown for a variety of materials and compared with other theoretical and experimental results.
Collapse
Affiliation(s)
| | | | - Tun S Tan
- University of Washington, Seattle, USA.
| | | |
Collapse
|
3
|
Van Benschoten WZ, Shepherd JJ. Piecewise Interaction Picture Density Matrix Quantum Monte Carlo. J Chem Phys 2022; 156:184107. [DOI: 10.1063/5.0094290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The density matrix quantum Monte Carlo (DMQMC) set of methods stochastically samples the exact $N$-body density matrix for interacting electrons at finite temperature. We introduce a simple modification to the interaction picture DMQMC method (IP-DMQMC) which overcomes the limitation of only sampling one inverse temperature point at a time, instead allowing for the sampling of a temperature range within a single calculation thereby reducing the computational cost. At the target inverse temperature, instead of ending the simulation, we incorporate a change of picture away from the interaction picture. The resulting equations of motion have piecewise functions and use the interaction picture in the first phase of a simulation, followed by the application of the Bloch equation once the target inverse temperature is reached. We find that the performance of this method is similar to or better than the DMQMC and IP-DMQMC algorithms in a variety of molecular test systems.
Collapse
|
4
|
Dornheim T, Vorberger J, Militzer B, Moldabekov ZA. Momentum distribution of the uniform electron gas at finite temperature: Effects of spin polarization. Phys Rev E 2021; 104:055206. [PMID: 34942706 DOI: 10.1103/physreve.104.055206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
We carry out extensive direct path integral Monte Carlo (PIMC) simulations of the uniform electron gas (UEG) at finite temperature for different values of the spin-polarization ξ. This allows us to unambiguously quantify the impact of spin effects on the momentum distribution function n(k) and related properties. We find that interesting physical effects like the interaction-induced increase in the occupation of the zero-momentum state n(0) substantially depend on ξ. Our results further advance the current understanding of the UEG as a fundamental model system, and are of practical relevance for the description of transport properties of warm dense matter in an external magnetic field. All PIMC results are freely available online and can be used as a benchmark for the development of methods and applications.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA.,Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany.,Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
5
|
Vila FD, Kas JJ, Rehr JJ, Kowalski K, Peng B. Equation-of-Motion Coupled-Cluster Cumulant Green's Function for Excited States and X-Ray Spectra. Front Chem 2021; 9:734945. [PMID: 34631660 PMCID: PMC8493088 DOI: 10.3389/fchem.2021.734945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Green’s function methods provide a robust, general framework within many-body theory for treating electron correlation in both excited states and x-ray spectra. Conventional methods using the Dyson equation or the cumulant expansion are typically based on the GW self-energy approximation. In order to extend this approximation in molecular systems, a non-perturbative real-time coupled-cluster cumulant Green’s function approach has been introduced, where the cumulant is obtained as the solution to a system of coupled first order, non-linear differential equations. This approach naturally includes non-linear corrections to conventional cumulant Green’s function techniques where the cumulant is linear in the GW self-energy. The method yields the spectral function for the core Green’s function, which is directly related to the x-ray photoemission spectra (XPS) of molecular systems. The approach also yields very good results for binding energies and satellite excitations. The x-ray absorption spectrum (XAS) is then calculated using a convolution of the core spectral function and an effective, one-body XAS. Here this approach is extended to include the full coupled-cluster-singles (CCS) core Green’s function by including the complete form of the non-linear contributions to the cumulant as well as all single, double, and triple cluster excitations in the CC amplitude equations. This approach naturally builds in orthogonality and shake-up effects analogous to those in the Mahan-Noizeres-de Dominicis edge singularity corrections that enhance the XAS near the edge. The method is illustrated for the XPS and XAS of NH3.
Collapse
Affiliation(s)
- F D Vila
- Department of Physics, University of Washington, Seattle, WA, United States
| | - J J Kas
- Department of Physics, University of Washington, Seattle, WA, United States
| | - J J Rehr
- Department of Physics, University of Washington, Seattle, WA, United States
| | - K Kowalski
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| | - B Peng
- Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
6
|
Shastri SS, Pandey SK. Studying the lifetime of charge and heat carriers due to intrinsic scattering mechanisms in FeVSb half-Heusler thermoelectric. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:265702. [PMID: 33887717 DOI: 10.1088/1361-648x/abfab4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
This work, presents a study of lifetime of carriers due to intrinsic scattering mechanisms viz. electron-electron interaction (EEI), electron-phonon interaction (EPI) and phonon-phonon interaction (PPI) in a promising half-Heusler thermoelectric FeVSb. Using the full-GWmethod, the effect of EEI and temperature on the valence and conduction band extrema and band gap are studied. The lifetime of carriers with temperature are estimated at these band extrema. At 300 K, estimated value of lifetime at VBM (CBM) is ∼1.91 × 10-14 s (∼2.05 × 10-14 s). The estimated ground state band gap considering EEI is ∼378 meV. Next, the effect of EPI on the lifetime of electrons and phonons with temperature are discussed. The comparison of two electron lifetimes suggests that EEI should be considered in transport calculations along with EPI. The average acoustic, optical and overall phonon lifetimes due to EPI are studied with temperature. Further, the effect of PPI is studied by computing average phonon lifetime for acoustic and optical phonon branches. The lifetime of the acoustic phonons are higher compared to optical phonons which indicates acoustic phonons contribute more to lattice thermal conductivity (κph). The comparison of phonon lifetime due to EPI and PPI suggests that, above 500 K EPI is the dominant phonon scattering mechanism and cannot be ignored inκphcalculations. Lastly, a prediction of the power factor and figure of merit of n-type and p-type FeVSb is made by considering the temperature dependent carrier lifetime for the electronic transport terms. This study shows the importance of considering EEI in electronic transport calculations and EPI in phonon transport calculations in FeVSb. Our study is expected to provide results to further explore the thermoelectric transport in this material.
Collapse
Affiliation(s)
- Shivprasad S Shastri
- School of Engineering, Indian Institute of Technology Mandi, Kamand - 175075, India
| | - Sudhir K Pandey
- School of Engineering, Indian Institute of Technology Mandi, Kamand - 175075, India
| |
Collapse
|
7
|
Sihi A, Pandey SK. Investigating the effect of temperature dependent many-body interactions on electronic structures of SnTe in the Matsubara-time domain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:225505. [PMID: 33684906 DOI: 10.1088/1361-648x/abeca8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Recently, SnTe has gained attention due to its non-trivial topological nature and eco-friendly thermoelectric applications. We report a detailed temperature dependent electronic structure of this compound using DFT andGWmethods. The calculated values of bandgaps by using PBEsol andG0W0methods are found to be in good agreement with the experiment, whereas mBJ underestimates the bandgap. The averaged value of diagonal matrix elements of fully screened Coulomb interaction (W̄) atω= 0 eV for Sn (Te) 5porbitals is ∼1.39 (∼1.70) eV. The nature of frequency dependentW̄(ω)reveals that the correlation strength of this compound is relatively weaker and hence the excited electronic state can be properly studied by full-GWmany-body technique. The plasmon excitation is found to be important in understanding this frequency dependentW̄(ω). The temperature dependent electron-electron interactions (EEI) reduces the bandgaps with increasing temperature. The value of bandgap at 300 K is obtained to be ∼161 meV. The temperature dependent lifetimes of electronic state alongW-L-Γ direction are also estimated. This work suggests that EEI is important to explain the high temperature transport behaviour of SnTe.
Collapse
Affiliation(s)
- Antik Sihi
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand-175075, India
| | - Sudhir K Pandey
- School of Engineering, Indian Institute of Technology Mandi, Kamand-175075, India
| |
Collapse
|
8
|
Dornheim T, Vorberger J. Finite-size effects in the reconstruction of dynamic properties from ab initio path integral Monte Carlo simulations. Phys Rev E 2020; 102:063301. [PMID: 33466040 DOI: 10.1103/physreve.102.063301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
We systematically investigate finite-size effects in the dynamic structure factor S(q,ω) of the uniform electron gas obtained via the analytic continuation of ab initio path integral Monte Carlo data for the imaginary-time density-density correlation function F(q,τ). Using the recent scheme by Dornheim et al. [Phys. Rev. Lett. 121, 255001 (2018)PRLTAO0031-900710.1103/PhysRevLett.121.255001], we find that the reconstructed spectra are not afflicted with any finite-size effects for as few as N=14 electrons both at warm dense matter (WDM) conditions and at the margins of the strongly correlated electron liquid regime. Our results further corroborate the high quality of our current description of the dynamic density response of correlated electrons, which is of high importance for many applications in WDM theory and beyond.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
9
|
Yilmaz A, Hunger K, Dornheim T, Groth S, Bonitz M. Restricted configuration path integral Monte Carlo. J Chem Phys 2020; 153:124114. [DOI: 10.1063/5.0022800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- A. Yilmaz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - K. Hunger
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T. Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|
10
|
Rehr JJ, Vila FD, Kas JJ, Hirshberg NY, Kowalski K, Peng B. Equation of motion coupled-cluster cumulant approach for intrinsic losses in x-ray spectra. J Chem Phys 2020; 152:174113. [PMID: 32384843 DOI: 10.1063/5.0004865] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a combined equation of motion coupled-cluster cumulant Green's function approach for calculating and understanding intrinsic inelastic losses in core level x-ray absorption spectra (XAS) and x-ray photoemission spectra. The method is based on a factorization of the transition amplitude in the time domain, which leads to a convolution of an effective one-body absorption spectrum and the core-hole spectral function. The spectral function characterizes intrinsic losses in terms of shake-up excitations and satellites using a cumulant representation of the core-hole Green's function that simplifies the interpretation. The one-body spectrum also includes orthogonality corrections that enhance the XAS at the edge.
Collapse
Affiliation(s)
- J J Rehr
- Department of Physics, University of Washington Seattle, Seattle, Washington 98195, USA
| | - F D Vila
- Department of Physics, University of Washington Seattle, Seattle, Washington 98195, USA
| | - J J Kas
- Department of Physics, University of Washington Seattle, Seattle, Washington 98195, USA
| | - N Y Hirshberg
- Department of Physics, University of Washington Seattle, Seattle, Washington 98195, USA
| | - K Kowalski
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, PO Box 999, Richland, Washington 99352, USA
| | - B Peng
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, PO Box 999, Richland, Washington 99352, USA
| |
Collapse
|
11
|
Hollebon P, Ciricosta O, Desjarlais MP, Cacho C, Spindloe C, Springate E, Turcu ICE, Wark JS, Vinko SM. Ab initio simulations and measurements of the free-free opacity in aluminum. Phys Rev E 2019; 100:043207. [PMID: 31770899 DOI: 10.1103/physreve.100.043207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/10/2023]
Abstract
The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.
Collapse
Affiliation(s)
- P Hollebon
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - O Ciricosta
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M P Desjarlais
- Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - C Cacho
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - C Spindloe
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - E Springate
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - I C E Turcu
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - J S Wark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S M Vinko
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
12
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 121:255001. [PMID: 30608805 DOI: 10.1103/physrevlett.121.255001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor S(q,ω) constitutes a key quantity as it is directly measured in x-ray Thomson scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first ab initio results for S(q,ω) by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction G(q,ω). In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for S(q,ω) over substantial parts of the warm dense matter regime.
Collapse
Affiliation(s)
- T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|