1
|
Mattiotti G, Micheloni M, Petrolli L, Rovigatti L, Tubiana L, Pasquali S, Potestio R. Molecular Dynamics Characterization of the Free and Encapsidated RNA2 of CCMV with the oxRNA Model. Macromol Rapid Commun 2024; 45:e2400639. [PMID: 39575684 DOI: 10.1002/marc.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Indexed: 12/21/2024]
Abstract
The cowpea chlorotic mottle virus (CCMV) has emerged as a model system to assess the balance between electrostatic and topological features of single-stranded RNA viruses, specifically in the context of the viral self-assembly. Yet, despite its biophysical significance, little structural data on the RNA content of the CCMV virion is available. Here, the conformational dynamics of the RNA2 fragment of CCMV was assessed via coarse-grained molecular dynamics simulations, employing the oxRNA2 force field. The behavior of RNA2 was characterized both as a freely-folding molecule and within a mean-field depiction of the capsid. For the former, the role of the salt concentration, the temperature and of ad hoc constraints on the RNA termini was verified on the equilibrium properties of RNA2. For the latter, a multi-scale approach was employed to derive a potential profile of the viral cavity from atomistic structures of the CCMV capsid in solution. The conformational ensembles of the encapsidated RNA2 were significantly altered with respect to the freely-folding counterparts, as shown by the emergence of long-range motifs and pseudoknots. Finally, the role of the N-terminal tails of the CCMV subunits is highlighted as a critical feature in the construction of a proper electrostatic model of the CCMV capsid.
Collapse
Affiliation(s)
- Giovanni Mattiotti
- Laboratoire Biologie Functionnelle et Adaptative, CNRS UMR 8251, Inserm ERL U1133, Université Paris Cité, 35 rue Hélène Brion, Paris, 75013, France
| | - Manuel Micheloni
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Lorenzo Petrolli
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Lorenzo Rovigatti
- Department of Physics, Sapienza University of Rome, p.le A. Moro 5, Rome, 00185, Italy
| | - Luca Tubiana
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| | - Samuela Pasquali
- Laboratoire Biologie Functionnelle et Adaptative, CNRS UMR 8251, Inserm ERL U1133, Université Paris Cité, 35 rue Hélène Brion, Paris, 75013, France
| | - Raffaello Potestio
- Department of Physics, University of Trento, via Sommarive, 14, Trento, I-38123, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, 38123, Italy
| |
Collapse
|
2
|
Solé R, Sardanyés J, Elena SF. Phase transitions in virology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:115901. [PMID: 34584031 DOI: 10.1088/1361-6633/ac2ab0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Viruses have established relationships with almost every other living organism on Earth and at all levels of biological organization: from other viruses up to entire ecosystems. In most cases, they peacefully coexist with their hosts, but in most relevant cases, they parasitize them and induce diseases and pandemics, such as the AIDS and the most recent avian influenza and COVID-19 pandemic events, causing a huge impact on health, society, and economy. Viruses play an essential role in shaping the eco-evolutionary dynamics of their hosts, and have been also involved in some of the major evolutionary innovations either by working as vectors of genetic information or by being themselves coopted by the host into their genomes. Viruses can be studied at different levels of biological organization, from the molecular mechanisms of genome replication, gene expression and encapsidation, to global pandemics. All these levels are different and yet connected through the presence of threshold conditions allowing for the formation of a capsid, the loss of genetic information or epidemic spreading. These thresholds, as occurs with temperature separating phases in a liquid, define sharp qualitative types of behaviour. Thesephase transitionsare very well known in physics. They have been studied by means of simple, but powerful models able to capture their essential properties, allowing us to better understand them. Can the physics of phase transitions be an inspiration for our understanding of viral dynamics at different scales? Here we review well-known mathematical models of transition phenomena in virology. We suggest that the advantages of abstract, simplified pictures used in physics are also the key to properly understanding the origins and evolution of complexity in viruses. By means of several examples, we explore this multilevel landscape and how minimal models provide deep insights into a diverse array of problems. The relevance of these transitions in connecting dynamical patterns across scales and their evolutionary and clinical implications are outlined.
Collapse
Affiliation(s)
- Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra-PRBB, Dr Aiguader 80, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Edifici C, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
- Dynamical Systems and Computational Virology, CSIC Associated Unit, Institute for Integrative Systems Biology (I2SysBio)-CRM, Spain
| | - Santiago F Elena
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, United States of America
- Evolutionary Systems Virology Lab (I2SysBio), CSIC-Universitat de València, Catedrático Agustín Escardino 9, Paterna, 46980 València, Spain
| |
Collapse
|
3
|
Hill SR, Twarock R, Dykeman EC. The impact of local assembly rules on RNA packaging in a T = 1 satellite plant virus. PLoS Comput Biol 2021; 17:e1009306. [PMID: 34428224 PMCID: PMC8384211 DOI: 10.1371/journal.pcbi.1009306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023] Open
Abstract
The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.
Collapse
Affiliation(s)
- Sam R. Hill
- Department of Mathematics, University of York, York, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Reidun Twarock
- Department of Mathematics, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| | - Eric C. Dykeman
- Department of Mathematics, University of York, York, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, United Kingdom
| |
Collapse
|
4
|
Dong Y, Li S, Zandi R. Effect of the charge distribution of virus coat proteins on the length of packaged RNAs. Phys Rev E 2020; 102:062423. [PMID: 33466113 DOI: 10.1103/physreve.102.062423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 01/20/2023]
Abstract
Single-stranded RNA viruses efficiently encapsulate their genome into a protein shell called the capsid. Electrostatic interactions between the positive charges in the capsid protein's N-terminal tail and the negatively charged genome have been postulated as the main driving force for virus assembly. Recent experimental results indicate that the N-terminal tail with the same number of charges and same lengths packages different amounts of RNA, which reveals that electrostatics alone cannot explain all the observed outcomes of the RNA self-assembly experiments. Using a mean-field theory, we show that the combined effect of genome configurational entropy and electrostatics can explain to some extent the amount of packaged RNA with mutant proteins where the location and number of charges on the tails are altered. Understanding the factors contributing to the virus assembly could promote the attempt to block viral infections or to build capsids for gene therapy applications.
Collapse
Affiliation(s)
- Yinan Dong
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, USA
| |
Collapse
|
5
|
Panahandeh S, Li S, Marichal L, Leite Rubim R, Tresset G, Zandi R. How a Virus Circumvents Energy Barriers to Form Symmetric Shells. ACS NANO 2020; 14:3170-3180. [PMID: 32115940 DOI: 10.1021/acsnano.9b08354] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous self-assembly experiments on a model icosahedral plant virus have shown that, under physiological conditions, capsid proteins initially bind to the genome through an en masse mechanism and form nucleoprotein complexes in a disordered state, which raises the question as to how virions are assembled into a highly ordered structure in the host cell. Using small-angle X-ray scattering, we find out that a disorder-order transition occurs under physiological conditions upon an increase in capsid protein concentrations. Our cryo-transmission electron microscopy reveals closed spherical shells containing in vitro transcribed viral RNA even at pH 7.5, in marked contrast with the previous observations. We use Monte Carlo simulations to explain this disorder-order transition and find that, as the shell grows, the structures of disordered intermediates in which the distribution of pentamers does not belong to the icosahedral subgroups become energetically so unfavorable that the caps can easily dissociate and reassemble, overcoming the energy barriers for the formation of perfect icosahedral shells. In addition, we monitor the growth of capsids under the condition that the nucleation and growth is the dominant pathway and show that the key for the disorder-order transition in both en masse and nucleation and growth pathways lies in the strength of elastic energy compared to the other forces in the system including protein-protein interactions and the chemical potential of free subunits. Our findings explain, at least in part, why perfect virions with icosahedral order form under different conditions including physiological ones.
Collapse
Affiliation(s)
- Sanaz Panahandeh
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laurent Marichal
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Rafael Leite Rubim
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Chen J, Lansac Y, Tresset G. Interactions between the Molecular Components of the Cowpea Chlorotic Mottle Virus Investigated by Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9490-9498. [DOI: 10.1021/acs.jpcb.8b08026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingzhi Chen
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Yves Lansac
- GREMAN, UMR 7347, CNRS, Université de Tours, 37200 Tours, France
| | - Guillaume Tresset
- Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex, France
| |
Collapse
|
7
|
Twarock R, Bingham RJ, Dykeman EC, Stockley PG. A modelling paradigm for RNA virus assembly. Curr Opin Virol 2018; 31:74-81. [PMID: 30078702 PMCID: PMC6281560 DOI: 10.1016/j.coviro.2018.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022]
Abstract
Virus assembly, a key stage in any viral life cycle, had long been considered to be primarily driven by protein-protein interactions and nonspecific interactions between genomic RNA and capsid protein. We review here a modelling paradigm for RNA virus assembly that illustrates the crucial roles of multiple dispersed, specific interactions between viral genomes and coat proteins in capsid assembly. The model reveals how multiple sequence-structure motifs in the genomic RNA, termed packaging signals, with a shared coat protein recognition motif enable viruses to overcome a viral assembly-equivalent of Levinthal's Paradox in protein folding. The fitness advantages conferred by this mechanism suggest that it should be widespread in viruses, opening up new perspectives on viral evolution and anti-viral therapy.
Collapse
Affiliation(s)
- Reidun Twarock
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5NG, UK.
| | - Richard J Bingham
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK; Department of Biology, University of York, York YO10 5NG, UK
| | - Eric C Dykeman
- York Centre for Cross-disciplinary Systems Analysis, University of York, York YO10 5GE, UK; Department of Mathematics, University of York, York YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT UK
| |
Collapse
|
8
|
Li S, Orland H, Zandi R. Self consistent field theory of virus assembly. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:144002. [PMID: 29460850 PMCID: PMC7104907 DOI: 10.1088/1361-648x/aab0c6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 05/04/2023]
Abstract
The ground state dominance approximation (GSDA) has been extensively used to study the assembly of viral shells. In this work we employ the self-consistent field theory (SCFT) to investigate the adsorption of RNA onto positively charged spherical viral shells and examine the conditions when GSDA does not apply and SCFT has to be used to obtain a reliable solution. We find that there are two regimes in which GSDA does work. First, when the genomic RNA length is long enough compared to the capsid radius, and second, when the interaction between the genome and capsid is so strong that the genome is basically localized next to the wall. We find that for the case in which RNA is more or less distributed uniformly in the shell, regardless of the length of RNA, GSDA is not a good approximation. We observe that as the polymer-shell interaction becomes stronger, the energy gap between the ground state and first excited state increases and thus GSDA becomes a better approximation. We also present our results corresponding to the genome persistence length obtained through the tangent-tangent correlation length and show that it is zero in case of GSDA but is equal to the inverse of the energy gap when using SCFT.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No.10 East Xibeiwang Road, Haidan District, Beijing 100193, People’s Republic of China
| | - Henri Orland
- Institut de Physique Théorique, CEA-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, No.10 East Xibeiwang Road, Haidan District, Beijing 100193, People’s Republic of China
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|
9
|
van der Holst B, Kegel WK, Zandi R, van der Schoot P. The different faces of mass action in virus assembly. J Biol Phys 2018; 44:163-179. [PMID: 29616429 PMCID: PMC5928020 DOI: 10.1007/s10867-018-9487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
The spontaneous encapsulation of genomic and non-genomic polyanions by coat proteins of simple icosahedral viruses is driven, in the first instance, by electrostatic interactions with polycationic RNA binding domains on these proteins. The efficiency with which the polyanions can be encapsulated in vitro, and presumably also in vivo, must in addition be governed by the loss of translational and mixing entropy associated with co-assembly, at least if this co-assembly constitutes a reversible process. These forms of entropy counteract the impact of attractive interactions between the constituents and hence they counteract complexation. By invoking mass action-type arguments and a simple model describing electrostatic interactions, we show how these forms of entropy might settle the competition between negatively charged polymers of different molecular weights for co-assembly with the coat proteins. In direct competition, mass action turns out to strongly work against the encapsulation of RNAs that are significantly shorter, which is typically the case for non-viral (host) RNAs. We also find that coat proteins favor forming virus particles over nonspecific binding to other proteins in the cytosol even if these are present in vast excess. Our results rationalize a number of recent in vitro co-assembly experiments showing that short polyanions are less effective at attracting virus coat proteins to form virus-like particles than long ones do, even if both are present at equal weight concentrations in the assembly mixture.
Collapse
Affiliation(s)
- Bart van der Holst
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Willem K Kegel
- Department of Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California Riverside, Riverside, USA
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Li S, Erdemci-Tandogan G, van der Schoot P, Zandi R. The effect of RNA stiffness on the self-assembly of virus particles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044002. [PMID: 29235442 PMCID: PMC7104906 DOI: 10.1088/1361-648x/aaa159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 05/21/2023]
Abstract
Under many in vitro conditions, some small viruses spontaneously encapsidate a single stranded (ss) RNA into a protein shell called the capsid. While viral RNAs are found to be compact and highly branched because of long distance base-pairing between nucleotides, recent experiments reveal that in a head-to-head competition between an ssRNA with no secondary or higher order structure and a viral RNA, the capsid proteins preferentially encapsulate the linear polymer! In this paper, we study the impact of genome stiffness on the encapsidation free energy of the complex of RNA and capsid proteins. We show that an increase in effective chain stiffness because of base-pairing could be the reason why under certain conditions linear chains have an advantage over branched chains when it comes to encapsidation efficiency. While branching makes the genome more compact, RNA base-pairing increases the effective Kuhn length of the RNA molecule, which could result in an increase of the free energy of RNA confinement, that is, the work required to encapsidate RNA, and thus less efficient packaging.
Collapse
Affiliation(s)
- Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| | - Gonca Erdemci-Tandogan
- Department of Physics, Syracuse University, Syracuse, NY 13244, United States of America
| | - Paul van der Schoot
- Group Theory of Polymers and Soft Matter, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, United States of America
| |
Collapse
|